yosys/backends/aiger/xaiger.cc

940 lines
26 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* Copyright (C) 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "kernel/utils.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
void aiger_encode(std::ostream &f, int x)
{
log_assert(x >= 0);
while (x & ~0x7f) {
f.put((x & 0x7f) | 0x80);
x = x >> 7;
}
f.put(x);
}
struct XAigerWriter
{
Module *module;
bool zinit_mode;
SigMap sigmap;
dict<SigBit, bool> init_map;
pool<SigBit> input_bits, output_bits;
dict<SigBit, SigBit> not_map, ff_map, alias_map;
dict<SigBit, pair<SigBit, SigBit>> and_map;
//pool<SigBit> initstate_bits;
vector<std::pair<SigBit,int>> ci_bits, co_bits;
vector<pair<int, int>> aig_gates;
vector<int> aig_latchin, aig_latchinit, aig_outputs;
int aig_m = 0, aig_i = 0, aig_l = 0, aig_o = 0, aig_a = 0;
dict<SigBit, int> aig_map;
dict<SigBit, int> ordered_outputs;
dict<SigBit, int> ordered_latches;
vector<Cell*> box_list;
//dict<SigBit, int> init_inputs;
//int initstate_ff = 0;
int mkgate(int a0, int a1)
{
aig_m++, aig_a++;
aig_gates.push_back(a0 > a1 ? make_pair(a0, a1) : make_pair(a1, a0));
return 2*aig_m;
}
int bit2aig(SigBit bit)
{
if (aig_map.count(bit) == 0)
{
aig_map[bit] = -1;
//if (initstate_bits.count(bit)) {
// log_assert(initstate_ff > 0);
// aig_map[bit] = initstate_ff;
//} else
if (not_map.count(bit)) {
int a = bit2aig(not_map.at(bit)) ^ 1;
aig_map[bit] = a;
} else
if (and_map.count(bit)) {
auto args = and_map.at(bit);
int a0 = bit2aig(args.first);
int a1 = bit2aig(args.second);
aig_map[bit] = mkgate(a0, a1);
} else
if (alias_map.count(bit)) {
aig_map[bit] = bit2aig(alias_map.at(bit));
}
if (bit == State::Sx || bit == State::Sz)
log_error("Design contains 'x' or 'z' bits. Use 'setundef' to replace those constants.\n");
}
log_assert(aig_map.at(bit) >= 0);
return aig_map.at(bit);
}
XAigerWriter(Module *module, bool zinit_mode, bool imode, bool omode, bool bmode) : module(module), zinit_mode(zinit_mode), sigmap(module)
{
pool<SigBit> undriven_bits;
pool<SigBit> unused_bits;
// promote public wires
for (auto wire : module->wires())
if (wire->name[0] == '\\')
sigmap.add(wire);
// promote input wires
for (auto wire : module->wires())
if (wire->port_input)
sigmap.add(wire);
// promote output wires
for (auto wire : module->wires())
if (wire->port_output)
sigmap.add(wire);
for (auto wire : module->wires())
{
if (wire->attributes.count("\\init")) {
SigSpec initsig = sigmap(wire);
Const initval = wire->attributes.at("\\init");
for (int i = 0; i < GetSize(wire) && i < GetSize(initval); i++)
if (initval[i] == State::S0 || initval[i] == State::S1)
init_map[initsig[i]] = initval[i] == State::S1;
}
for (int i = 0; i < GetSize(wire); i++)
{
SigBit wirebit(wire, i);
SigBit bit = sigmap(wirebit);
if (bit.wire == nullptr) {
if (wire->port_output) {
aig_map[wirebit] = (bit == State::S1) ? 1 : 0;
output_bits.insert(wirebit);
}
continue;
}
undriven_bits.insert(bit);
unused_bits.insert(bit);
if (wire->port_input)
input_bits.insert(bit);
if (wire->port_output) {
if (bit != wirebit)
alias_map[wirebit] = bit;
output_bits.insert(wirebit);
}
}
}
for (auto bit : input_bits) {
if (!bit.wire->port_output)
undriven_bits.erase(bit);
