yosys/passes/techmap/abc.cc

1628 lines
57 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]] ABC
// Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and Verification
// http://www.eecs.berkeley.edu/~alanmi/abc/
// [[CITE]] Berkeley Logic Interchange Format (BLIF)
// University of California. Berkeley. July 28, 1992
// http://www.ece.cmu.edu/~ee760/760docs/blif.pdf
// [[CITE]] Kahn's Topological sorting algorithm
// Kahn, Arthur B. (1962), "Topological sorting of large networks", Communications of the ACM 5 (11): 558-562, doi:10.1145/368996.369025
// http://en.wikipedia.org/wiki/Topological_sorting
#define ABC_COMMAND_LIB "strash; scorr; ifraig; retime {D}; strash; dch -f; map {D}"
#define ABC_COMMAND_CTR "strash; scorr; ifraig; retime {D}; strash; dch -f; map {D}; buffer; upsize {D}; dnsize {D}; stime -p"
#define ABC_COMMAND_LUT "strash; scorr; ifraig; retime; strash; dch -f; if; mfs"
#define ABC_COMMAND_DFL "strash; scorr; ifraig; retime; strash; dch -f; map"
#define ABC_FAST_COMMAND_LIB "retime {D}; map {D}"
#define ABC_FAST_COMMAND_CTR "retime {D}; map {D}; buffer; upsize {D}; dnsize {D}; stime -p"
#define ABC_FAST_COMMAND_LUT "retime; if"
#define ABC_FAST_COMMAND_DFL "retime; map"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "kernel/cost.h"
#include "kernel/log.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cerrno>
#include <sstream>
#include <climits>
#ifndef _WIN32
# include <unistd.h>
# include <dirent.h>
#endif
#include "frontends/blif/blifparse.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
enum class gate_type_t {
G_NONE,
G_FF,
G_BUF,
G_NOT,
G_AND,
G_NAND,
G_OR,
G_NOR,
G_XOR,
G_XNOR,
G_MUX,
G_AOI3,
G_OAI3,
G_AOI4,
G_OAI4
};
#define G(_name) gate_type_t::G_ ## _name
struct gate_t
{
int id;
gate_type_t type;
int in1, in2, in3, in4;
bool is_port;
RTLIL::SigBit bit;
};
bool map_mux4;
bool map_mux8;
bool map_mux16;
bool markgroups;
int map_autoidx;
SigMap assign_map;
RTLIL::Module *module;
std::vector<gate_t> signal_list;
std::map<RTLIL::SigBit, int> signal_map;
pool<std::string> enabled_gates;
bool clk_polarity, en_polarity;
RTLIL::SigSpec clk_sig, en_sig;
int map_signal(RTLIL::SigBit bit, gate_type_t gate_type = G(NONE), int in1 = -1, int in2 = -1, int in3 = -1, int in4 = -1)
{
assign_map.apply(bit);
if (signal_map.count(bit) == 0) {
gate_t gate;
gate.id = signal_list.size();
gate.type = G(NONE);
gate.in1 = -1;
gate.in2 = -1;
gate.in3 = -1;
gate.in4 = -1;
gate.is_port = false;
gate.bit = bit;
signal_list.push_back(gate);
signal_map[bit] = gate.id;
}
gate_t &gate = signal_list[signal_map[bit]];
if (gate_type != G(NONE))
gate.type = gate_type;
if (in1 >= 0)
gate.in1 = in1;
if (in2 >= 0)
gate.in2 = in2;
if (in3 >= 0)
gate.in3 = in3;
if (in4 >= 0)
gate.in4 = in4;
return gate.id;
}
void mark_port(RTLIL::SigSpec sig)
{
for (auto &bit : assign_map(sig))
if (bit.wire != NULL && signal_map.count(bit) > 0)
signal_list[signal_map[bit]].is_port = true;
}
void extract_cell(RTLIL::Cell *cell, bool keepff)
{
if (cell->type == "$_DFF_N_" || cell->type == "$_DFF_P_")
{
if (clk_polarity != (cell->type == "$_DFF_P_"))
return;
