yosys/backends/btor/btor.cc

1004 lines
36 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* Copyright (C) 2014 Ahmed Irfan <irfan@fbk.eu>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]] BTOR: Bit-Precise Modelling of Word-Level Problems for Model Checking
// Johannes Kepler University, Linz, Austria
// http://fmv.jku.at/papers/BrummayerBiereLonsing-BPR08.pdf
#include "kernel/rtlil.h"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "kernel/log.h"
#include <string>
#include <math.h>
struct BtorDumperConfig
{
bool subckt_mode;
bool conn_mode;
bool impltf_mode;
std::string buf_type, buf_in, buf_out;
std::string true_type, true_out, false_type, false_out;
BtorDumperConfig() : subckt_mode(false), conn_mode(false), impltf_mode(false) { }
};
struct WireInfo
{
RTLIL::IdString cell_name;
const RTLIL::SigChunk *chunk;
WireInfo(RTLIL::IdString c, const RTLIL::SigChunk* ch) : cell_name(c), chunk(ch) { }
};
struct WireInfoOrder
{
bool operator() (const WireInfo& x, const WireInfo& y)
{
return x.chunk < y.chunk;
}
};
struct BtorDumper
{
FILE *f;
RTLIL::Module *module;
RTLIL::Design *design;
BtorDumperConfig *config;
CellTypes ct;
SigMap sigmap;
std::map<RTLIL::IdString, std::set<WireInfo,WireInfoOrder>> inter_wire_map;//<wire, dependency list> for maping the intermediate wires that are output of some cell
std::map<RTLIL::IdString, int> line_ref;//mapping of ids to line_num of the btor file
std::map<RTLIL::SigSpec, int> sig_ref;//mapping of sigspec to the line_num of the btor file
int line_num;//last line number of btor file
std::string str;//temp string for writing file
std::map<RTLIL::IdString, bool> basic_wires;//input wires and registers
RTLIL::IdString curr_cell; //current cell being dumped
std::map<std::string, std::string> cell_type_translation, s_cell_type_translation; //RTLIL to BTOR translation
BtorDumper(FILE *f, RTLIL::Module *module, RTLIL::Design *design, BtorDumperConfig *config) :
f(f), module(module), design(design), config(config), ct(design), sigmap(module)
{
line_num=0;
str.clear();
for(auto it=module->wires.begin(); it!=module->wires.end(); ++it)
{
if(it->second->port_input)
{
basic_wires[it->first]=true;
}
else
{
basic_wires[it->first]=false;
}
inter_wire_map[it->first].clear();
}
curr_cell.clear();
//assert
cell_type_translation["$assert"] = "root";
//unary
cell_type_translation["$not"] = "not";
cell_type_translation["$neg"] = "neg";
cell_type_translation["$reduce_and"] = "redand";
cell_type_translation["$reduce_or"] = "redor";
cell_type_translation["$reduce_xor"] = "redxor";
cell_type_translation["$reduce_bool"] = "redor";
//binary
cell_type_translation["$and"] = "and";
cell_type_translation["$or"] = "or";
cell_type_translation["$xor"] = "xor";
cell_type_translation["$xnor"] = "xnor";
cell_type_translation["$shr"] = "srl";
cell_type_translation["$shl"] = "sll";
cell_type_translation["$sshr"] = "sra";
cell_type_translation["$sshl"] = "sll";
cell_type_translation["$lt"] = "ult";
cell_type_translation["$le"] = "ulte";
cell_type_translation["$gt"] = "ugt";
cell_type_translation["$ge"] = "ugte";
cell_type_translation["$eq"] = "eq";
cell_type_translation["$eqx"] = "eq";
cell_type_translation["$ne"] = "ne";
cell_type_translation["$nex"] = "ne";
cell_type_translation["$add"] = "add";
cell_type_translation["$sub"] = "sub";
cell_type_translation["$mul"] = "mul";
cell_type_translation["$mod"] = "urem";
cell_type_translation["$div"] = "udiv";
//mux
cell_type_translation["$mux"] = "cond";
//reg
cell_type_translation["$dff"] = "next";
cell_type_translation["$adff"] = "next";
cell_type_translation["$dffsr"] = "next";
//memories
//nothing here
//slice
cell_type_translation["$slice"] = "slice";
//concat
cell_type_translation["$concat"] = "concat";
//signed cell type translation
//binary
s_cell_type_translation["$modx"] = "srem";
s_cell_type_translation["$mody"] = "smod";
s_cell_type_translation["$div"] = "sdiv";
s_cell_type_translation["$lt"] = "slt";
s_cell_type_translation["$le"] = "slte";
s_cell_type_translation["$gt"] = "sgt";
