yosys/passes/tests/test_cell.cc

1087 lines
32 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2014 Claire Xenia Wolf <claire@yosyshq.com>
* Copyright (C) 2014 Johann Glaser <Johann.Glaser@gmx.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/satgen.h"
#include "kernel/consteval.h"
#include "kernel/celledges.h"
#include "kernel/macc.h"
#include "kernel/cost.h"
#include <algorithm>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
static int bloat_factor = 1;
static uint32_t xorshift32_state = 123456789;
static uint32_t xorshift32(uint32_t limit) {
xorshift32_state ^= xorshift32_state << 13;
xorshift32_state ^= xorshift32_state >> 17;
xorshift32_state ^= xorshift32_state << 5;
return xorshift32_state % limit;
}
static RTLIL::Cell* create_gold_module(RTLIL::Design *design, RTLIL::IdString cell_type, std::string cell_type_flags, bool constmode, bool muxdiv)
{
RTLIL::Module *module = design->addModule(ID(gold));
RTLIL::Cell *cell = module->addCell(ID(UUT), cell_type);
RTLIL::Wire *wire;
if (cell_type.in(ID($mux), ID($pmux)))
{
int width = 1 + xorshift32(8 * bloat_factor);
int swidth = cell_type == ID($mux) ? 1 : 1 + xorshift32(8);
wire = module->addWire(ID::A);
wire->width = width;
wire->port_input = true;
cell->setPort(ID::A, wire);
wire = module->addWire(ID::B);
wire->width = width * swidth;
wire->port_input = true;
cell->setPort(ID::B, wire);
wire = module->addWire(ID::S);
wire->width = swidth;
wire->port_input = true;
cell->setPort(ID::S, wire);
wire = module->addWire(ID::Y);
wire->width = width;
wire->port_output = true;
cell->setPort(ID::Y, wire);
}
if (cell_type == ID($bmux))
{
int width = 1 + xorshift32(8 * bloat_factor);
int swidth = 1 + xorshift32(4 * bloat_factor);
wire = module->addWire(ID::A);
wire->width = width << swidth;
wire->port_input = true;
cell->setPort(ID::A, wire);
wire = module->addWire(ID::S);
wire->width = swidth;
wire->port_input = true;
cell->setPort(ID::S, wire);
wire = module->addWire(ID::Y);
wire->width = width;
wire->port_output = true;
cell->setPort(ID::Y, wire);
}
if (cell_type == ID($demux))
{
int width = 1 + xorshift32(8 * bloat_factor);
int swidth = 1 + xorshift32(6 * bloat_factor);
wire = module->addWire(ID::A);
wire->width = width;
wire->port_input = true;
cell->setPort(ID::A, wire);
wire = module->addWire(ID::S);
wire->width = swidth;
wire->port_input = true;
cell->setPort(ID::S, wire);
wire = module->addWire(ID::Y);
wire->width = width << swidth;
wire->port_output = true;
cell->setPort(ID::Y, wire);
}
if (cell_type == ID($fa))
{
int width = 1 + xorshift32(8 * bloat_factor);
wire = module->addWire(ID::A);
wire->width = width;
wire->port_input = true;
cell->setPort(ID::A, wire);
wire = module->addWire(ID::B);
wire->width = width;
wire->port_input = true;
cell->setPort(ID::B, wire);
wire = module->addWire(ID::C);
wire->width = width;
wire->port_input = true;
cell->setPort(ID::C, wire);
wire = module->addWire(ID::X);
wire->width = width;
wire->port_output = true;
cell->setPort(ID::X, wire);
wire = module->addWire(ID::Y);
wire->width = width;
wire->port_output = true;
cell->setPort(ID::Y, wire);
}
if (cell_type == ID($lcu))
{
int width = 1 + xorshift32(8 * bloat_factor);
wire = module->addWire(ID::P);
wire->width = width;
wire->port_input = true;
cell->setPort(ID::P, wire);
wire = module->addWire(ID::G);
wire->width = width;
wire->port_input = true;
cell->setPort(ID::G, wire);
wire = module->addWire(ID::CI);
wire->port_input = true;
cell->setPort(ID::CI, wire);
wire = module->addWire(ID::CO);
wire->width = width;
wire->port_output = true;
cell->setPort(ID::CO, wire);
}
if (cell_type == ID($macc))
{
Macc macc;
int width = 1 + xorshift32(8 * bloat_factor);
int depth = 1 + xorshift32(6);
int mulbits_a = 0, mulbits_b = 0;
RTLIL::Wire *wire_a = module->addWire(ID::A);
