yosys/techlibs/stdcells.v

1410 lines
26 KiB
Verilog

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* ---
*
* The internal logic cell technology mapper.
*
* This verilog library contains the mapping of internal cells (e.g. $not with
* variable bit width) to the internal logic cells (such as the single bit $_INV_
* gate). Usually this logic network is then mapped to the actual technology
* using e.g. the "abc" pass.
*
* Note that this library does not map $mem cells. They must be mapped to logic
* and $dff cells using the "memory_map" pass first. (Or map it to custom cells,
* which is of course highly recommended for larger memories.)
*
*/
// --------------------------------------------------------
module \$not (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
genvar i;
generate
for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
if (i < A_WIDTH) begin
\$_INV_ gate (
.A(A[i]),
.Y(Y[i])
);
end else begin
assign Y[i] = 0;
end
end
endgenerate
endmodule
// --------------------------------------------------------
module \$pos (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
genvar i;
generate
for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
if (i < A_WIDTH) begin
assign Y[i] = A[i];
end else if (A_SIGNED) begin
assign Y[i] = A[A_WIDTH-1];
end else begin
assign Y[i] = 0;
end
end
endgenerate
endmodule
// --------------------------------------------------------
module \$neg (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
\$sub #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(A_SIGNED),
.A_WIDTH(1),
.B_WIDTH(A_WIDTH),
.Y_WIDTH(Y_WIDTH)
) sub (
.A(0),
.B(A),
.Y(Y)
);
endmodule
// --------------------------------------------------------
module \$and (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
genvar i;
generate
for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
\$_AND_ gate (
.A(A_buf[i]),
.B(B_buf[i]),
.Y(Y[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$or (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
genvar i;
generate
for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
\$_OR_ gate (
.A(A_buf[i]),
.B(B_buf[i]),
.Y(Y[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$xor (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
genvar i;
generate
for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
\$_XOR_ gate (
.A(A_buf[i]),
.B(B_buf[i]),
.Y(Y[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$xnor (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
genvar i;
generate
for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
wire tmp;
\$_XOR_ gate1 (
.A(A_buf[i]),
.B(B_buf[i]),
.Y(tmp)
);
\$_INV_ gate2 (
.A(tmp),
.Y(Y[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$reduce_and (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
output Y;
wire [A_WIDTH-1:0] buffer;
genvar i;
generate
for (i = 1; i < A_WIDTH; i = i + 1) begin:V
\$_AND_ gate (
.A(A[i]),
.B(buffer[i-1]),
.Y(buffer[i])
);
end
endgenerate
assign buffer[0] = A[0];
assign Y = buffer[A_WIDTH-1];
endmodule
// --------------------------------------------------------
module \$reduce_or (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
output Y;
wire [A_WIDTH-1:0] buffer;
genvar i;
generate
for (i = 1; i < A_WIDTH; i = i + 1) begin:V
\$_OR_ gate (
.A(A[i]),
.B(buffer[i-1]),
.Y(buffer[i])
);
end
endgenerate
assign buffer[0] = A[0];
assign Y = buffer[A_WIDTH-1];
endmodule
// --------------------------------------------------------
module \$reduce_xor (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
output Y;
wire [A_WIDTH-1:0] buffer;
genvar i;
generate