s_cell_type_translation["$ge"] = "sgte";
}
std::vector<std::string> cstr_buf;
const char *cstr(const RTLIL::IdString id)
{
str = RTLIL::unescape_id(id);
for (size_t i = 0; i < str.size(); ++i)
if (str[i] == '#' || str[i] == '=')
str[i] = '?';
cstr_buf.push_back(str);
return cstr_buf.back().c_str();
}
int dump_wire(RTLIL::Wire* wire)
{
if(basic_wires[wire->name])
{
log("writing wire %s\n", cstr(wire->name));
auto it = line_ref.find(wire->name);
if(it==std::end(line_ref))
{
++line_num;
line_ref[wire->name]=line_num;
str = stringf("%d var %d %s", line_num, wire->width, cstr(wire->name));
fprintf(f, "%s\n", str.c_str());
return line_num;
}
else return it->second;
}
else // case when the wire is not basic wire
{
log("case of non-basic wire - %s\n", cstr(wire->name));
auto it = line_ref.find(wire->name);
if(it==std::end(line_ref))
{
std::set<WireInfo, WireInfoOrder>& dep_set = inter_wire_map.at(wire->name);
int wire_line = 0;
int wire_width = 0;
for(auto dep_set_it=dep_set.begin(); dep_set_it!=dep_set.end(); ++dep_set_it)
{
RTLIL::IdString cell_id = dep_set_it->cell_name;
if(cell_id == curr_cell)
break;
log(" -- found cell %s\n", cstr(cell_id));
RTLIL::Cell* cell = module->cells.at(cell_id);
RTLIL::SigSpec* cell_output = get_cell_output(cell);
int cell_line = dump_cell(cell);
if(dep_set.size()==1 && wire->width == cell_output->size())
{
wire_line = cell_line;
break;
}
else
{
int prev_wire_line=0; //previously dumped wire line
int start_bit=0;
for(unsigned j=0; j<cell_output->chunks().size(); ++j)
{
start_bit+=cell_output->chunks()[j].width;
if(cell_output->chunks()[j].wire->name == wire->name)
{
prev_wire_line = wire_line;
wire_line = ++line_num;
str = stringf("%d slice %d %d %d %d;1", line_num, cell_output->chunks()[j].width,
cell_line, start_bit-1, start_bit-cell_output->chunks()[j].width);
fprintf(f, "%s\n", str.c_str());
wire_width += cell_output->chunks()[j].width;
if(prev_wire_line!=0)
{
++line_num;
str = stringf("%d concat %d %d %d", line_num, wire_width, wire_line, prev_wire_line);
fprintf(f, "%s\n", str.c_str());
wire_line = line_num;
}
}
}
}
}
if(dep_set.size()==0)
{
log(" - checking sigmap\n");
RTLIL::SigSpec s = RTLIL::SigSpec(wire);
wire_line = dump_sigspec(&s, s.size());
line_ref[wire->name]=wire_line;
}
line_ref[wire->name]=wire_line;
return wire_line;
}
else
{
log(" -- already processed wire\n");
return it->second;
}
}
log_abort();
return -1;
}
int dump_memory(const RTLIL::Memory* memory)
{
log("writing memory %s\n", cstr(memory->name));
auto it = line_ref.find(memory->name);
if(it==std::end(line_ref))
{
++line_num;
int address_bits = ceil(log(memory->size)/log(2));
str = stringf("%d array %d %d", line_num, memory->width, address_bits);
line_ref[memory->name]=line_num;
fprintf(f, "%s\n", str.c_str());
return line_num;
}
else return it->second;
}
int dump_const(const RTLIL::Const* data, int width, int offset)
{
log("writing const \n");
if((data->flags & RTLIL::CONST_FLAG_STRING) == 0)
{
if(width<0)
width = data->bits.size() - offset;
std::string data_str = data->as_string();
//if(offset > 0)
data_str = data_str.substr(offset, width);
++line_num;
str = stringf("%d const %d %s", line_num, width, data_str.c_str());
fprintf(f, "%s\n", str.c_str());
return line_num;
}
else
log("writing const error\n");
log_abort();
return -1;
}
int dump_sigchunk(const RTLIL::SigChunk* chunk)
{
log("writing sigchunk\n");
int l=-1;
if(chunk->wire == NULL)
{
l=dump_const(&chunk->data, chunk->width, chunk->offset);
}
else
{
if (chunk->width == chunk->wire->width && chunk->offset == 0)
l = dump_wire(chunk->wire);
else
{
int wire_line_num = dump_wire(chunk->wire);
log_assert(wire_line_num>0);
++line_num;
str = stringf("%d slice %d %d %d %d;2", line_num, chunk->width, wire_line_num,
chunk->width + chunk->offset - 1, chunk->offset);
fprintf(f, "%s\n", str.c_str());
l = line_num;
}
}
return l;
}
int dump_sigspec(const RTLIL::SigSpec* sig, int expected_width)
{
log("writing sigspec\n");
RTLIL::SigSpec s = sigmap(*sig);
int l = -1;
auto it = sig_ref.find(s);
if(it == std::end(sig_ref))