if (clk_sig != assign_map(cell->getPort("\\C")))
return;
if (GetSize(en_sig) != 0)
return;
goto matching_dff;
}
if (cell->type == "$_DFFE_NN_" || cell->type == "$_DFFE_NP_" || cell->type == "$_DFFE_PN_" || cell->type == "$_DFFE_PP_")
{
if (clk_polarity != (cell->type == "$_DFFE_PN_" || cell->type == "$_DFFE_PP_"))
return;
if (en_polarity != (cell->type == "$_DFFE_NP_" || cell->type == "$_DFFE_PP_"))
return;
if (clk_sig != assign_map(cell->getPort("\\C")))
return;
if (en_sig != assign_map(cell->getPort("\\E")))
return;
goto matching_dff;
}
if (0) {
matching_dff:
RTLIL::SigSpec sig_d = cell->getPort("\\D");
RTLIL::SigSpec sig_q = cell->getPort("\\Q");
if (keepff)
for (auto &c : sig_q.chunks())
if (c.wire != NULL)
c.wire->attributes["\\keep"] = 1;
assign_map.apply(sig_d);
assign_map.apply(sig_q);
map_signal(sig_q, G(FF), map_signal(sig_d));
module->remove(cell);
return;
}
if (cell->type.in("$_BUF_", "$_NOT_"))
{
RTLIL::SigSpec sig_a = cell->getPort("\\A");
RTLIL::SigSpec sig_y = cell->getPort("\\Y");
assign_map.apply(sig_a);
assign_map.apply(sig_y);
map_signal(sig_y, cell->type == "$_BUF_" ? G(BUF) : G(NOT), map_signal(sig_a));
module->remove(cell);
return;
}
if (cell->type.in("$_AND_", "$_NAND_", "$_OR_", "$_NOR_", "$_XOR_", "$_XNOR_"))
{
RTLIL::SigSpec sig_a = cell->getPort("\\A");
RTLIL::SigSpec sig_b = cell->getPort("\\B");
RTLIL::SigSpec sig_y = cell->getPort("\\Y");
assign_map.apply(sig_a);
assign_map.apply(sig_b);
assign_map.apply(sig_y);
int mapped_a = map_signal(sig_a);
int mapped_b = map_signal(sig_b);
if (cell->type == "$_AND_")
map_signal(sig_y, G(AND), mapped_a, mapped_b);
else if (cell->type == "$_NAND_")
map_signal(sig_y, G(NAND), mapped_a, mapped_b);
else if (cell->type == "$_OR_")
map_signal(sig_y, G(OR), mapped_a, mapped_b);
else if (cell->type == "$_NOR_")
map_signal(sig_y, G(NOR), mapped_a, mapped_b);
else if (cell->type == "$_XOR_")
map_signal(sig_y, G(XOR), mapped_a, mapped_b);
else if (cell->type == "$_XNOR_")
map_signal(sig_y, G(XNOR), mapped_a, mapped_b);
else
log_abort();
module->remove(cell);
return;
}
if (cell->type == "$_MUX_")
{
RTLIL::SigSpec sig_a = cell->getPort("\\A");
RTLIL::SigSpec sig_b = cell->getPort("\\B");
RTLIL::SigSpec sig_s = cell->getPort("\\S");
RTLIL::SigSpec sig_y = cell->getPort("\\Y");
assign_map.apply(sig_a);
assign_map.apply(sig_b);
assign_map.apply(sig_s);
assign_map.apply(sig_y);
int mapped_a = map_signal(sig_a);
int mapped_b = map_signal(sig_b);
int mapped_s = map_signal(sig_s);
map_signal(sig_y, G(MUX), mapped_a, mapped_b, mapped_s);
module->remove(cell);
return;
}
if (cell->type.in("$_AOI3_", "$_OAI3_"))
{
RTLIL::SigSpec sig_a = cell->getPort("\\A");
RTLIL::SigSpec sig_b = cell->getPort("\\B");
RTLIL::SigSpec sig_c = cell->getPort("\\C");
RTLIL::SigSpec sig_y = cell->getPort("\\Y");
assign_map.apply(sig_a);
assign_map.apply(sig_b);
assign_map.apply(sig_c);
assign_map.apply(sig_y);
int mapped_a = map_signal(sig_a);
int mapped_b = map_signal(sig_b);
int mapped_c = map_signal(sig_c);
map_signal(sig_y, cell->type == "$_AOI3_" ? G(AOI3) : G(OAI3), mapped_a, mapped_b, mapped_c);
module->remove(cell);
return;
}