wire_a->width = 0;
wire_a->port_input = true;
for (int i = 0; i < depth; i++)
{
int size_a = xorshift32(width) + 1;
int size_b = depth > 4 ? 0 : xorshift32(width) + 1;
if (mulbits_a + size_a*size_b <= 96 && mulbits_b + size_a + size_b <= 16 && xorshift32(2) == 1) {
mulbits_a += size_a * size_b;
mulbits_b += size_a + size_b;
} else
size_b = 0;
Macc::port_t this_port;
wire_a->width += size_a;
this_port.in_a = RTLIL::SigSpec(wire_a, wire_a->width - size_a, size_a);
wire_a->width += size_b;
this_port.in_b = RTLIL::SigSpec(wire_a, wire_a->width - size_b, size_b);
this_port.is_signed = xorshift32(2) == 1;
this_port.do_subtract = xorshift32(2) == 1;
macc.ports.push_back(this_port);
}
// Macc::to_cell sets the input ports
macc.to_cell(cell);
wire = module->addWire(ID::Y);
wire->width = width;
wire->port_output = true;
cell->setPort(ID::Y, wire);
// override the B input (macc helpers always sets an empty vector)
wire = module->addWire(ID::B);
wire->width = xorshift32(mulbits_a ? xorshift32(4)+1 : xorshift32(16)+1);
wire->port_input = true;
cell->setPort(ID::B, wire);
}
if (cell_type == ID($lut))
{
int width = 1 + xorshift32(6 * bloat_factor);
wire = module->addWire(ID::A);
wire->width = width;
wire->port_input = true;
cell->setPort(ID::A, wire);
wire = module->addWire(ID::Y);
wire->port_output = true;
cell->setPort(ID::Y, wire);
RTLIL::SigSpec config;
for (int i = 0; i < (1 << width); i++)
config.append(xorshift32(2) ? State::S1 : State::S0);
cell->setParam(ID::LUT, config.as_const());
}
if (cell_type == ID($sop))
{
int width = 1 + xorshift32(8 * bloat_factor);
int depth = 1 + xorshift32(8 * bloat_factor);
wire = module->addWire(ID::A);
wire->width = width;
wire->port_input = true;
cell->setPort(ID::A, wire);
wire = module->addWire(ID::Y);
wire->port_output = true;
cell->setPort(ID::Y, wire);
RTLIL::SigSpec config;
for (int i = 0; i < width*depth; i++)
switch (xorshift32(3)) {
case 0:
config.append(State::S1);
config.append(State::S0);
break;
case 1:
config.append(State::S0);
config.append(State::S1);
break;
case 2:
config.append(State::S0);
config.append(State::S0);
break;
}
cell->setParam(ID::DEPTH, depth);
cell->setParam(ID::TABLE, config.as_const());
}
if (cell_type_flags.find('A') != std::string::npos) {
wire = module->addWire(ID::A);
wire->width = 1 + xorshift32(8 * bloat_factor);
wire->port_input = true;
cell->setPort(ID::A, wire);
}
if (cell_type_flags.find('B') != std::string::npos) {
wire = module->addWire(ID::B);
if (cell_type_flags.find('h') != std::string::npos)
wire->width = 1 + xorshift32(6 * bloat_factor);
else
wire->width = 1 + xorshift32(8 * bloat_factor);
wire->port_input = true;
cell->setPort(ID::B, wire);
}
if (cell_type_flags.find('S') != std::string::npos && xorshift32(2)) {
if (cell_type_flags.find('A') != std::string::npos)
cell->parameters[ID::A_SIGNED] = true;
if (cell_type_flags.find('B') != std::string::npos)
cell->parameters[ID::B_SIGNED] = true;
}
if (cell_type_flags.find('s') != std::string::npos) {
if (cell_type_flags.find('A') != std::string::npos && xorshift32(2))
cell->parameters[ID::A_SIGNED] = true;
if (cell_type_flags.find('B') != std::string::npos && xorshift32(2))
cell->parameters[ID::B_SIGNED] = true;
}
if (cell_type_flags.find('Y') != std::string::npos) {
wire = module->addWire(ID::Y);
wire->width = 1 + xorshift32(8 * bloat_factor);
wire->port_output = true;
cell->setPort(ID::Y, wire);
}
if (cell_type.in(ID($shiftx))) {
cell->parameters[ID::A_SIGNED] = false;
}
if (cell_type.in(ID($shl), ID($shr), ID($sshl), ID($sshr))) {
cell->parameters[ID::B_SIGNED] = false;
}
if (muxdiv && cell_type.in(ID($div), ID($mod), ID($divfloor), ID($modfloor))) {
auto b_not_zero = module->ReduceBool(NEW_ID, cell->getPort(ID::B));
auto div_out = module->addWire(NEW_ID, GetSize(cell->getPort(ID::Y)));