{
if (s.chunks().size() == 1)
{
l = dump_sigchunk(&s.chunks()[0]);
}
else
{
int l1, l2, w1, w2;
l1 = dump_sigchunk(&s.chunks()[0]);
log_assert(l1>0);
w1 = s.chunks()[0].width;
for (unsigned i=1; i < s.chunks().size(); ++i)
{
l2 = dump_sigchunk(&s.chunks()[i]);
log_assert(l2>0);
w2 = s.chunks()[i].width;
++line_num;
str = stringf("%d concat %d %d %d", line_num, w1+w2, l2, l1);
fprintf(f, "%s\n", str.c_str());
l1=line_num;
w1+=w2;
}
l = line_num;
}
sig_ref[s] = l;
}
else
{
l = it->second;
}
if (expected_width != s.size())
{
log(" - changing width of sigspec\n");
//TODO: this block may not be needed anymore, due to explicit type conversion by "splice" command
if(expected_width > s.size())
{
//TODO: case the signal is signed
++line_num;
str = stringf ("%d zero %d", line_num, expected_width - s.size());
fprintf(f, "%s\n", str.c_str());
++line_num;
str = stringf ("%d concat %d %d %d", line_num, expected_width, line_num-1, l);
fprintf(f, "%s\n", str.c_str());
l = line_num;
}
else if(expected_width < s.size())
{
++line_num;
str = stringf ("%d slice %d %d %d %d;3", line_num, expected_width, l, expected_width-1, 0);
fprintf(f, "%s\n", str.c_str());
l = line_num;
}
}
log_assert(l>0);
return l;
}
int dump_cell(const RTLIL::Cell* cell)
{
auto it = line_ref.find(cell->name);
if(it==std::end(line_ref))
{
curr_cell = cell->name;
//assert cell
if(cell->type == "$assert")
{
log("writing assert cell - %s\n", cstr(cell->type));
const RTLIL::SigSpec* expr = &cell->connections.at(RTLIL::IdString("\\A"));
const RTLIL::SigSpec* en = &cell->connections.at(RTLIL::IdString("\\EN"));
log_assert(expr->size() == 1);
log_assert(en->size() == 1);
int expr_line = dump_sigspec(expr, 1);
int en_line = dump_sigspec(en, 1);
int one_line = ++line_num;
str = stringf("%d one 1", line_num);
fprintf(f, "%s\n", str.c_str());
++line_num;
str = stringf("%d %s %d %d %d", line_num, cell_type_translation.at("$eq").c_str(), 1, en_line, one_line);
fprintf(f, "%s\n", str.c_str());
++line_num;
str = stringf("%d %s %d %d %d %d", line_num, cell_type_translation.at("$mux").c_str(), 1, line_num-1,
expr_line, one_line);
fprintf(f, "%s\n", str.c_str());
int cell_line = ++line_num;
str = stringf("%d %s %d %d", line_num, cell_type_translation.at("$assert").c_str(), 1, -1*(line_num-1));
//multiplying the line number with -1, which means logical negation
//the reason for negative sign is that the properties in btor are given as "negation of the original property"
//bug identified by bobosoft
//http://www.reddit.com/r/yosys/comments/1w3xig/btor_backend_bug/
fprintf(f, "%s\n", str.c_str());
line_ref[cell->name]=cell_line;
}
//unary cells
if(cell->type == "$not" || cell->type == "$neg" || cell->type == "$pos" || cell->type == "$reduce_and" ||
cell->type == "$reduce_or" || cell->type == "$reduce_xor" || cell->type == "$reduce_bool")
{
log("writing unary cell - %s\n", cstr(cell->type));
int w = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int();
int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int();
w = w>output_width ? w:output_width; //padding of w
int l = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\A")), w);
int cell_line = l;
if(cell->type != "$pos")
{
cell_line = ++line_num;
bool reduced = (cell->type == "$not" || cell->type == "$neg") ? false : true;
str = stringf ("%d %s %d %d", cell_line, cell_type_translation.at(cell->type).c_str(), reduced?output_width:w, l);
fprintf(f, "%s\n", str.c_str());
}
if(output_width < w && (cell->type == "$not" || cell->type == "$neg" || cell->type == "$pos"))
{
++line_num;
str = stringf ("%d slice %d %d %d %d;4", line_num, output_width, cell_line, output_width-1, 0);
fprintf(f, "%s\n", str.c_str());
cell_line = line_num;
}
line_ref[cell->name]=cell_line;
}
else if(cell->type == "$reduce_xnor" || cell->type == "$logic_not")//no direct translation in btor
{
log("writing unary cell - %s\n", cstr(cell->type));
int w = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int();
int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int();
log_assert(output_width == 1);