if (cell->type.in("$_AOI4_", "$_OAI4_"))
{
RTLIL::SigSpec sig_a = cell->getPort("\\A");
RTLIL::SigSpec sig_b = cell->getPort("\\B");
RTLIL::SigSpec sig_c = cell->getPort("\\C");
RTLIL::SigSpec sig_d = cell->getPort("\\D");
RTLIL::SigSpec sig_y = cell->getPort("\\Y");
assign_map.apply(sig_a);
assign_map.apply(sig_b);
assign_map.apply(sig_c);
assign_map.apply(sig_d);
assign_map.apply(sig_y);
int mapped_a = map_signal(sig_a);
int mapped_b = map_signal(sig_b);
int mapped_c = map_signal(sig_c);
int mapped_d = map_signal(sig_d);
map_signal(sig_y, cell->type == "$_AOI4_" ? G(AOI4) : G(OAI4), mapped_a, mapped_b, mapped_c, mapped_d);
module->remove(cell);
return;
}
}
std::string remap_name(RTLIL::IdString abc_name)
{
std::stringstream sstr;
sstr << "$abc$" << map_autoidx << "$" << abc_name.substr(1);
return sstr.str();
}
void dump_loop_graph(FILE *f, int &nr, std::map<int, std::set<int>> &edges, std::set<int> &workpool, std::vector<int> &in_counts)
{
if (f == NULL)
return;
log("Dumping loop state graph to slide %d.\n", ++nr);
fprintf(f, "digraph \"slide%d\" {\n", nr);
fprintf(f, " label=\"slide%d\";\n", nr);
fprintf(f, " rankdir=\"TD\";\n");
std::set<int> nodes;
for (auto &e : edges) {
nodes.insert(e.first);
for (auto n : e.second)
nodes.insert(n);
}
for (auto n : nodes)
fprintf(f, " n%d [label=\"%s\\nid=%d, count=%d\"%s];\n", n, log_signal(signal_list[n].bit),
n, in_counts[n], workpool.count(n) ? ", shape=box" : "");
for (auto &e : edges)
for (auto n : e.second)
fprintf(f, " n%d -> n%d;\n", e.first, n);
fprintf(f, "}\n");
}
void handle_loops()
{
// http://en.wikipedia.org/wiki/Topological_sorting
// (Kahn, Arthur B. (1962), "Topological sorting of large networks")
std::map<int, std::set<int>> edges;
std::vector<int> in_edges_count(signal_list.size());
std::set<int> workpool;
FILE *dot_f = NULL;
int dot_nr = 0;
// uncomment for troubleshooting the loop detection code
// dot_f = fopen("test.dot", "w");
for (auto &g : signal_list) {
if (g.type == G(NONE) || g.type == G(FF)) {
workpool.insert(g.id);
} else {
if (g.in1 >= 0) {
edges[g.in1].insert(g.id);
in_edges_count[g.id]++;
}
if (g.in2 >= 0 && g.in2 != g.in1) {
edges[g.in2].insert(g.id);
in_edges_count[g.id]++;
}
if (g.in3 >= 0 && g.in3 != g.in2 && g.in3 != g.in1) {
edges[g.in3].insert(g.id);
in_edges_count[g.id]++;
}
if (g.in4 >= 0 && g.in4 != g.in3 && g.in4 != g.in2 && g.in4 != g.in1) {
edges[g.in4].insert(g.id);
in_edges_count[g.id]++;
}
}
}
dump_loop_graph(dot_f, dot_nr, edges, workpool, in_edges_count);
while (workpool.size() > 0)
{
int id = *workpool.begin();
workpool.erase(id);
// log("Removing non-loop node %d from graph: %s\n", id, log_signal(signal_list[id].bit));
for (int id2 : edges[id]) {
log_assert(in_edges_count[id2] > 0);
if (--in_edges_count[id2] == 0)
workpool.insert(id2);
}
edges.erase(id);
dump_loop_graph(dot_f, dot_nr, edges, workpool, in_edges_count);
while (workpool.size() == 0)
{
if (edges.size() == 0)
break;
int id1 = edges.begin()->first;
for (auto &edge_it : edges) {
int id2 = edge_it.first;
RTLIL::Wire *w1 = signal_list[id1].bit.wire;
RTLIL::Wire *w2 = signal_list[id2].bit.wire;
if (w1 == NULL)