// Erase POs that are also PIs
output_bits.erase(bit);
}
for (auto bit : output_bits)
if (!bit.wire->port_input)
unused_bits.erase(bit);
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
bool abc_box_seen = false;
for (auto cell : module->cells())
{
toposort.node(cell->name);
for (const auto &conn : cell->connections())
{
if (!cell->type.in("$_NOT_", "$_AND_")) {
if (yosys_celltypes.cell_known(cell->type)) {
if (conn.first.in("\\Q", "\\CTRL_OUT", "\\RD_DATA"))
continue;
if (cell->type == "$memrd" && conn.first == "\\DATA")
continue;
}
RTLIL::Module* inst_module = module->design->module(cell->type);
log_assert(inst_module);
RTLIL::Wire* inst_module_port = inst_module->wire(conn.first);
log_assert(inst_module_port);
if (inst_module_port->attributes.count("\\abc_flop_q"))
continue;
}
if (cell->input(conn.first)) {
// Ignore inout for the sake of topographical ordering
if (cell->output(conn.first)) continue;
for (auto bit : sigmap(conn.second))
bit_users[bit].insert(cell->name);
}
if (cell->output(conn.first))
for (auto bit : sigmap(conn.second))
bit_drivers[bit].insert(cell->name);
}
if (cell->type == "$_NOT_")
{
SigBit A = sigmap(cell->getPort("\\A").as_bit());
SigBit Y = sigmap(cell->getPort("\\Y").as_bit());
unused_bits.erase(A);
undriven_bits.erase(Y);
not_map[Y] = A;
continue;
}
//if (cell->type.in("$_FF_", "$_DFF_N_", "$_DFF_P_"))
//{
// SigBit D = sigmap(cell->getPort("\\D").as_bit());
// SigBit Q = sigmap(cell->getPort("\\Q").as_bit());
// unused_bits.erase(D);
// undriven_bits.erase(Q);
// ff_map[Q] = D;
// continue;
//}
if (cell->type == "$_AND_")
{
SigBit A = sigmap(cell->getPort("\\A").as_bit());
SigBit B = sigmap(cell->getPort("\\B").as_bit());
SigBit Y = sigmap(cell->getPort("\\Y").as_bit());
unused_bits.erase(A);
unused_bits.erase(B);
undriven_bits.erase(Y);
and_map[Y] = make_pair(A, B);
continue;
}
//if (cell->type == "$initstate")
//{
// SigBit Y = sigmap(cell->getPort("\\Y").as_bit());
// undriven_bits.erase(Y);
// initstate_bits.insert(Y);
// continue;
//}
RTLIL::Module* box_module = module->design->module(cell->type);
if (!box_module || !box_module->attributes.count("\\abc_box_id")) {
for (const auto &c : cell->connections()) {
if (c.second.is_fully_const()) continue;
for (auto b : c.second.bits()) {
Wire *w = b.wire;
if (!w) continue;
auto is_input = cell->input(c.first);
auto is_output = cell->output(c.first);
log_assert(is_input || is_output);
if (is_input) {
if (!w->port_input) {
SigBit I = sigmap(b);
if (I != b)
alias_map[b] = I;
output_bits.insert(b);
unused_bits.erase(b);
}
}
if (is_output) {
SigBit O = sigmap(b);
input_bits.insert(O);
undriven_bits.erase(O);
}
}
}
}
else
abc_box_seen = true;
//log_warning("Unsupported cell type: %s (%s)\n", log_id(cell->type), log_id(cell));
}
if (abc_box_seen) {
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
#ifndef NDEBUG
toposort.analyze_loops = true;
#endif
toposort.sort();
#ifndef NDEBUG
for (auto &it : toposort.loops) {
log(" loop");
for (auto cell : it)
log(" %s", log_id(cell));
log("\n");
}
#endif
log_assert(!toposort.found_loops);
for (auto cell_name : toposort.sorted) {
RTLIL::Cell *cell = module->cell(cell_name);