int l = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\A")), w);
if(cell->type == "$logic_not" && w > 1)
{
++line_num;
str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$reduce_or").c_str(), output_width, l);
fprintf(f, "%s\n", str.c_str());
}
else if(cell->type == "$reduce_xnor")
{
++line_num;
str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$reduce_xor").c_str(), output_width, l);
fprintf(f, "%s\n", str.c_str());
}
++line_num;
str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$not").c_str(), output_width, line_num-1);
fprintf(f, "%s\n", str.c_str());
line_ref[cell->name]=line_num;
}
//binary cells
else if(cell->type == "$and" || cell->type == "$or" || cell->type == "$xor" || cell->type == "$xnor" ||
cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" ||
cell->type == "$eqx" || cell->type == "$nex" || cell->type == "$ge" || cell->type == "$gt" )
{
log("writing binary cell - %s\n", cstr(cell->type));
int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int();
log_assert(!(cell->type == "$eq" || cell->type == "$ne" || cell->type == "$eqx" || cell->type == "$nex" ||
cell->type == "$ge" || cell->type == "$gt") || output_width == 1);
bool l1_signed = cell->parameters.at(RTLIL::IdString("\\A_SIGNED")).as_bool();
bool l2_signed = cell->parameters.at(RTLIL::IdString("\\B_SIGNED")).as_bool();
int l1_width = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int();
int l2_width = cell->parameters.at(RTLIL::IdString("\\B_WIDTH")).as_int();
log_assert(l1_signed == l2_signed);
l1_width = l1_width > output_width ? l1_width : output_width;
l1_width = l1_width > l2_width ? l1_width : l2_width;
l2_width = l2_width > l1_width ? l2_width : l1_width;
int l1 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\A")), l1_width);
int l2 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\B")), l2_width);
++line_num;
std::string op = cell_type_translation.at(cell->type);
if(cell->type == "$lt" || cell->type == "$le" ||
cell->type == "$eq" || cell->type == "$ne" || cell->type == "$eqx" || cell->type == "$nex" ||
cell->type == "$ge" || cell->type == "$gt")
{
if(l1_signed)
op = s_cell_type_translation.at(cell->type);
}
str = stringf ("%d %s %d %d %d", line_num, op.c_str(), output_width, l1, l2);
fprintf(f, "%s\n", str.c_str());
line_ref[cell->name]=line_num;
}
else if(cell->type == "$add" || cell->type == "$sub" || cell->type == "$mul" || cell->type == "$div" ||
cell->type == "$mod" )
{
//TODO: division by zero case
log("writing binary cell - %s\n", cstr(cell->type));
int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int();
bool l1_signed = cell->parameters.at(RTLIL::IdString("\\A_SIGNED")).as_bool();
bool l2_signed = cell->parameters.at(RTLIL::IdString("\\B_SIGNED")).as_bool();
int l1_width = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int();
int l2_width = cell->parameters.at(RTLIL::IdString("\\B_WIDTH")).as_int();
log_assert(l1_signed == l2_signed);
l1_width = l1_width > output_width ? l1_width : output_width;
l1_width = l1_width > l2_width ? l1_width : l2_width;
l2_width = l2_width > l1_width ? l2_width : l1_width;
int l1 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\A")), l1_width);
int l2 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\B")), l2_width);
++line_num;
std::string op = cell_type_translation.at(cell->type);
if(cell->type == "$div" && l1_signed)
op = s_cell_type_translation.at(cell->type);
else if(cell->type == "$mod")
{
if(l1_signed)
op = s_cell_type_translation.at("$modx");
else if(l2_signed)
op = s_cell_type_translation.at("$mody");
}
str = stringf ("%d %s %d %d %d", line_num, op.c_str(), l1_width, l1, l2);
fprintf(f, "%s\n", str.c_str());
if(output_width < l1_width)
{
++line_num;
str = stringf ("%d slice %d %d %d %d;5", line_num, output_width, line_num-1, output_width-1, 0);
fprintf(f, "%s\n", str.c_str());
}
line_ref[cell->name]=line_num;
}
else if(cell->type == "$shr" || cell->type == "$shl" || cell->type == "$sshr" || cell->type == "$sshl")
{
log("writing binary cell - %s\n", cstr(cell->type));