id1 = id2;
else if (w2 == NULL)
continue;
else if (w1->name[0] == '$' && w2->name[0] == '\\')
id1 = id2;
else if (w1->name[0] == '\\' && w2->name[0] == '$')
continue;
else if (edges[id1].size() < edges[id2].size())
id1 = id2;
else if (edges[id1].size() > edges[id2].size())
continue;
else if (w2->name.str() < w1->name.str())
id1 = id2;
}
if (edges[id1].size() == 0) {
edges.erase(id1);
continue;
}
log_assert(signal_list[id1].bit.wire != NULL);
std::stringstream sstr;
sstr << "$abcloop$" << (autoidx++);
RTLIL::Wire *wire = module->addWire(sstr.str());
bool first_line = true;
for (int id2 : edges[id1]) {
if (first_line)
log("Breaking loop using new signal %s: %s -> %s\n", log_signal(RTLIL::SigSpec(wire)),
log_signal(signal_list[id1].bit), log_signal(signal_list[id2].bit));
else
log(" %*s %s -> %s\n", int(strlen(log_signal(RTLIL::SigSpec(wire)))), "",
log_signal(signal_list[id1].bit), log_signal(signal_list[id2].bit));
first_line = false;
}
int id3 = map_signal(RTLIL::SigSpec(wire));
signal_list[id1].is_port = true;
signal_list[id3].is_port = true;
log_assert(id3 == int(in_edges_count.size()));
in_edges_count.push_back(0);
workpool.insert(id3);
for (int id2 : edges[id1]) {
if (signal_list[id2].in1 == id1)
signal_list[id2].in1 = id3;
if (signal_list[id2].in2 == id1)
signal_list[id2].in2 = id3;
if (signal_list[id2].in3 == id1)
signal_list[id2].in3 = id3;
if (signal_list[id2].in4 == id1)
signal_list[id2].in4 = id3;
}
edges[id1].swap(edges[id3]);
module->connect(RTLIL::SigSig(signal_list[id3].bit, signal_list[id1].bit));
dump_loop_graph(dot_f, dot_nr, edges, workpool, in_edges_count);
}
}
if (dot_f != NULL)
fclose(dot_f);
}
std::string add_echos_to_abc_cmd(std::string str)
{
std::string new_str, token;
for (size_t i = 0; i < str.size(); i++) {
token += str[i];
if (str[i] == ';') {
while (i+1 < str.size() && str[i+1] == ' ')
i++;
new_str += "echo + " + token + " " + token + " ";
token.clear();
}
}
if (!token.empty()) {
if (!new_str.empty())
new_str += "echo + " + token + "; ";
new_str += token;
}
return new_str;
}
std::string fold_abc_cmd(std::string str)
{
std::string token, new_str = " ";
int char_counter = 10;
for (size_t i = 0; i <= str.size(); i++) {
if (i < str.size())
token += str[i];
if (i == str.size() || str[i] == ';') {
if (char_counter + token.size() > 75)
new_str += "\n ", char_counter = 14;
new_str += token, char_counter += token.size();
token.clear();
}
}
return new_str;
}
std::string replace_tempdir(std::string text, std::string tempdir_name, bool show_tempdir)
{
if (show_tempdir)
return text;
while (1) {
size_t pos = text.find(tempdir_name);
if (pos == std::string::npos)
break;
text = text.substr(0, pos) + "<abc-temp-dir>" + text.substr(pos + GetSize(tempdir_name));
}
std::string selfdir_name = proc_self_dirname();
while (1) {
size_t pos = text.find(selfdir_name);
if (pos == std::string::npos)
break;
text = text.substr(0, pos) + "<yosys-exe-dir>/" + text.substr(pos + GetSize(selfdir_name));
}
return text;
}
struct abc_output_filter
{
bool got_cr;
int escape_seq_state;
std::string linebuf;
std::string tempdir_name;
bool show_tempdir;