for (i = 1; i < A_WIDTH; i = i + 1) begin:V
\$_XOR_ gate (
.A(A[i]),
.B(buffer[i-1]),
.Y(buffer[i])
);
end
endgenerate
assign buffer[0] = A[0];
assign Y = buffer[A_WIDTH-1];
endmodule
// --------------------------------------------------------
module \$reduce_xnor (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
output Y;
wire [A_WIDTH-1:0] buffer;
genvar i;
generate
for (i = 1; i < A_WIDTH; i = i + 1) begin:V
\$_XOR_ gate (
.A(A[i]),
.B(buffer[i-1]),
.Y(buffer[i])
);
end
endgenerate
assign buffer[0] = A[0];
\$_INV_ gate_inv (
.A(buffer[A_WIDTH-1]),
.Y(Y)
);
endmodule
// --------------------------------------------------------
module \$reduce_bool (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
output Y;
wire [A_WIDTH-1:0] buffer;
genvar i;
generate
for (i = 1; i < A_WIDTH; i = i + 1) begin:V
\$_OR_ gate (
.A(A[i]),
.B(buffer[i-1]),
.Y(buffer[i])
);
end
endgenerate
assign buffer[0] = A[0];
assign Y = buffer[A_WIDTH-1];
endmodule
// --------------------------------------------------------
module \$shift (X, A, Y);
parameter WIDTH = 1;
parameter SHIFT = 0;
input X;
input [WIDTH-1:0] A;
output [WIDTH-1:0] Y;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 1) begin:V
if (i+SHIFT < 0) begin
assign Y[i] = 0;
end else
if (i+SHIFT < WIDTH) begin
assign Y[i] = A[i+SHIFT];
end else begin
assign Y[i] = X;
end
end
endgenerate
endmodule
// --------------------------------------------------------
module \$shl (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = Y_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
genvar i;
generate
wire [WIDTH*(B_WIDTH+1)-1:0] chain;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH(A_WIDTH),
.Y_WIDTH(WIDTH)
) expand (
.A(A),
.Y(chain[WIDTH-1:0])
);
assign Y = chain[WIDTH*(B_WIDTH+1)-1 : WIDTH*B_WIDTH];
for (i = 0; i < B_WIDTH; i = i + 1) begin:V
wire [WIDTH-1:0] unshifted, shifted, result;
assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
\$shift #(
.WIDTH(WIDTH),
.SHIFT(0 - (2 ** i))
) sh (
.X(0),
.A(unshifted),
.Y(shifted)
);
\$mux #(
.WIDTH(WIDTH)
) mux (
.A(unshifted),
.B(shifted),
.Y(result),
.S(B[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$shr (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = A_WIDTH > Y_WIDTH ? A_WIDTH : Y_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
genvar i;
generate
wire [WIDTH*(B_WIDTH+1)-1:0] chain;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH(A_WIDTH),
.Y_WIDTH(WIDTH)
) expand (
.A(A),
.Y(chain[WIDTH-1:0])
);
assign Y = chain[WIDTH*(B_WIDTH+1)-1 : WIDTH*B_WIDTH];
for (i = 0; i < B_WIDTH; i = i + 1) begin:V
wire [WIDTH-1:0] unshifted, shifted, result;
assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
\$shift #(
.WIDTH(WIDTH),
.SHIFT(2 ** i)
) sh (
.X(0),
.A(unshifted),
.Y(shifted)
);
\$mux #(
.WIDTH(WIDTH)
) mux (
.A(unshifted),
.B(shifted),
.Y(result),
.S(B[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$sshl (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = Y_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
genvar i;
generate
wire [WIDTH*(B_WIDTH+1)-1:0] chain;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH(A_WIDTH),
.Y_WIDTH(WIDTH)
) expand (
.A(A),
.Y(chain[WIDTH-1:0])
);
assign Y = chain[WIDTH*(B_WIDTH+1)-1 : WIDTH*B_WIDTH];
for (i = 0; i < B_WIDTH; i = i + 1) begin:V
wire [WIDTH-1:0] unshifted, shifted, result;
assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
\$shift #(
.WIDTH(WIDTH),
.SHIFT(0 - (2 ** i))
) sh (
.X(0),
.A(unshifted),
.Y(shifted)
);
\$mux #(
.WIDTH(WIDTH)
) mux (
.A(unshifted),
.B(shifted),
.Y(result),