int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int();
bool l1_signed = cell->parameters.at(RTLIL::IdString("\\A_SIGNED")).as_bool();
//bool l2_signed = cell->parameters.at(RTLIL::IdString("\\B_SIGNED")).as_bool();
int l1_width = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int();
l1_width = pow(2, ceil(log(l1_width)/log(2)));
int l2_width = cell->parameters.at(RTLIL::IdString("\\B_WIDTH")).as_int();
//assert(l2_width <= ceil(log(l1_width)/log(2)) );
int l1 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\A")), l1_width);
int l2 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\B")), ceil(log(l1_width)/log(2)));
int cell_output = ++line_num;
str = stringf ("%d %s %d %d %d", line_num, cell_type_translation.at(cell->type).c_str(), l1_width, l1, l2);
fprintf(f, "%s\n", str.c_str());
if(l2_width > ceil(log(l1_width)/log(2)))
{
int extra_width = l2_width - ceil(log(l1_width)/log(2));
l2 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\B")), l2_width);
++line_num;
str = stringf ("%d slice %d %d %d %d;6", line_num, extra_width, l2, l2_width-1, l2_width-extra_width);
fprintf(f, "%s\n", str.c_str());
++line_num;
str = stringf ("%d one %d", line_num, extra_width);
fprintf(f, "%s\n", str.c_str());
int mux = ++line_num;
str = stringf ("%d %s %d %d %d", line_num, cell_type_translation.at("$gt").c_str(), 1, line_num-2, line_num-1);
fprintf(f, "%s\n", str.c_str());
++line_num;
str = stringf("%d %s %d", line_num, l1_signed && cell->type == "$sshr" ? "ones":"zero", l1_width);
fprintf(f, "%s\n", str.c_str());
++line_num;
str = stringf ("%d %s %d %d %d %d", line_num, cell_type_translation.at("$mux").c_str(), l1_width, mux, line_num-1, cell_output);
fprintf(f, "%s\n", str.c_str());
cell_output = line_num;
}
if(output_width < l1_width)
{
++line_num;
str = stringf ("%d slice %d %d %d %d;5", line_num, output_width, cell_output, output_width-1, 0);
fprintf(f, "%s\n", str.c_str());
cell_output = line_num;
}
line_ref[cell->name] = cell_output;
}
else if(cell->type == "$logic_and" || cell->type == "$logic_or")//no direct translation in btor
{
log("writing binary cell - %s\n", cstr(cell->type));
int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int();
log_assert(output_width == 1);
int l1 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\A")), output_width);
int l2 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\B")), output_width);
int l1_width = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int();
int l2_width = cell->parameters.at(RTLIL::IdString("\\B_WIDTH")).as_int();
if(l1_width >1)
{
++line_num;
str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$reduce_or").c_str(), output_width, l1);
fprintf(f, "%s\n", str.c_str());
l1 = line_num;
}
if(l2_width > 1)
{
++line_num;
str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$reduce_or").c_str(), output_width, l2);
fprintf(f, "%s\n", str.c_str());
l2 = line_num;
}
if(cell->type == "$logic_and")
{
++line_num;
str = stringf ("%d %s %d %d %d", line_num, cell_type_translation.at("$and").c_str(), output_width, l1, l2);
}
else if(cell->type == "$logic_or")
{
++line_num;
str = stringf ("%d %s %d %d %d", line_num, cell_type_translation.at("$or").c_str(), output_width, l1, l2);
}
fprintf(f, "%s\n", str.c_str());
line_ref[cell->name]=line_num;
}
//multiplexers
else if(cell->type == "$mux")
{
log("writing mux cell\n");
int output_width = cell->parameters.at(RTLIL::IdString("\\WIDTH")).as_int();
int l1 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\A")), output_width);
int l2 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\B")), output_width);
int s = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\S")), 1);
++line_num;
str = stringf ("%d %s %d %d %d %d",
line_num, cell_type_translation.at(cell->type).c_str(), output_width, s, l2, l1);//if s is 0 then l1, if s is 1 then l2 //according to the implementation of mux cell
fprintf(f, "%s\n", str.c_str());
line_ref[cell->name]=line_num;
}
//registers
else if(cell->type == "$dff" || cell->type == "$adff" || cell->type == "$dffsr")