RTLIL::Module* box_module = module->design->module(cell->type);
if (!box_module || !box_module->attributes.count("\\abc_box_id"))
continue;
cell->connections_.sort(RTLIL::sort_by_id_str());
for (const auto &c : cell->connections()) {
for (auto b : c.second.bits()) {
auto is_input = cell->input(c.first);
auto is_output = cell->output(c.first);
log_assert(is_input || is_output);
if (is_input) {
SigBit I = sigmap(b);
if (I != b)
alias_map[b] = I;
co_bits.emplace_back(b, 0);
}
if (is_output) {
SigBit O = sigmap(b);
ci_bits.emplace_back(O, 0);
}
}
}
box_list.emplace_back(cell);
}
// TODO: Free memory from toposort, bit_drivers, bit_users
}
for (auto bit : input_bits) {
RTLIL::Wire *wire = bit.wire;
// If encountering an inout port, then create a new wire with $inout.out
// suffix, make it a PO driven by the existing inout, and inherit existing
// inout's drivers
if (wire->port_input && wire->port_output && !undriven_bits.count(bit)) {
RTLIL::Wire *new_wire = module->wire(wire->name.str() + "$inout.out");
if (!new_wire)
new_wire = module->addWire(wire->name.str() + "$inout.out", GetSize(wire));
SigBit new_bit(new_wire, bit.offset);
module->connect(new_bit, bit);
if (not_map.count(bit))
not_map[new_bit] = not_map.at(bit);
else if (and_map.count(bit))
and_map[new_bit] = and_map.at(bit);
else if (alias_map.count(bit))
alias_map[new_bit] = alias_map.at(bit);
output_bits.insert(new_bit);
}
}
// Do some CI/CO post-processing:
// Erase all POs and COs that are undriven
for (auto bit : undriven_bits) {
//co_bits.erase(bit);
output_bits.erase(bit);
}
// CIs cannot be undriven
for (const auto &c : ci_bits)
undriven_bits.erase(c.first);
for (auto bit : unused_bits)
undriven_bits.erase(bit);
if (!undriven_bits.empty()) {
undriven_bits.sort();
for (auto bit : undriven_bits) {
log_warning("Treating undriven bit %s.%s like $anyseq.\n", log_id(module), log_signal(bit));
input_bits.insert(bit);
}
log_warning("Treating a total of %d undriven bits in %s like $anyseq.\n", GetSize(undriven_bits), log_id(module));
}
init_map.sort();
input_bits.sort();
output_bits.sort();
not_map.sort();
ff_map.sort();
and_map.sort();
aig_map[State::S0] = 0;
aig_map[State::S1] = 1;
for (auto bit : input_bits) {
aig_m++, aig_i++;
aig_map[bit] = 2*aig_m;
}
for (auto &c : ci_bits) {
aig_m++, aig_i++;
c.second = 2*aig_m;
aig_map[c.first] = c.second;
}
if (imode && input_bits.empty()) {
aig_m++, aig_i++;
}
//if (zinit_mode)
//{
// for (auto it : ff_map) {
// if (init_map.count(it.first))
// continue;
// aig_m++, aig_i++;
// init_inputs[it.first] = 2*aig_m;
// }
//}
for (auto it : ff_map) {
aig_m++, aig_l++;
aig_map[it.first] = 2*aig_m;
ordered_latches[it.first] = aig_l-1;
if (init_map.count(it.first) == 0)
aig_latchinit.push_back(2);
else
aig_latchinit.push_back(init_map.at(it.first) ? 1 : 0);
}
//if (!initstate_bits.empty() || !init_inputs.empty()) {
// aig_m++, aig_l++;
// initstate_ff = 2*aig_m+1;
// aig_latchinit.push_back(0);
//}
//if (zinit_mode)
//{
// for (auto it : ff_map)
// {
// int l = ordered_latches[it.first];
// if (aig_latchinit.at(l) == 1)
// aig_map[it.first] ^= 1;
// if (aig_latchinit.at(l) == 2)
// {
// int gated_ffout = mkgate(aig_map[it.first], initstate_ff^1);