.S(B[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$sshr (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = A_WIDTH > Y_WIDTH ? A_WIDTH : Y_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
genvar i;
generate
wire [WIDTH*(B_WIDTH+1)-1:0] chain;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH(A_WIDTH),
.Y_WIDTH(WIDTH)
) expand (
.A(A),
.Y(chain[WIDTH-1:0])
);
for (i = 0; i < Y_WIDTH; i = i + 1) begin:Y
if (i < WIDTH) begin
assign Y[i] = chain[WIDTH*B_WIDTH + i];
end else
if (A_SIGNED) begin
assign Y[i] = chain[WIDTH*B_WIDTH + WIDTH-1];
end else begin
assign Y[i] = 0;
end
end
for (i = 0; i < B_WIDTH; i = i + 1) begin:V
wire [WIDTH-1:0] unshifted, shifted, result;
assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
\$shift #(
.WIDTH(WIDTH),
.SHIFT(2 ** i)
) sh (
.X(A_SIGNED && A[A_WIDTH-1]),
.A(unshifted),
.Y(shifted)
);
\$mux #(
.WIDTH(WIDTH)
) mux (
.A(unshifted),
.B(shifted),
.Y(result),
.S(B[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$fulladd (A, B, C, X, Y);
// {X, Y} = A + B + C
input A, B, C;
output X, Y;
// {t1, t2} = A + B
wire t1, t2, t3;
\$_AND_ gate1 ( .A(A), .B(B), .Y(t1) );
\$_XOR_ gate2 ( .A(A), .B(B), .Y(t2) );
\$_AND_ gate3 ( .A(t2), .B(C), .Y(t3) );
\$_XOR_ gate4 ( .A(t2), .B(C), .Y(Y) );
\$_OR_ gate5 ( .A(t1), .B(t3), .Y(X) );
endmodule
// --------------------------------------------------------
module \$alu (A, B, Cin, Y, Cout, Csign);
parameter WIDTH = 1;
input [WIDTH-1:0] A, B;
input Cin;
output [WIDTH-1:0] Y;
output Cout, Csign;
wire [WIDTH:0] carry;
assign carry[0] = Cin;
assign Cout = carry[WIDTH];
assign Csign = carry[WIDTH-1];
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 1) begin:V
\$fulladd adder (
.A(A[i]),
.B(B[i]),
.C(carry[i]),
.X(carry[i+1]),
.Y(Y[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$lt (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output Y;
wire carry, carry_sign;
wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
\$alu #(
.WIDTH(WIDTH)
) alu (
.A(A_buf),
.B(~B_buf),
.Cin(1'b1),
.Y(Y_buf),
.Cout(carry),
.Csign(carry_sign),
);
// ALU flags
wire cf, of, zf, sf;
assign cf = !carry;
assign of = carry ^ carry_sign;
assign zf = ~|Y_buf;
assign sf = Y_buf[WIDTH-1];
generate
if (A_SIGNED && B_SIGNED) begin
assign Y = of != sf;
end else begin
assign Y = cf;
end
endgenerate
endmodule
// --------------------------------------------------------
module \$le (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output Y;
wire carry, carry_sign;
wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
\$alu #(
.WIDTH(WIDTH)
) alu (
.A(A_buf),
.B(~B_buf),
.Cin(1'b1),
.Y(Y_buf),
.Cout(carry),
.Csign(carry_sign),
);
// ALU flags
wire cf, of, zf, sf;
assign cf = !carry;
assign of = carry ^ carry_sign;
assign zf = ~|Y_buf;
assign sf = Y_buf[WIDTH-1];
generate
if (A_SIGNED && B_SIGNED) begin
assign Y = zf || (of != sf);
end else begin
assign Y = zf || cf;
end
endgenerate
endmodule
// --------------------------------------------------------
module \$eq (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output Y;
wire carry, carry_sign;
wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
assign Y = ~|(A_buf ^ B_buf);
endmodule
// --------------------------------------------------------
module \$ne (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output Y;
wire carry, carry_sign;
wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
assign Y = |(A_buf ^ B_buf);
endmodule
// --------------------------------------------------------
module \$ge (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output Y;
\$le #(
.A_SIGNED(B_SIGNED),
.B_SIGNED(A_SIGNED),
.A_WIDTH(B_WIDTH),
.B_WIDTH(A_WIDTH)