{
//TODO: remodelling fo adff cells
log("writing cell - %s\n", cstr(cell->type));
int output_width = cell->parameters.at(RTLIL::IdString("\\WIDTH")).as_int();
log(" - width is %d\n", output_width);
int cond = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\CLK")), 1);
bool polarity = cell->parameters.at(RTLIL::IdString("\\CLK_POLARITY")).as_bool();
const RTLIL::SigSpec* cell_output = &cell->connections.at(RTLIL::IdString("\\Q"));
int value = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\D")), output_width);
unsigned start_bit = 0;
for(unsigned i=0; i<cell_output->chunks().size(); ++i)
{
output_width = cell_output->chunks()[i].width;
log_assert( output_width == cell_output->chunks()[i].wire->width);//full reg is given the next value
int reg = dump_wire(cell_output->chunks()[i].wire);//register
int slice = value;
if(cell_output->chunks().size()>1)
{
start_bit+=output_width;
slice = ++line_num;
str = stringf ("%d slice %d %d %d %d;", line_num, output_width, value, start_bit-1,
start_bit-output_width);
fprintf(f, "%s\n", str.c_str());
}
if(cell->type == "$dffsr")
{
int sync_reset = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\CLR")), 1);
bool sync_reset_pol = cell->parameters.at(RTLIL::IdString("\\CLR_POLARITY")).as_bool();
int sync_reset_value = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\SET")),
output_width);
bool sync_reset_value_pol = cell->parameters.at(RTLIL::IdString("\\SET_POLARITY")).as_bool();
++line_num;
str = stringf ("%d %s %d %s%d %s%d %d", line_num, cell_type_translation.at("$mux").c_str(),
output_width, sync_reset_pol ? "":"-", sync_reset, sync_reset_value_pol? "":"-",
sync_reset_value, slice);
fprintf(f, "%s\n", str.c_str());
slice = line_num;
}
++line_num;
str = stringf ("%d %s %d %s%d %d %d", line_num, cell_type_translation.at("$mux").c_str(),
output_width, polarity?"":"-", cond, slice, reg);
fprintf(f, "%s\n", str.c_str());
int next = line_num;
if(cell->type == "$adff")
{
int async_reset = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\ARST")), 1);
bool async_reset_pol = cell->parameters.at(RTLIL::IdString("\\ARST_POLARITY")).as_bool();
int async_reset_value = dump_const(&cell->parameters.at(RTLIL::IdString("\\ARST_VALUE")),
output_width, 0);
++line_num;
str = stringf ("%d %s %d %s%d %d %d", line_num, cell_type_translation.at("$mux").c_str(),
output_width, async_reset_pol ? "":"-", async_reset, async_reset_value, next);
fprintf(f, "%s\n", str.c_str());
}
++line_num;
str = stringf ("%d %s %d %d %d", line_num, cell_type_translation.at(cell->type).c_str(),
output_width, reg, next);
fprintf(f, "%s\n", str.c_str());
}
line_ref[cell->name]=line_num;
}
//memories
else if(cell->type == "$memrd")
{
log("writing memrd cell\n");
if (cell->parameters.at("\\CLK_ENABLE").as_bool() == true)
log_error("The btor backen does not support $memrd cells with built-in registers. Run memory_dff with -wr_only.\n");
str = cell->parameters.at(RTLIL::IdString("\\MEMID")).decode_string();
int mem = dump_memory(module->memories.at(RTLIL::IdString(str.c_str())));
int address_width = cell->parameters.at(RTLIL::IdString("\\ABITS")).as_int();
int address = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\ADDR")), address_width);
int data_width = cell->parameters.at(RTLIL::IdString("\\WIDTH")).as_int();
++line_num;
str = stringf("%d read %d %d %d", line_num, data_width, mem, address);
fprintf(f, "%s\n", str.c_str());
line_ref[cell->name]=line_num;
}
else if(cell->type == "$memwr")
{
log("writing memwr cell\n");
if (cell->parameters.at("\\CLK_ENABLE").as_bool() == false)
log_error("The btor backen does not support $memwr cells without built-in registers. Run memory_dff (but with -wr_only).\n");
int clk = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\CLK")), 1);
bool polarity = cell->parameters.at(RTLIL::IdString("\\CLK_POLARITY")).as_bool();
int enable = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\EN")), 1);
int address_width = cell->parameters.at(RTLIL::IdString("\\ABITS")).as_int();