// int gated_initin = mkgate(init_inputs[it.first], initstate_ff);
// aig_map[it.first] = mkgate(gated_ffout^1, gated_initin^1)^1;
// }
// }
//}
for (auto it : ff_map) {
int a = bit2aig(it.second);
int l = ordered_latches[it.first];
if (zinit_mode && aig_latchinit.at(l) == 1)
aig_latchin.push_back(a ^ 1);
else
aig_latchin.push_back(a);
}
//if (!initstate_bits.empty() || !init_inputs.empty())
// aig_latchin.push_back(1);
for (auto &c : co_bits) {
RTLIL::SigBit bit = c.first;
c.second = aig_o++;
ordered_outputs[bit] = c.second;
aig_outputs.push_back(bit2aig(bit));
}
for (auto bit : output_bits) {
ordered_outputs[bit] = aig_o++;
aig_outputs.push_back(bit2aig(bit));
}
if (omode && output_bits.empty()) {
aig_o++;
aig_outputs.push_back(0);
}
if (bmode) {
//aig_b++;
aig_outputs.push_back(0);
}
}
void write_aiger(std::ostream &f, bool ascii_mode, bool miter_mode, bool symbols_mode, bool omode)
{
int aig_obc = aig_o;
int aig_obcj = aig_obc;
int aig_obcjf = aig_obcj;
log_assert(aig_m == aig_i + aig_l + aig_a);
log_assert(aig_l == GetSize(aig_latchin));
log_assert(aig_l == GetSize(aig_latchinit));
log_assert(aig_obcjf == GetSize(aig_outputs));
f << stringf("%s %d %d %d %d %d", ascii_mode ? "aag" : "aig", aig_m, aig_i, aig_l, aig_o, aig_a);
f << stringf("\n");
if (ascii_mode)
{
for (int i = 0; i < aig_i; i++)
f << stringf("%d\n", 2*i+2);
for (int i = 0; i < aig_l; i++) {
if (zinit_mode || aig_latchinit.at(i) == 0)
f << stringf("%d %d\n", 2*(aig_i+i)+2, aig_latchin.at(i));
else if (aig_latchinit.at(i) == 1)
f << stringf("%d %d 1\n", 2*(aig_i+i)+2, aig_latchin.at(i));
else if (aig_latchinit.at(i) == 2)
f << stringf("%d %d %d\n", 2*(aig_i+i)+2, aig_latchin.at(i), 2*(aig_i+i)+2);
}
for (int i = 0; i < aig_obc; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = aig_obc; i < aig_obcj; i++)
f << stringf("1\n");
for (int i = aig_obc; i < aig_obcj; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = aig_obcj; i < aig_obcjf; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = 0; i < aig_a; i++)
f << stringf("%d %d %d\n", 2*(aig_i+aig_l+i)+2, aig_gates.at(i).first, aig_gates.at(i).second);
}
else
{
for (int i = 0; i < aig_l; i++) {
if (zinit_mode || aig_latchinit.at(i) == 0)
f << stringf("%d\n", aig_latchin.at(i));
else if (aig_latchinit.at(i) == 1)
f << stringf("%d 1\n", aig_latchin.at(i));
else if (aig_latchinit.at(i) == 2)
f << stringf("%d %d\n", aig_latchin.at(i), 2*(aig_i+i)+2);
}
for (int i = 0; i < aig_obc; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = aig_obc; i < aig_obcj; i++)
f << stringf("1\n");
for (int i = aig_obc; i < aig_obcj; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = aig_obcj; i < aig_obcjf; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = 0; i < aig_a; i++) {
int lhs = 2*(aig_i+aig_l+i)+2;
int rhs0 = aig_gates.at(i).first;
int rhs1 = aig_gates.at(i).second;
int delta0 = lhs - rhs0;
int delta1 = rhs0 - rhs1;
aiger_encode(f, delta0);
aiger_encode(f, delta1);
}
}
if (symbols_mode)
{
dict<string, vector<string>> symbols;
bool output_seen = false;
for (auto wire : module->wires())
{
//if (wire->name[0] == '$')
// continue;
SigSpec sig = sigmap(wire);
for (int i = 0; i < GetSize(wire); i++)
{
RTLIL::SigBit b(wire, i);