) ge_via_le (
.A(B),
.B(A),
.Y(Y)
);
endmodule
// --------------------------------------------------------
module \$gt (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output Y;
\$lt #(
.A_SIGNED(B_SIGNED),
.B_SIGNED(A_SIGNED),
.A_WIDTH(B_WIDTH),
.B_WIDTH(A_WIDTH)
) gt_via_lt (
.A(B),
.B(A),
.Y(Y)
);
endmodule
// --------------------------------------------------------
module \$add (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
\$alu #(
.WIDTH(Y_WIDTH)
) alu (
.A(A_buf),
.B(B_buf),
.Cin(1'b0),
.Y(Y)
);
endmodule
// --------------------------------------------------------
module \$sub (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
\$alu #(
.WIDTH(Y_WIDTH)
) alu (
.A(A_buf),
.B(~B_buf),
.Cin(1'b1),
.Y(Y)
);
endmodule
// --------------------------------------------------------
module \$arraymul (A, B, Y);
parameter WIDTH = 8;
input [WIDTH-1:0] A, B;
output [WIDTH-1:0] Y;
wire [WIDTH*WIDTH-1:0] partials;
genvar i;
assign partials[WIDTH-1 : 0] = A[0] ? B : 0;
generate for (i = 1; i < WIDTH; i = i+1) begin:gen
assign partials[WIDTH*(i+1)-1 : WIDTH*i] = (A[i] ? B << i : 0) + partials[WIDTH*i-1 : WIDTH*(i-1)];
end endgenerate
assign Y = partials[WIDTH*WIDTH-1 : WIDTH*(WIDTH-1)];
endmodule
// --------------------------------------------------------
module \$mul (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire signed [Y_WIDTH:0] buffer_a = A_SIGNED ? $signed(A) : A;
wire signed [Y_WIDTH:0] buffer_b = B_SIGNED ? $signed(B) : B;
\$arraymul #(
.WIDTH(Y_WIDTH)
) arraymul (
.A(buffer_a),
.B(buffer_b),
.Y(Y)
);
endmodule
/****
// --------------------------------------------------------
module \$div (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire signed [A_WIDTH:0] buffer_a = A_SIGNED ? $signed(A) : A;
wire signed [B_WIDTH:0] buffer_b = B_SIGNED ? $signed(B) : B;
assign Y = buffer_a / buffer_b;
endmodule
// --------------------------------------------------------
module \$mod (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire signed [A_WIDTH:0] buffer_a = A_SIGNED ? $signed(A) : A;
wire signed [B_WIDTH:0] buffer_b = B_SIGNED ? $signed(B) : B;
assign Y = buffer_a % buffer_b;
endmodule
// --------------------------------------------------------
module \$pow (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire signed [A_WIDTH:0] buffer_a = A_SIGNED ? $signed(A) : A;
wire signed [B_WIDTH:0] buffer_b = B_SIGNED ? $signed(B) : B;
assign Y = buffer_a ** buffer_b;
endmodule
// --------------------------------------------------------
****/
module \$logic_not (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
wire A_buf;
\$reduce_bool #(
.A_SIGNED(A_SIGNED),
.A_WIDTH(A_WIDTH)
) A_logic (
.A(A),
.Y(A_buf)
);
\$_INV_ gate (
.A(A_buf),
.Y(Y[0])
);
generate
if (Y_WIDTH > 1) begin:V
assign Y[Y_WIDTH-1:1] = 0;
end
endgenerate
endmodule
// --------------------------------------------------------
module \$logic_and (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire A_buf, B_buf;
\$reduce_bool #(
.A_SIGNED(A_SIGNED),
.A_WIDTH(A_WIDTH)
) A_logic (
.A(A),
.Y(A_buf)
);
\$reduce_bool #(
.A_SIGNED(B_SIGNED),
.A_WIDTH(B_WIDTH)
) B_logic (
.A(B),
.Y(B_buf)
);
\$_AND_ gate (
.A(A_buf),
.B(B_buf),
.Y(Y[0])
);
generate
if (Y_WIDTH > 1) begin:V
assign Y[Y_WIDTH-1:1] = 0;
end
endgenerate
endmodule
// --------------------------------------------------------
module \$logic_or (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire A_buf, B_buf;
\$reduce_bool #(
.A_SIGNED(A_SIGNED),
.A_WIDTH(A_WIDTH)
) A_logic (
.A(A),
.Y(A_buf)
);
\$reduce_bool #(
.A_SIGNED(B_SIGNED),
.A_WIDTH(B_WIDTH)
) B_logic (
.A(B),