module->addMux(NEW_ID, RTLIL::SigSpec(0, GetSize(div_out)), div_out, b_not_zero, cell->getPort(ID::Y));
cell->setPort(ID::Y, div_out);
}
if (cell_type == ID($alu))
{
wire = module->addWire(ID::CI);
wire->port_input = true;
cell->setPort(ID::CI, wire);
wire = module->addWire(ID::BI);
wire->port_input = true;
cell->setPort(ID::BI, wire);
wire = module->addWire(ID::X);
wire->width = GetSize(cell->getPort(ID::Y));
wire->port_output = true;
cell->setPort(ID::X, wire);
wire = module->addWire(ID::CO);
wire->width = GetSize(cell->getPort(ID::Y));
wire->port_output = true;
cell->setPort(ID::CO, wire);
}
if (constmode)
{
auto conn_list = cell->connections();
for (auto &conn : conn_list)
{
RTLIL::SigSpec sig = conn.second;
if (GetSize(sig) == 0 || sig[0].wire == nullptr || sig[0].wire->port_output)
continue;
int n, m;
switch (xorshift32(5))
{
case 0:
n = xorshift32(GetSize(sig) + 1);
for (int i = 0; i < n; i++)
sig[i] = xorshift32(2) == 1 ? State::S1 : State::S0;
break;
case 1:
n = xorshift32(GetSize(sig) + 1);
for (int i = n; i < GetSize(sig); i++)
sig[i] = xorshift32(2) == 1 ? State::S1 : State::S0;
break;
case 2:
n = xorshift32(GetSize(sig));
m = xorshift32(GetSize(sig));
for (int i = min(n, m); i < max(n, m); i++)
sig[i] = xorshift32(2) == 1 ? State::S1 : State::S0;
break;
}
cell->setPort(conn.first, sig);
}
}
module->fixup_ports();
cell->fixup_parameters();
cell->check();
return cell;
}
static void run_edges_test(RTLIL::Design *design, bool verbose)
{
Module *module = *design->modules().begin();
Cell *cell = *module->cells().begin();
ezSatPtr ezptr;
ezSAT &ez = *ezptr.get();
SigMap sigmap(module);
SatGen satgen(&ez, &sigmap);
FwdCellEdgesDatabase edges_db(sigmap);
if (!edges_db.add_edges_from_cell(cell))
log_error("Creating edge database failed for this cell!\n");
dict<SigBit, pool<SigBit>> satgen_db;
satgen.setContext(&sigmap, "X:");
satgen.importCell(cell);
satgen.setContext(&sigmap, "Y:");
satgen.importCell(cell);
vector<tuple<SigBit, int, int>> input_db, output_db;
for (auto &conn : cell->connections())
{
SigSpec bits = sigmap(conn.second);
satgen.setContext(&sigmap, "X:");
std::vector<int> xbits = satgen.importSigSpec(bits);
satgen.setContext(&sigmap, "Y:");
std::vector<int> ybits = satgen.importSigSpec(bits);
for (int i = 0; i < GetSize(bits); i++)
if (cell->input(conn.first))
input_db.emplace_back(bits[i], xbits[i], ybits[i]);
else
output_db.emplace_back(bits[i], xbits[i], ybits[i]);
}
if (verbose)
log("\nSAT solving for all edges:\n");
for (int i = 0; i < GetSize(input_db); i++)
{
SigBit inbit = std::get<0>(input_db[i]);
if (verbose)
log(" Testing input signal %s:\n", log_signal(inbit));
vector<int> xinbits, yinbits;
for (int k = 0; k < GetSize(input_db); k++)
if (k != i) {
xinbits.push_back(std::get<1>(input_db[k]));
yinbits.push_back(std::get<2>(input_db[k]));
}
int xyinbit_ok = ez.vec_eq(xinbits, yinbits);
for (int k = 0; k < GetSize(output_db); k++)
{
SigBit outbit = std::get<0>(output_db[k]);
int xoutbit = std::get<1>(output_db[k]);
int youtbit = std::get<2>(output_db[k]);
bool is_edge = ez.solve(xyinbit_ok, ez.XOR(xoutbit, youtbit));
if (is_edge)
satgen_db[inbit].insert(outbit);
if (verbose) {
bool is_ref_edge = edges_db.db.count(inbit) && edges_db.db.at(inbit).count(outbit);
log(" %c %s %s\n", is_edge ? 'x' : 'o', log_signal(outbit), is_edge == is_ref_edge ? "OK" : "ERROR");
}
}
}
if (satgen_db == edges_db.db)
log("PASS.\n");
else
log_error("SAT-based edge table does not match the database!\n");
}
static void run_eval_test(RTLIL::Design *design, bool verbose, bool nosat, std::string uut_name, std::ofstream &vlog_file)
{
log("Eval testing:%c", verbose ? '\n' : ' ');
RTLIL::Module *gold_mod = design->module(ID(gold));
RTLIL::Module *gate_mod = design->module(ID(gate));
ConstEval gold_ce(gold_mod), gate_ce(gate_mod);