abc_output_filter(std::string tempdir_name, bool show_tempdir) : tempdir_name(tempdir_name), show_tempdir(show_tempdir)
{
got_cr = false;
escape_seq_state = 0;
}
void next_char(char ch)
{
if (escape_seq_state == 0 && ch == '\033') {
escape_seq_state = 1;
return;
}
if (escape_seq_state == 1) {
escape_seq_state = ch == '[' ? 2 : 0;
return;
}
if (escape_seq_state == 2) {
if ((ch < '0' || '9' < ch) && ch != ';')
escape_seq_state = 0;
return;
}
escape_seq_state = 0;
if (ch == '\r') {
got_cr = true;
return;
}
if (ch == '\n') {
log("ABC: %s\n", replace_tempdir(linebuf, tempdir_name, show_tempdir).c_str());
got_cr = false, linebuf.clear();
return;
}
if (got_cr)
got_cr = false, linebuf.clear();
linebuf += ch;
}
void next_line(const std::string &line)
{
for (char ch : line)
next_char(ch);
}
};
void abc_module(RTLIL::Design *design, RTLIL::Module *current_module, std::string script_file, std::string exe_file,
std::string liberty_file, std::string constr_file, bool cleanup, vector<int> lut_costs, bool dff_mode, std::string clk_str,
bool keepff, std::string delay_target, bool fast_mode, const std::vector<RTLIL::Cell*> &cells, bool show_tempdir)
{
module = current_module;
map_autoidx = autoidx++;
signal_map.clear();
signal_list.clear();
if (clk_str != "$")
{
assign_map.set(module);
clk_polarity = true;
clk_sig = RTLIL::SigSpec();
en_polarity = true;
en_sig = RTLIL::SigSpec();
}
std::string tempdir_name = "/tmp/yosys-abc-XXXXXX";
if (!cleanup)
tempdir_name[0] = tempdir_name[4] = '_';
tempdir_name = make_temp_dir(tempdir_name);
log_header(design, "Extracting gate netlist of module `%s' to `%s/input.blif'..\n",
module->name.c_str(), replace_tempdir(tempdir_name, tempdir_name, show_tempdir).c_str());
std::string abc_script = stringf("read_blif %s/input.blif; ", tempdir_name.c_str());
if (!liberty_file.empty()) {
abc_script += stringf("read_lib -w %s; ", liberty_file.c_str());
if (!constr_file.empty())
abc_script += stringf("read_constr -v %s; ", constr_file.c_str());
} else
if (!lut_costs.empty())
abc_script += stringf("read_lut %s/lutdefs.txt; ", tempdir_name.c_str());
else
abc_script += stringf("read_library %s/stdcells.genlib; ", tempdir_name.c_str());
if (!script_file.empty()) {
if (script_file[0] == '+') {
for (size_t i = 1; i < script_file.size(); i++)
if (script_file[i] == '\'')
abc_script += "'\\''";
else if (script_file[i] == ',')
abc_script += " ";
else
abc_script += script_file[i];
} else
abc_script += stringf("source %s", script_file.c_str());
} else if (!lut_costs.empty()) {
bool all_luts_cost_same = true;
for (int this_cost : lut_costs)
if (this_cost != lut_costs.front())
all_luts_cost_same = false;
abc_script += fast_mode ? ABC_FAST_COMMAND_LUT : ABC_COMMAND_LUT;
if (all_luts_cost_same && !fast_mode)
abc_script += "; lutpack";
} else if (!liberty_file.empty())
abc_script += constr_file.empty() ? (fast_mode ? ABC_FAST_COMMAND_LIB : ABC_COMMAND_LIB) : (fast_mode ? ABC_FAST_COMMAND_CTR : ABC_COMMAND_CTR);
else
abc_script += fast_mode ? ABC_FAST_COMMAND_DFL : ABC_COMMAND_DFL;
for (size_t pos = abc_script.find("{D}"); pos != std::string::npos; pos = abc_script.find("{D}", pos))