if (input_bits.count(b)) {
int a = aig_map.at(sig[i]);
log_assert((a & 1) == 0);
if (GetSize(wire) != 1)
symbols[stringf("i%d", (a >> 1)-1)].push_back(stringf("%s[%d]", log_id(wire), i));
else
symbols[stringf("i%d", (a >> 1)-1)].push_back(stringf("%s", log_id(wire)));
}
if (output_bits.count(b)) {
int o = ordered_outputs.at(b);
output_seen = !miter_mode;
if (GetSize(wire) != 1)
symbols[stringf("%c%d", miter_mode ? 'b' : 'o', o)].push_back(stringf("%s[%d]", log_id(wire), i));
else
symbols[stringf("%c%d", miter_mode ? 'b' : 'o', o)].push_back(stringf("%s", log_id(wire)));
}
//if (init_inputs.count(sig[i])) {
// int a = init_inputs.at(sig[i]);
// log_assert((a & 1) == 0);
// if (GetSize(wire) != 1)
// symbols[stringf("i%d", (a >> 1)-1)].push_back(stringf("init:%s[%d]", log_id(wire), i));
// else
// symbols[stringf("i%d", (a >> 1)-1)].push_back(stringf("init:%s", log_id(wire)));
//}
if (ordered_latches.count(sig[i])) {
int l = ordered_latches.at(sig[i]);
const char *p = (zinit_mode && (aig_latchinit.at(l) == 1)) ? "!" : "";
if (GetSize(wire) != 1)
symbols[stringf("l%d", l)].push_back(stringf("%s%s[%d]", p, log_id(wire), i));
else
symbols[stringf("l%d", l)].push_back(stringf("%s%s", p, log_id(wire)));
}
}
}
if (omode && !output_seen)
symbols["o0"].push_back("__dummy_o__");
symbols.sort();
for (auto &sym : symbols) {
f << sym.first;
std::sort(sym.second.begin(), sym.second.end());
for (auto &s : sym.second)
f << " " << s;
f << std::endl;
}
}
f << "c";
if (!box_list.empty()) {
std::stringstream h_buffer;
auto write_h_buffer = [&h_buffer](int i32) {
// TODO: Don't assume we're on little endian
#ifdef _WIN32
int i32_be = _byteswap_ulong(i32);
#else
int i32_be = __builtin_bswap32(i32);
#endif
h_buffer.write(reinterpret_cast<const char*>(&i32_be), sizeof(i32_be));
};
int num_outputs = output_bits.size();
if (omode && num_outputs == 0)
num_outputs = 1;
write_h_buffer(1);
write_h_buffer(input_bits.size() + ci_bits.size());
write_h_buffer(num_outputs + co_bits.size());
write_h_buffer(input_bits.size());
write_h_buffer(num_outputs);
write_h_buffer(box_list.size());
RTLIL::Module *holes_module = nullptr;
holes_module = module->design->addModule("\\__holes__");
for (auto cell : box_list) {
int box_inputs = 0, box_outputs = 0;
int box_id = module->design->module(cell->type)->attributes.at("\\abc_box_id").as_int();
Cell *holes_cell = nullptr;
if (holes_module && !holes_module->cell(stringf("\\u%d", box_id)))
holes_cell = holes_module->addCell(stringf("\\u%d", box_id), cell->type);
RTLIL::Wire *holes_wire;
// NB: cell->connections_ already sorted from before
for (const auto &c : cell->connections()) {
log_assert(c.second.size() == 1);
if (cell->input(c.first)) {
box_inputs += c.second.size();
if (holes_cell) {
holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
}
holes_cell->setPort(c.first, holes_wire);
}
}
if (cell->output(c.first)) {
box_outputs += c.second.size();
if (holes_cell) {
holes_wire = holes_module->addWire(stringf("\\%s.%s", cell->type.c_str(), c.first.c_str()));
holes_wire->port_output = true;
holes_cell->setPort(c.first, holes_wire);
}
}
}
write_h_buffer(box_inputs);
write_h_buffer(box_outputs);
write_h_buffer(box_id);