ezSatPtr ez1, ez2;
SigMap sigmap(gold_mod);
SatGen satgen1(ez1.get(), &sigmap);
SatGen satgen2(ez2.get(), &sigmap);
satgen2.model_undef = true;
if (!nosat)
for (auto cell : gold_mod->cells()) {
satgen1.importCell(cell);
satgen2.importCell(cell);
}
if (vlog_file.is_open())
{
vlog_file << stringf("\nmodule %s;\n", uut_name.c_str());
for (auto port : gold_mod->ports) {
RTLIL::Wire *wire = gold_mod->wire(port);
if (wire->port_input)
vlog_file << stringf(" reg [%d:0] %s;\n", GetSize(wire)-1, log_id(wire));
else
vlog_file << stringf(" wire [%d:0] %s_expr, %s_noexpr;\n", GetSize(wire)-1, log_id(wire), log_id(wire));
}
vlog_file << stringf(" %s_expr uut_expr(", uut_name.c_str());
for (int i = 0; i < GetSize(gold_mod->ports); i++)
vlog_file << stringf("%s.%s(%s%s)", i ? ", " : "", log_id(gold_mod->ports[i]), log_id(gold_mod->ports[i]),
gold_mod->wire(gold_mod->ports[i])->port_input ? "" : "_expr");
vlog_file << stringf(");\n");
vlog_file << stringf(" %s_expr uut_noexpr(", uut_name.c_str());
for (int i = 0; i < GetSize(gold_mod->ports); i++)
vlog_file << stringf("%s.%s(%s%s)", i ? ", " : "", log_id(gold_mod->ports[i]), log_id(gold_mod->ports[i]),
gold_mod->wire(gold_mod->ports[i])->port_input ? "" : "_noexpr");
vlog_file << stringf(");\n");
vlog_file << stringf(" task run;\n");
vlog_file << stringf(" begin\n");
vlog_file << stringf(" $display(\"%s\");\n", uut_name.c_str());
}
for (int i = 0; i < 64; i++)
{
log(verbose ? "\n" : ".");
gold_ce.clear();
gate_ce.clear();
RTLIL::SigSpec in_sig, in_val;
RTLIL::SigSpec out_sig, out_val;
std::string vlog_pattern_info;
for (auto port : gold_mod->ports)
{
RTLIL::Wire *gold_wire = gold_mod->wire(port);
RTLIL::Wire *gate_wire = gate_mod->wire(port);
log_assert(gold_wire != nullptr);
log_assert(gate_wire != nullptr);
log_assert(gold_wire->port_input == gate_wire->port_input);
log_assert(GetSize(gold_wire) == GetSize(gate_wire));
if (!gold_wire->port_input)
continue;
RTLIL::Const in_value;
for (int i = 0; i < GetSize(gold_wire); i++)
in_value.bits().push_back(xorshift32(2) ? State::S1 : State::S0);
if (xorshift32(4) == 0) {
int inv_chance = 1 + xorshift32(8);
for (int i = 0; i < GetSize(gold_wire); i++)
if (xorshift32(inv_chance) == 0)
in_value.bits()[i] = RTLIL::Sx;
}
if (verbose)
log("%s: %s\n", log_id(gold_wire), log_signal(in_value));
in_sig.append(gold_wire);
in_val.append(in_value);
gold_ce.set(gold_wire, in_value);
gate_ce.set(gate_wire, in_value);
if (vlog_file.is_open() && GetSize(in_value) > 0) {
vlog_file << stringf(" %s = 'b%s;\n", log_id(gold_wire), in_value.as_string().c_str());
if (!vlog_pattern_info.empty())
vlog_pattern_info += " ";
vlog_pattern_info += stringf("%s=%s", log_id(gold_wire), log_signal(in_value));
}
}
if (vlog_file.is_open())
vlog_file << stringf(" #1;\n");
for (auto port : gold_mod->ports)
{
RTLIL::Wire *gold_wire = gold_mod->wire(port);
RTLIL::Wire *gate_wire = gate_mod->wire(port);
log_assert(gold_wire != nullptr);
log_assert(gate_wire != nullptr);
log_assert(gold_wire->port_output == gate_wire->port_output);
log_assert(GetSize(gold_wire) == GetSize(gate_wire));
if (!gold_wire->port_output)
continue;
RTLIL::SigSpec gold_outval(gold_wire);
RTLIL::SigSpec gate_outval(gate_wire);
if (!gold_ce.eval(gold_outval))
log_error("Failed to eval %s in gold module.\n", log_id(gold_wire));
if (!gate_ce.eval(gate_outval))
log_error("Failed to eval %s in gate module.\n", log_id(gate_wire));
bool gold_gate_mismatch = false;
for (int i = 0; i < GetSize(gold_wire); i++) {
if (gold_outval[i] == RTLIL::Sx)
continue;
if (gold_outval[i] == gate_outval[i])
continue;
gold_gate_mismatch = true;
break;
}
if (gold_gate_mismatch)
log_error("Mismatch in output %s: gold:%s != gate:%s\n", log_id(gate_wire), log_signal(gold_outval), log_signal(gate_outval));