int address = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\ADDR")), address_width);
int data_width = cell->parameters.at(RTLIL::IdString("\\WIDTH")).as_int();
int data = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\DATA")), data_width);
str = cell->parameters.at(RTLIL::IdString("\\MEMID")).decode_string();
int mem = dump_memory(module->memories.at(RTLIL::IdString(str.c_str())));
++line_num;
if(polarity)
str = stringf("%d one 1", line_num);
else
str = stringf("%d zero 1", line_num);
fprintf(f, "%s\n", str.c_str());
++line_num;
str = stringf("%d eq 1 %d %d", line_num, clk, line_num-1);
fprintf(f, "%s\n", str.c_str());
++line_num;
str = stringf("%d and 1 %d %d", line_num, line_num-1, enable);
fprintf(f, "%s\n", str.c_str());
++line_num;
str = stringf("%d write %d %d %d %d %d", line_num, data_width, address_width, mem, address, data);
fprintf(f, "%s\n", str.c_str());
++line_num;
str = stringf("%d acond %d %d %d %d %d", line_num, data_width, address_width, line_num-2/*enable*/, line_num-1, mem);
fprintf(f, "%s\n", str.c_str());
++line_num;
str = stringf("%d anext %d %d %d %d", line_num, data_width, address_width, mem, line_num-1);
fprintf(f, "%s\n", str.c_str());
line_ref[cell->name]=line_num;
}
else if(cell->type == "$slice")
{
log("writing slice cell\n");
const RTLIL::SigSpec* input = &cell->connections.at(RTLIL::IdString("\\A"));
int input_width = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int();
log_assert(input->size() == input_width);
int input_line = dump_sigspec(input, input_width);
const RTLIL::SigSpec* output = &cell->connections.at(RTLIL::IdString("\\Y"));
int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int();
log_assert(output->size() == output_width);
int offset = cell->parameters.at(RTLIL::IdString("\\OFFSET")).as_int();
++line_num;
str = stringf("%d %s %d %d %d %d", line_num, cell_type_translation.at(cell->type).c_str(), output_width, input_line, output_width+offset-1, offset);
fprintf(f, "%s\n", str.c_str());
line_ref[cell->name]=line_num;
}
else if(cell->type == "$concat")
{
log("writing concat cell\n");
const RTLIL::SigSpec* input_a = &cell->connections.at(RTLIL::IdString("\\A"));
int input_a_width = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int();
log_assert(input_a->size() == input_a_width);
int input_a_line = dump_sigspec(input_a, input_a_width);
const RTLIL::SigSpec* input_b = &cell->connections.at(RTLIL::IdString("\\B"));
int input_b_width = cell->parameters.at(RTLIL::IdString("\\B_WIDTH")).as_int();
log_assert(input_b->size() == input_b_width);
int input_b_line = dump_sigspec(input_b, input_b_width);
++line_num;
str = stringf("%d %s %d %d %d", line_num, cell_type_translation.at(cell->type).c_str(), input_a_width+input_b_width,
input_a_line, input_b_line);
fprintf(f, "%s\n", str.c_str());
line_ref[cell->name]=line_num;
}
curr_cell.clear();
return line_num;
}
else
{
return it->second;
}
}
RTLIL::SigSpec* get_cell_output(RTLIL::Cell* cell)
{
RTLIL::SigSpec *output_sig = nullptr;
if (cell->type == "$memrd")
{
output_sig = &cell->connections.at(RTLIL::IdString("\\DATA"));
}
else if(cell->type == "$memwr" || cell->type == "$assert")
{
//no output
}
else if(cell->type == "$dff" || cell->type == "$adff" || cell->type == "$dffsr")
{
output_sig = &cell->connections.at(RTLIL::IdString("\\Q"));
}
else
{
output_sig = &cell->connections.at(RTLIL::IdString("\\Y"));
}
return output_sig;
}
void dump_property(RTLIL::Wire *wire)
{
int l = dump_wire(wire);
++line_num;
str = stringf("%d root 1 %d", line_num, l);
fprintf(f, "%s\n", str.c_str());
}
void dump()
{
fprintf(f, ";module %s\n", cstr(module->name));
log("creating intermediate wires map\n");
//creating map of intermediate wires as output of some cell
for (auto it = module->cells.begin(); it != module->cells.end(); ++it)
{
RTLIL::Cell *cell = it->second;
RTLIL::SigSpec* output_sig = get_cell_output(cell);
if(output_sig==nullptr)
continue;
RTLIL::SigSpec s = sigmap(*output_sig);
output_sig = &s;
log(" - %s\n", cstr(it->second->type));
if (cell->type == "$memrd")