.Y(B_buf)
);
\$_OR_ gate (
.A(A_buf),
.B(B_buf),
.Y(Y[0])
);
generate
if (Y_WIDTH > 1) begin:V
assign Y[Y_WIDTH-1:1] = 0;
end
endgenerate
endmodule
// --------------------------------------------------------
module \$mux (A, B, S, Y);
parameter WIDTH = 1;
input [WIDTH-1:0] A, B;
input S;
output [WIDTH-1:0] Y;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 1) begin:V
\$_MUX_ gate (
.A(A[i]),
.B(B[i]),
.S(S),
.Y(Y[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$pmux (A, B, S, Y);
parameter WIDTH = 1;
parameter S_WIDTH = 1;
input [WIDTH-1:0] A;
input [WIDTH*S_WIDTH-1:0] B;
input [S_WIDTH-1:0] S;
output [WIDTH-1:0] Y;
wire [WIDTH-1:0] Y_B;
genvar i, j;
generate
wire [WIDTH*S_WIDTH-1:0] B_AND_S;
for (i = 0; i < S_WIDTH; i = i + 1) begin:B_AND
assign B_AND_S[WIDTH*(i+1)-1:WIDTH*i] = B[WIDTH*(i+1)-1:WIDTH*i] & {WIDTH{S[i]}};
end:B_AND
for (i = 0; i < WIDTH; i = i + 1) begin:B_OR
wire [S_WIDTH-1:0] B_AND_BITS;
for (j = 0; j < S_WIDTH; j = j + 1) begin:B_AND_BITS_COLLECT
assign B_AND_BITS[j] = B_AND_S[WIDTH*j+i];
end:B_AND_BITS_COLLECT
assign Y_B[i] = |B_AND_BITS;
end:B_OR
endgenerate
assign Y = |S ? Y_B : A;
endmodule
// --------------------------------------------------------
module \$safe_pmux (A, B, S, Y);
parameter WIDTH = 1;
parameter S_WIDTH = 1;
input [WIDTH-1:0] A;
input [WIDTH*S_WIDTH-1:0] B;
input [S_WIDTH-1:0] S;
output [WIDTH-1:0] Y;
wire [S_WIDTH-1:0] status_found_first;
wire [S_WIDTH-1:0] status_found_second;
genvar i;
generate
for (i = 0; i < S_WIDTH; i = i + 1) begin:GEN1
wire pre_first;
if (i > 0) begin:GEN2
assign pre_first = status_found_first[i-1];
end:GEN2 else begin:GEN3
assign pre_first = 0;
end:GEN3
assign status_found_first[i] = pre_first | S[i];
assign status_found_second[i] = pre_first & S[i];
end:GEN1
endgenerate
\$pmux #(
.WIDTH(WIDTH),
.S_WIDTH(S_WIDTH)
) pmux_cell (
.A(A),
.B(B),
.S(S & {S_WIDTH{~|status_found_second}}),
.Y(Y)
);
endmodule
// --------------------------------------------------------
module \$dff (CLK, D, Q);
parameter WIDTH = 1;
parameter CLK_POLARITY = 1'b1;
input CLK;
input [WIDTH-1:0] D;
output [WIDTH-1:0] Q;
genvar i;
generate
if (CLK_POLARITY == 0)
for (i = 0; i < WIDTH; i = i + 1) begin:V
\$_DFF_N_ ff (
.D(D[i]),
.Q(Q[i]),
.C(CLK)
);
end
if (CLK_POLARITY != 0)
for (i = 0; i < WIDTH; i = i + 1) begin:V
\$_DFF_P_ ff (
.D(D[i]),
.Q(Q[i]),
.C(CLK)
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$adff (CLK, ARST, D, Q);
parameter WIDTH = 1;
parameter CLK_POLARITY = 1'b1;
parameter ARST_POLARITY = 1'b1;
parameter ARST_VALUE = 0;
input CLK, ARST;
input [WIDTH-1:0] D;
output [WIDTH-1:0] Q;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 1) begin:V
if (CLK_POLARITY == 0) begin:N
if (ARST_POLARITY == 0) begin:NN
if (ARST_VALUE[i] == 0) begin:NN0
\$_DFF_NN0_ ff (
.D(D[i]),
.Q(Q[i]),
.C(CLK),
.R(ARST)
);
end else begin:NN1
\$_DFF_NN1_ ff (
.D(D[i]),
.Q(Q[i]),
.C(CLK),
.R(ARST)
);
end
end else begin:NP
if (ARST_VALUE[i] == 0) begin:NP0
\$_DFF_NP0_ ff (
.D(D[i]),
.Q(Q[i]),
.C(CLK),
.R(ARST)
);
end else begin:NP1
\$_DFF_NP1_ ff (
.D(D[i]),
.Q(Q[i]),
.C(CLK),
.R(ARST)
);
end
end
end else begin:P
if (ARST_POLARITY == 0) begin:PN
if (ARST_VALUE[i] == 0) begin:PN0
\$_DFF_PN0_ ff (
.D(D[i]),
.Q(Q[i]),
.C(CLK),
.R(ARST)
);
end else begin:PN1
\$_DFF_PN1_ ff (
.D(D[i]),
.Q(Q[i]),
.C(CLK),
.R(ARST)
);
end
end else begin:PP
if (ARST_VALUE[i] == 0) begin:PP0
\$_DFF_PP0_ ff (
.D(D[i]),
.Q(Q[i]),
.C(CLK),
.R(ARST)
);
end else begin:PP1
\$_DFF_PP1_ ff (
.D(D[i]),
.Q(Q[i]),
.C(CLK),
.R(ARST)
);
end
end
end
end
endgenerate
endmodule
// --------------------------------------------------------