if (verbose)
log("%s: %s\n", log_id(gold_wire), log_signal(gold_outval));
out_sig.append(gold_wire);
out_val.append(gold_outval);
if (vlog_file.is_open()) {
vlog_file << stringf(" $display(\"[%s] %s expected: %%b, expr: %%b, noexpr: %%b\", %d'b%s, %s_expr, %s_noexpr);\n",
vlog_pattern_info.c_str(), log_id(gold_wire), GetSize(gold_outval), gold_outval.as_string().c_str(), log_id(gold_wire), log_id(gold_wire));
vlog_file << stringf(" if (%s_expr !== %d'b%s) begin $display(\"ERROR\"); $finish; end\n", log_id(gold_wire), GetSize(gold_outval), gold_outval.as_string().c_str());
vlog_file << stringf(" if (%s_noexpr !== %d'b%s) begin $display(\"ERROR\"); $finish; end\n", log_id(gold_wire), GetSize(gold_outval), gold_outval.as_string().c_str());
}
}
if (verbose)
log("EVAL: %s\n", out_val.as_string().c_str());
if (!nosat)
{
std::vector<int> sat1_in_sig = satgen1.importSigSpec(in_sig);
std::vector<int> sat1_in_val = satgen1.importSigSpec(in_val);
std::vector<int> sat1_model = satgen1.importSigSpec(out_sig);
std::vector<bool> sat1_model_value;
if (!ez1->solve(sat1_model, sat1_model_value, ez1->vec_eq(sat1_in_sig, sat1_in_val)))
log_error("Evaluating sat model 1 (no undef modeling) failed!\n");
if (verbose) {
log("SAT 1: ");
for (int i = GetSize(out_sig)-1; i >= 0; i--)
log("%c", sat1_model_value.at(i) ? '1' : '0');
log("\n");
}
for (int i = 0; i < GetSize(out_sig); i++) {
if (out_val[i] != State::S0 && out_val[i] != State::S1)
continue;
if (out_val[i] == State::S0 && sat1_model_value.at(i) == false)
continue;
if (out_val[i] == State::S1 && sat1_model_value.at(i) == true)
continue;
log_error("Mismatch in sat model 1 (no undef modeling) output!\n");
}
std::vector<int> sat2_in_def_sig = satgen2.importDefSigSpec(in_sig);
std::vector<int> sat2_in_def_val = satgen2.importDefSigSpec(in_val);
std::vector<int> sat2_in_undef_sig = satgen2.importUndefSigSpec(in_sig);
std::vector<int> sat2_in_undef_val = satgen2.importUndefSigSpec(in_val);
std::vector<int> sat2_model_def_sig = satgen2.importDefSigSpec(out_sig);
std::vector<int> sat2_model_undef_sig = satgen2.importUndefSigSpec(out_sig);
std::vector<int> sat2_model;
sat2_model.insert(sat2_model.end(), sat2_model_def_sig.begin(), sat2_model_def_sig.end());
sat2_model.insert(sat2_model.end(), sat2_model_undef_sig.begin(), sat2_model_undef_sig.end());
std::vector<bool> sat2_model_value;
if (!ez2->solve(sat2_model, sat2_model_value, ez2->vec_eq(sat2_in_def_sig, sat2_in_def_val), ez2->vec_eq(sat2_in_undef_sig, sat2_in_undef_val)))
log_error("Evaluating sat model 2 (undef modeling) failed!\n");
if (verbose) {
log("SAT 2: ");
for (int i = GetSize(out_sig)-1; i >= 0; i--)
log("%c", sat2_model_value.at(GetSize(out_sig) + i) ? 'x' : sat2_model_value.at(i) ? '1' : '0');
log("\n");
}
for (int i = 0; i < GetSize(out_sig); i++) {
if (sat2_model_value.at(GetSize(out_sig) + i)) {
if (out_val[i] != State::S0 && out_val[i] != State::S1)
continue;
} else {
if (out_val[i] == State::S0 && sat2_model_value.at(i) == false)
continue;
if (out_val[i] == State::S1 && sat2_model_value.at(i) == true)
continue;
}
log_error("Mismatch in sat model 2 (undef modeling) output!\n");
}
}
}
if (vlog_file.is_open()) {
vlog_file << stringf(" end\n");
vlog_file << stringf(" endtask\n");
vlog_file << stringf("endmodule\n");
}
if (!verbose)
log(" ok.\n");
}
struct TestCellPass : public Pass {
TestCellPass() : Pass("test_cell", "automatically test the implementation of a cell type") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" test_cell [options] {cell-types}\n");
log("\n");
log("Tests the internal implementation of the given cell type (for example '$add')\n");
log("by comparing SAT solver, EVAL and TECHMAP implementations of the cell types..\n");
log("\n");
log("Run with 'all' instead of a cell type to run the test on all supported\n");