write_h_buffer(0 /* OldBoxNum */);
}
f << "h";
std::string buffer_str = h_buffer.str();
// TODO: Don't assume we're on little endian
#ifdef _WIN32
int buffer_size_be = _byteswap_ulong(buffer_str.size());
#else
int buffer_size_be = __builtin_bswap32(buffer_str.size());
#endif
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
if (holes_module) {
holes_module->fixup_ports();
holes_module->design->selection_stack.emplace_back(false);
RTLIL::Selection& sel = holes_module->design->selection_stack.back();
sel.select(holes_module);
Pass::call(holes_module->design, "flatten; aigmap");
holes_module->design->selection_stack.pop_back();
std::stringstream a_buffer;
XAigerWriter writer(holes_module, false /*zinit_mode*/, false /*imode*/, false /*omode*/, false /*bmode*/);
writer.write_aiger(a_buffer, false /*ascii_mode*/, false /*miter_mode*/, false /*symbols_mode*/, false /*omode*/);
f << "a";
std::string buffer_str = a_buffer.str();
// TODO: Don't assume we're on little endian
#ifdef _WIN32
int buffer_size_be = _byteswap_ulong(buffer_str.size());
#else
int buffer_size_be = __builtin_bswap32(buffer_str.size());
#endif
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
holes_module->design->remove(holes_module);
}
}
f << stringf("Generated by %s\n", yosys_version_str);
}
void write_map(std::ostream &f, bool verbose_map, bool omode)
{
dict<int, string> input_lines;
dict<int, string> init_lines;
dict<int, string> output_lines;
dict<int, string> latch_lines;
dict<int, string> wire_lines;
for (auto wire : module->wires())
{
//if (!verbose_map && wire->name[0] == '$')
// continue;
SigSpec sig = sigmap(wire);
for (int i = 0; i < GetSize(wire); i++)
{
RTLIL::SigBit b(wire, i);
if (input_bits.count(b)) {
int a = aig_map.at(sig[i]);
log_assert((a & 1) == 0);
input_lines[a] += stringf("input %d %d %s\n", (a >> 1)-1, i, log_id(wire));
}
if (output_bits.count(b)) {
int o = ordered_outputs.at(b);
output_lines[o] += stringf("output %d %d %s\n", o, i, log_id(wire));
continue;
}
//if (init_inputs.count(sig[i])) {
// int a = init_inputs.at(sig[i]);
// log_assert((a & 1) == 0);
// init_lines[a] += stringf("init %d %d %s\n", (a >> 1)-1, i, log_id(wire));
// continue;
//}
if (ordered_latches.count(sig[i])) {
int l = ordered_latches.at(sig[i]);
if (zinit_mode && (aig_latchinit.at(l) == 1))
latch_lines[l] += stringf("invlatch %d %d %s\n", l, i, log_id(wire));
else
latch_lines[l] += stringf("latch %d %d %s\n", l, i, log_id(wire));
continue;
}
if (verbose_map) {
if (aig_map.count(sig[i]) == 0)
continue;
int a = aig_map.at(sig[i]);
wire_lines[a] += stringf("wire %d %d %s\n", a, i, log_id(wire));
}
}
}
for (const auto &c : ci_bits) {
RTLIL::SigBit b = c.first;
RTLIL::Wire *wire = b.wire;
int i = b.offset;
int a = c.second;
log_assert((a & 1) == 0);
input_lines[a] += stringf("input %d %d %s\n", (a >> 1)-1, i, log_id(wire));
}
for (const auto &c : co_bits) {
RTLIL::SigBit b = c.first;
RTLIL::Wire *wire = b.wire;
int o = c.second;
if (wire)
output_lines[o] += stringf("output %d %d %s\n", o, b.offset, log_id(wire));
else
output_lines[o] += stringf("output %d %d __const%d__\n", o, 0, b.data);
}
input_lines.sort();
for (auto &it : input_lines)