{
for(unsigned i=0; i<output_sig->chunks().size(); ++i)
{
RTLIL::Wire *w = output_sig->chunks()[i].wire;
RTLIL::IdString wire_id = w->name;
inter_wire_map[wire_id].insert(WireInfo(cell->name,&output_sig->chunks()[i]));
}
}
else if(cell->type == "$memwr")
{
continue;//nothing to do
}
else if(cell->type == "$dff" || cell->type == "$adff" || cell->type == "$dffsr")
{
RTLIL::IdString wire_id = output_sig->chunks()[0].wire->name;
for(unsigned i=0; i<output_sig->chunks().size(); ++i)
{
RTLIL::Wire *w = output_sig->chunks()[i].wire;
RTLIL::IdString wire_id = w->name;
inter_wire_map[wire_id].insert(WireInfo(cell->name,&output_sig->chunks()[i]));
basic_wires[wire_id] = true;
}
}
else
{
for(unsigned i=0; i<output_sig->chunks().size(); ++i)
{
RTLIL::Wire *w = output_sig->chunks()[i].wire;
RTLIL::IdString wire_id = w->name;
inter_wire_map[wire_id].insert(WireInfo(cell->name,&output_sig->chunks()[i]));
}
}
}
log("writing input\n");
std::map<int, RTLIL::Wire*> inputs, outputs;
std::vector<RTLIL::Wire*> safety;
for (auto &wire_it : module->wires) {
RTLIL::Wire *wire = wire_it.second;
if (wire->port_input)
inputs[wire->port_id] = wire;
if (wire->port_output) {
outputs[wire->port_id] = wire;
if (wire->name.find("safety") != std::string::npos )
safety.push_back(wire);
}
}
fprintf(f, ";inputs\n");
for (auto &it : inputs) {
RTLIL::Wire *wire = it.second;
dump_wire(wire);
}
fprintf(f, "\n");
log("writing memories\n");
for(auto mem_it = module->memories.begin(); mem_it != module->memories.end(); ++mem_it)
{
dump_memory(mem_it->second);
}
log("writing output wires\n");
for (auto &it : outputs) {
RTLIL::Wire *wire = it.second;
dump_wire(wire);
}
log("writing cells\n");
for(auto cell_it = module->cells.begin(); cell_it != module->cells.end(); ++cell_it)
{
dump_cell(cell_it->second);
}
for(auto it: safety)
dump_property(it);
fprintf(f, "\n");
log("writing outputs info\n");
fprintf(f, ";outputs\n");
for (auto &it : outputs) {
RTLIL::Wire *wire = it.second;
int l = dump_wire(wire);
fprintf(f, ";%d %s", l, cstr(wire->name));
}
fprintf(f, "\n");
}
static void dump(FILE *f, RTLIL::Module *module, RTLIL::Design *design, BtorDumperConfig &config)
{
BtorDumper dumper(f, module, design, &config);
dumper.dump();
}
};
struct BtorBackend : public Backend {
BtorBackend() : Backend("btor", "write design to BTOR file") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" write_btor [filename]\n");
log("\n");
log("Write the current design to an BTOR file.\n");
}
virtual void execute(FILE *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design)
{
std::string top_module_name;
std::string buf_type, buf_in, buf_out;
std::string true_type, true_out;
std::string false_type, false_out;
BtorDumperConfig config;
log_header("Executing BTOR backend.\n");
size_t argidx=1;
extra_args(f, filename, args, argidx);
if (top_module_name.empty())
for (auto & mod_it:design->modules)
if (mod_it.second->get_bool_attribute("\\top"))
top_module_name = mod_it.first;
fprintf(f, "; Generated by %s\n", yosys_version_str);
fprintf(f, "; %s developed and maintained by Clifford Wolf <clifford@clifford.at>\n", yosys_version_str);
fprintf(f, "; BTOR Backend developed by Ahmed Irfan <irfan@fbk.eu> - Fondazione Bruno Kessler, Trento, Italy\n");
fprintf(f, ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;\n");
std::vector<RTLIL::Module*> mod_list;
for (auto module_it : design->modules)
{
RTLIL::Module *module = module_it.second;
if (module->get_bool_attribute("\\blackbox"))
continue;
if (module->processes.size() != 0)
log_error("Found unmapped processes in module %s: unmapped processes are not supported in BTOR backend!\n", RTLIL::id2cstr(module->name));
if (module->name == RTLIL::escape_id(top_module_name)) {
BtorDumper::dump(f, module, design, config);
top_module_name.clear();
continue;
}
mod_list.push_back(module);
}
if (!top_module_name.empty())
log_error("Can't find top module `%s'!\n", top_module_name.c_str());
for (auto module : mod_list)
BtorDumper::dump(f, module, design, config);
}
} BtorBackend;