log("cell types. Use for example 'all /$add' for all cell types except $add.\n");
log("\n");
log(" -n {integer}\n");
log(" create this number of cell instances and test them (default = 100).\n");
log("\n");
log(" -s {positive_integer}\n");
log(" use this value as rng seed value (default = unix time).\n");
log("\n");
log(" -f {rtlil_file}\n");
log(" don't generate circuits. instead load the specified RTLIL file.\n");
log("\n");
log(" -w {filename_prefix}\n");
log(" don't test anything. just generate the circuits and write them\n");
log(" to RTLIL files with the specified prefix\n");
log("\n");
log(" -map {filename}\n");
log(" pass this option to techmap.\n");
log("\n");
log(" -simlib\n");
log(" use \"techmap -D SIMLIB_NOCHECKS -map +/simlib.v -max_iter 2 -autoproc\"\n");
log("\n");
log(" -aigmap\n");
log(" instead of calling \"techmap\", call \"aigmap\"\n");
log("\n");
log(" -muxdiv\n");
log(" when creating test benches with dividers, create an additional mux\n");
log(" to mask out the division-by-zero case\n");
log("\n");
log(" -script {script_file}\n");
log(" instead of calling \"techmap\", call \"script {script_file}\".\n");
log("\n");
log(" -const\n");
log(" set some input bits to random constant values\n");
log("\n");
log(" -nosat\n");
log(" do not check SAT model or run SAT equivalence checking\n");
log("\n");
log(" -noeval\n");
log(" do not check const-eval models\n");
log("\n");
log(" -noopt\n");
log(" do not opt tecchmapped design\n");
log("\n");
log(" -edges\n");
log(" test cell edges db creator against sat-based implementation\n");
log("\n");
log(" -v\n");
log(" print additional debug information to the console\n");
log("\n");
log(" -vlog {filename}\n");
log(" create a Verilog test bench to test simlib and write_verilog\n");
log(" -bloat {factor}\n");
log(" increase cell size limits b{factor} times where possible\n");
log(" -check_cost\n");
log(" check if the estimated cell cost is a valid upper bound for\n");
log(" the techmapped cell count \n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design*) override
{
int num_iter = 100;
std::string techmap_cmd = "techmap -assert";
std::string rtlil_file, write_prefix;
xorshift32_state = 0;
std::ofstream vlog_file;
bool muxdiv = false;
bool verbose = false;
bool constmode = false;
bool nosat = false;
bool noeval = false;
bool noopt = false;
bool edges = false;
bool check_cost = false;
int argidx;
for (argidx = 1; argidx < GetSize(args); argidx++)
{
if (args[argidx] == "-n" && argidx+1 < GetSize(args)) {
num_iter = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-s" && argidx+1 < GetSize(args)) {
xorshift32_state = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-map" && argidx+1 < GetSize(args)) {
techmap_cmd += " -map " + args[++argidx];
continue;
}
if (args[argidx] == "-f" && argidx+1 < GetSize(args)) {
rtlil_file = args[++argidx];
num_iter = 1;
continue;
}
if (args[argidx] == "-w" && argidx+1 < GetSize(args)) {
write_prefix = args[++argidx];
continue;
}
if (args[argidx] == "-script" && argidx+1 < GetSize(args)) {
techmap_cmd = "script " + args[++argidx];
continue;
}
if (args[argidx] == "-simlib") {
techmap_cmd = "techmap -D SIMLIB_NOCHECKS -map +/simlib.v -max_iter 2 -autoproc";
continue;
}
if (args[argidx] == "-aigmap") {
techmap_cmd = "aigmap";
continue;
}
if (args[argidx] == "-muxdiv") {
muxdiv = true;
continue;
}
if (args[argidx] == "-const") {
constmode = true;
continue;
}
if (args[argidx] == "-nosat") {
nosat = true;
continue;
}
if (args[argidx] == "-noeval") {
noeval = true;
continue;
}
if (args[argidx] == "-noopt") {
noopt = true;
continue;
}
if (args[argidx] == "-edges") {
edges = true;
continue;
}
if (args[argidx] == "-v") {
verbose = true;
continue;
}
if (args[argidx] == "-vlog" && argidx+1 < GetSize(args)) {