f << it.second;
log_assert(input_lines.size() == input_bits.size() + ci_bits.size());
init_lines.sort();
for (auto &it : init_lines)
f << it.second;
output_lines.sort();
for (auto &it : output_lines)
f << it.second;
log_assert(output_lines.size() == output_bits.size() + co_bits.size());
if (omode && output_bits.empty())
f << "output " << output_lines.size() << " 0 __dummy_o__\n";
latch_lines.sort();
for (auto &it : latch_lines)
f << it.second;
wire_lines.sort();
for (auto &it : wire_lines)
f << it.second;
}
};
struct XAigerBackend : public Backend {
XAigerBackend() : Backend("xaiger", "write design to XAIGER file") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" write_xaiger [options] [filename]\n");
log("\n");
log("Write the current design to an XAIGER file. The design must be flattened and\n");
log("all unsupported cells will be converted into psuedo-inputs and pseudo-outputs.\n");
log("\n");
log(" -ascii\n");
log(" write ASCII version of AGIER format\n");
log("\n");
log(" -zinit\n");
log(" convert FFs to zero-initialized FFs, adding additional inputs for\n");
log(" uninitialized FFs.\n");
log("\n");
log(" -symbols\n");
log(" include a symbol table in the generated AIGER file\n");
log("\n");
log(" -map <filename>\n");
log(" write an extra file with port and latch symbols\n");
log("\n");
log(" -vmap <filename>\n");
log(" like -map, but more verbose\n");
log("\n");
log(" -I, -O, -B\n");
log(" If the design contains no input/output/assert then create one\n");
log(" dummy input/output/bad_state pin to make the tools reading the\n");
log(" AIGER file happy.\n");
log("\n");
}
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
bool ascii_mode = false;
bool zinit_mode = false;
bool miter_mode = false;
bool symbols_mode = false;
bool verbose_map = false;
bool imode = false;
bool omode = false;
bool bmode = false;
std::string map_filename;
log_header(design, "Executing XAIGER backend.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-ascii") {
ascii_mode = true;
continue;
}
if (args[argidx] == "-zinit") {
zinit_mode = true;
continue;
}
if (args[argidx] == "-symbols") {
symbols_mode = true;
continue;
}
if (map_filename.empty() && args[argidx] == "-map" && argidx+1 < args.size()) {
map_filename = args[++argidx];
continue;
}
if (map_filename.empty() && args[argidx] == "-vmap" && argidx+1 < args.size()) {
map_filename = args[++argidx];
verbose_map = true;
continue;
}
if (args[argidx] == "-I") {
imode = true;
continue;
}
if (args[argidx] == "-O") {
omode = true;
continue;
}
if (args[argidx] == "-B") {
bmode = true;
continue;
}
break;
}
extra_args(f, filename, args, argidx);
Module *top_module = design->top_module();
if (top_module == nullptr)
log_error("Can't find top module in current design!\n");
XAigerWriter writer(top_module, zinit_mode, imode, omode, bmode);
writer.write_aiger(*f, ascii_mode, miter_mode, symbols_mode, omode);
if (!map_filename.empty()) {
std::ofstream mapf;
mapf.open(map_filename.c_str(), std::ofstream::trunc);
if (mapf.fail())
log_error("Can't open file `%s' for writing: %s\n", map_filename.c_str(), strerror(errno));
writer.write_map(mapf, verbose_map, omode);
}
}
} XAigerBackend;
PRIVATE_NAMESPACE_END