abc_script = abc_script.substr(0, pos) + delay_target + abc_script.substr(pos+3);
abc_script += stringf("; write_blif %s/output.blif", tempdir_name.c_str());
abc_script = add_echos_to_abc_cmd(abc_script);
for (size_t i = 0; i+1 < abc_script.size(); i++)
if (abc_script[i] == ';' && abc_script[i+1] == ' ')
abc_script[i+1] = '\n';
FILE *f = fopen(stringf("%s/abc.script", tempdir_name.c_str()).c_str(), "wt");
fprintf(f, "%s\n", abc_script.c_str());
fclose(f);
if (!clk_str.empty() && clk_str != "$")
{
if (clk_str.find(',') != std::string::npos) {
int pos = clk_str.find(',');
std::string en_str = clk_str.substr(pos+1);
clk_str = clk_str.substr(0, pos);
if (en_str[0] == '!') {
en_polarity = false;
en_str = en_str.substr(1);
}
if (module->wires_.count(RTLIL::escape_id(en_str)) != 0)
en_sig = assign_map(RTLIL::SigSpec(module->wires_.at(RTLIL::escape_id(en_str)), 0));
}
if (clk_str[0] == '!') {
clk_polarity = false;
clk_str = clk_str.substr(1);
}
if (module->wires_.count(RTLIL::escape_id(clk_str)) != 0)
clk_sig = assign_map(RTLIL::SigSpec(module->wires_.at(RTLIL::escape_id(clk_str)), 0));
}
if (dff_mode && clk_sig.empty())
log_error("Clock domain %s not found.\n", clk_str.c_str());
if (dff_mode || !clk_str.empty())
{
if (clk_sig.size() == 0)
log("No%s clock domain found. Not extracting any FF cells.\n", clk_str.empty() ? "" : " matching");
else {
log("Found%s %s clock domain: %s", clk_str.empty() ? "" : " matching", clk_polarity ? "posedge" : "negedge", log_signal(clk_sig));
if (en_sig.size() != 0)
log(", enabled by %s%s", en_polarity ? "" : "!", log_signal(en_sig));
log("\n");
}
}
for (auto c : cells)
extract_cell(c, keepff);
for (auto &wire_it : module->wires_) {
if (wire_it.second->port_id > 0 || wire_it.second->get_bool_attribute("\\keep"))
mark_port(RTLIL::SigSpec(wire_it.second));
}
for (auto &cell_it : module->cells_)
for (auto &port_it : cell_it.second->connections())
mark_port(port_it.second);
if (clk_sig.size() != 0)
mark_port(clk_sig);
if (en_sig.size() != 0)
mark_port(en_sig);
handle_loops();
std::string buffer = stringf("%s/input.blif", tempdir_name.c_str());
f = fopen(buffer.c_str(), "wt");
if (f == NULL)
log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno));
fprintf(f, ".model netlist\n");
int count_input = 0;
fprintf(f, ".inputs");
for (auto &si : signal_list) {
if (!si.is_port || si.type != G(NONE))
continue;
fprintf(f, " n%d", si.id);
count_input++;
}
if (count_input == 0)
fprintf(f, " dummy_input\n");
fprintf(f, "\n");
int count_output = 0;
fprintf(f, ".outputs");
for (auto &si : signal_list) {
if (!si.is_port || si.type == G(NONE))
continue;
fprintf(f, " n%d", si.id);
count_output++;
}
fprintf(f, "\n");
for (auto &si : signal_list)
fprintf(f, "# n%-5d %s\n", si.id, log_signal(si.bit));
for (auto &si : signal_list) {
if (si.bit.wire == NULL) {
fprintf(f, ".names n%d\n", si.id);
if (si.bit == RTLIL::State::S1)
fprintf(f, "1\n");
}
}
int count_gates = 0;
for (auto &si : signal_list) {
if (si.type == G(BUF)) {
fprintf(f, ".names n%d n%d\n", si.in1, si.id);
fprintf(f, "1 1\n");
} else if (si.type == G(NOT)) {
fprintf(f, ".names n%d n%d\n", si.in1, si.id);