vlog_file.open(args[++argidx], std::ios_base::trunc);
if (!vlog_file.is_open())
log_cmd_error("Failed to open output file `%s'.\n", args[argidx].c_str());
continue;
}
if (args[argidx] == "-bloat" && argidx+1 < GetSize(args)) {
bloat_factor = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-check_cost") {
check_cost = true;
continue;
}
break;
}
if (xorshift32_state == 0) {
xorshift32_state = time(NULL) & 0x7fffffff;
log("Rng seed value: %d\n", int(xorshift32_state));
}
std::map<IdString, std::string> cell_types;
std::vector<IdString> selected_cell_types;
cell_types[ID($not)] = "ASY";
cell_types[ID($pos)] = "ASY";
cell_types[ID($neg)] = "ASY";
cell_types[ID($and)] = "ABSY";
cell_types[ID($or)] = "ABSY";
cell_types[ID($xor)] = "ABSY";
cell_types[ID($xnor)] = "ABSY";
cell_types[ID($reduce_and)] = "ASY";
cell_types[ID($reduce_or)] = "ASY";
cell_types[ID($reduce_xor)] = "ASY";
cell_types[ID($reduce_xnor)] = "ASY";
cell_types[ID($reduce_bool)] = "ASY";
cell_types[ID($shl)] = "ABshY";
cell_types[ID($shr)] = "ABshY";
cell_types[ID($sshl)] = "ABshY";
cell_types[ID($sshr)] = "ABshY";
cell_types[ID($shift)] = "ABshY";
cell_types[ID($shiftx)] = "ABshY";
cell_types[ID($lt)] = "ABSY";
cell_types[ID($le)] = "ABSY";
cell_types[ID($eq)] = "ABSY";
cell_types[ID($ne)] = "ABSY";
// cell_types[ID($eqx)] = "ABSY";
// cell_types[ID($nex)] = "ABSY";
cell_types[ID($ge)] = "ABSY";
cell_types[ID($gt)] = "ABSY";
cell_types[ID($add)] = "ABSY";
cell_types[ID($sub)] = "ABSY";
cell_types[ID($mul)] = "ABSY";
cell_types[ID($div)] = "ABSY";
cell_types[ID($mod)] = "ABSY";
cell_types[ID($divfloor)] = "ABSY";
cell_types[ID($modfloor)] = "ABSY";
// cell_types[ID($pow)] = "ABsY";
cell_types[ID($logic_not)] = "ASY";
cell_types[ID($logic_and)] = "ABSY";
cell_types[ID($logic_or)] = "ABSY";
cell_types[ID($mux)] = "*";
cell_types[ID($bmux)] = "*";
cell_types[ID($demux)] = "*";
if (edges) {
cell_types[ID($pmux)] = "*";
}
// cell_types[ID($slice)] = "A";
// cell_types[ID($concat)] = "A";
cell_types[ID($lut)] = "*";
cell_types[ID($sop)] = "*";
cell_types[ID($alu)] = "ABSY";
cell_types[ID($lcu)] = "*";
cell_types[ID($macc)] = "*";
cell_types[ID($fa)] = "*";
for (; argidx < GetSize(args); argidx++)
{
if (args[argidx].rfind("-", 0) == 0)
log_cmd_error("Unexpected option: %s\n", args[argidx].c_str());
if (args[argidx] == "all") {
for (auto &it : cell_types)
if (std::count(selected_cell_types.begin(), selected_cell_types.end(), it.first) == 0)
selected_cell_types.push_back(it.first);
continue;
}
if (args[argidx].compare(0, 1, "/") == 0) {
std::vector<IdString> new_selected_cell_types;
for (auto it : selected_cell_types)
if (it != args[argidx].substr(1))
new_selected_cell_types.push_back(it);
new_selected_cell_types.swap(selected_cell_types);
continue;
}
if (cell_types.count(args[argidx]) == 0) {
std::string cell_type_list;
int charcount = 100;
for (auto &it : cell_types) {
if (charcount > 60) {
cell_type_list += stringf("\n%s", + log_id(it.first));
charcount = 0;
} else
cell_type_list += stringf(" %s", log_id(it.first));
charcount += GetSize(it.first);
}
log_cmd_error("The cell type `%s' is currently not supported. Try one of these:%s\n",
args[argidx].c_str(), cell_type_list.c_str());
}
if (std::count(selected_cell_types.begin(), selected_cell_types.end(), args[argidx]) == 0)
selected_cell_types.push_back(args[argidx]);
}
if (!rtlil_file.empty()) {
if (!selected_cell_types.empty())
log_cmd_error("Do not specify any cell types when using -f.\n");
selected_cell_types.push_back(ID(rtlil));
}
if (selected_cell_types.empty())
log_cmd_error("No cell type to test specified.\n");
std::vector<std::string> uut_names;
for (auto cell_type : selected_cell_types) {
// Cells that failed cell cost check
int failed = 0;
// How much bigger is the worst offender than estimated?
int worst_abs = 0;
// How many times is it bigger than estimated?
float worst_rel = 0.0;
for (int i = 0; i < num_iter; i++)
{
Cell* uut = nullptr;
RTLIL::Design *design = new RTLIL::Design;
if (cell_type == ID(rtlil))
Frontend::frontend_call(design, NULL, std::string(), "rtlil " + rtlil_file);
else
uut = create_gold_module(design, cell_type, cell_types.at(cell_type), constmode, muxdiv);
if (!write_prefix.empty()) {
Pass::call(design, stringf("write_rtlil %s_%s_%05d.il", write_prefix.c_str(), cell_type.c_str()+1, i));
} else if (edges) {
Pass::call(design, "dump gold");
run_edges_test(design, verbose);
} else {
Pass::call(design, stringf("copy gold gate; cd gate; %s; cd ..", techmap_cmd.c_str()));
if (!noopt)
Pass::call(design, "opt -fast gate");
if (!nosat)
Pass::call(design, "miter -equiv -flatten -make_outputs -ignore_gold_x gold gate miter");
if (verbose)
Pass::call(design, "dump gate");
Pass::call(design, "dump gold");
if (!nosat)
Pass::call(design, "sat -verify -enable_undef -prove trigger 0 -show-inputs -show-outputs miter");
std::string uut_name = stringf("uut_%s_%d", cell_type.substr(1).c_str(), i);
if (vlog_file.is_open()) {
Pass::call(design, stringf("copy gold %s_expr; select %s_expr", uut_name.c_str(), uut_name.c_str()));
Backend::backend_call(design, &vlog_file, "<test_cell -vlog>", "verilog -selected");
Pass::call(design, stringf("copy gold %s_noexpr; select %s_noexpr", uut_name.c_str(), uut_name.c_str()));
Backend::backend_call(design, &vlog_file, "<test_cell -vlog>", "verilog -selected -noexpr");
uut_names.push_back(uut_name);
}
if (!noeval)
run_eval_test(design, verbose, nosat, uut_name, vlog_file);
if (check_cost && uut) {
Pass::call(design, "select gate");
int num_cells = 0;
for (auto mod : design->selected_modules()) {
// Expected to run once
for (auto cell : mod->selected_cells()) {
(void) cell;
num_cells++;
}
}
CellCosts costs(design);
Pass::call(design, "select gold");
for (auto mod : design->selected_modules()) {
log_assert(mod->name.str() == "\\gold");
// Expected to run once
int num_cells_estimate = costs.get(uut);
if (num_cells <= num_cells_estimate) {
log_debug("Correct upper bound for %s: %d <= %d\n", cell_type.c_str(), num_cells, num_cells_estimate);
} else {
failed++;
if (worst_abs < num_cells - num_cells_estimate) {
worst_abs = num_cells - num_cells_estimate;
worst_rel = (float)(num_cells - num_cells_estimate) / (float)num_cells_estimate;
}
log_warning("Upper bound violated for %s: %d > %d\n", cell_type.c_str(), num_cells, num_cells_estimate);
}
}
}
}
delete design;
}
if (check_cost && failed) {
log_warning("Cell type %s cost underestimated in %.1f%% cases "
"with worst offender being by %d (%.1f%%)\n",
cell_type.c_str(), 100 * (float)failed / (float)num_iter,
worst_abs, 100 * worst_rel);
}
}
if (vlog_file.is_open()) {
vlog_file << "\nmodule testbench;\n";
for (auto &uut : uut_names)
vlog_file << stringf(" %s %s ();\n", uut.c_str(), uut.c_str());
vlog_file << " initial begin\n";
for (auto &uut : uut_names)
vlog_file << " " << uut << ".run;\n";
vlog_file << " end\n";
vlog_file << "endmodule\n";
}
}
} TestCellPass;
PRIVATE_NAMESPACE_END