fprintf(f, "0 1\n");
} else if (si.type == G(AND)) {
fprintf(f, ".names n%d n%d n%d\n", si.in1, si.in2, si.id);
fprintf(f, "11 1\n");
} else if (si.type == G(NAND)) {
fprintf(f, ".names n%d n%d n%d\n", si.in1, si.in2, si.id);
fprintf(f, "0- 1\n");
fprintf(f, "-0 1\n");
} else if (si.type == G(OR)) {
fprintf(f, ".names n%d n%d n%d\n", si.in1, si.in2, si.id);
fprintf(f, "-1 1\n");
fprintf(f, "1- 1\n");
} else if (si.type == G(NOR)) {
fprintf(f, ".names n%d n%d n%d\n", si.in1, si.in2, si.id);
fprintf(f, "00 1\n");
} else if (si.type == G(XOR)) {
fprintf(f, ".names n%d n%d n%d\n", si.in1, si.in2, si.id);
fprintf(f, "01 1\n");
fprintf(f, "10 1\n");
} else if (si.type == G(XNOR)) {
fprintf(f, ".names n%d n%d n%d\n", si.in1, si.in2, si.id);
fprintf(f, "00 1\n");
fprintf(f, "11 1\n");
} else if (si.type == G(MUX)) {
fprintf(f, ".names n%d n%d n%d n%d\n", si.in1, si.in2, si.in3, si.id);
fprintf(f, "1-0 1\n");
fprintf(f, "-11 1\n");
} else if (si.type == G(AOI3)) {
fprintf(f, ".names n%d n%d n%d n%d\n", si.in1, si.in2, si.in3, si.id);
fprintf(f, "-00 1\n");
fprintf(f, "0-0 1\n");
} else if (si.type == G(OAI3)) {
fprintf(f, ".names n%d n%d n%d n%d\n", si.in1, si.in2, si.in3, si.id);
fprintf(f, "00- 1\n");
fprintf(f, "--0 1\n");
} else if (si.type == G(AOI4)) {
fprintf(f, ".names n%d n%d n%d n%d n%d\n", si.in1, si.in2, si.in3, si.in4, si.id);
fprintf(f, "-0-0 1\n");
fprintf(f, "-00- 1\n");
fprintf(f, "0--0 1\n");
fprintf(f, "0-0- 1\n");
} else if (si.type == G(OAI4)) {
fprintf(f, ".names n%d n%d n%d n%d n%d\n", si.in1, si.in2, si.in3, si.in4, si.id);
fprintf(f, "00-- 1\n");
fprintf(f, "--00 1\n");
} else if (si.type == G(FF)) {
fprintf(f, ".latch n%d n%d\n", si.in1, si.id);
} else if (si.type != G(NONE))
log_abort();
if (si.type != G(NONE))
count_gates++;
}
fprintf(f, ".end\n");
fclose(f);
log("Extracted %d gates and %d wires to a netlist network with %d inputs and %d outputs.\n",
count_gates, GetSize(signal_list), count_input, count_output);
log_push();
if (count_output > 0)
{
log_header(design, "Executing ABC.\n");
buffer = stringf("%s/stdcells.genlib", tempdir_name.c_str());
f = fopen(buffer.c_str(), "wt");
if (f == NULL)
log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno));
fprintf(f, "GATE ZERO 1 Y=CONST0;\n");
fprintf(f, "GATE ONE 1 Y=CONST1;\n");
fprintf(f, "GATE BUF %d Y=A; PIN * NONINV 1 999 1 0 1 0\n", get_cell_cost("$_BUF_"));
fprintf(f, "GATE NOT %d Y=!A; PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_NOT_"));
if (enabled_gates.empty() || enabled_gates.count("AND"))
fprintf(f, "GATE AND %d Y=A*B; PIN * NONINV 1 999 1 0 1 0\n", get_cell_cost("$_AND_"));
if (enabled_gates.empty() || enabled_gates.count("NAND"))
fprintf(f, "GATE NAND %d Y=!(A*B); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_NAND_"));
if (enabled_gates.empty() || enabled_gates.count("OR"))
fprintf(f, "GATE OR %d Y=A+B; PIN * NONINV 1 999 1 0 1 0\n", get_cell_cost("$_OR_"));
if (enabled_gates.empty() || enabled_gates.count("NOR"))
fprintf(f, "GATE NOR %d Y=!(A+B); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_NOR_"));
if (enabled_gates.empty() || enabled_gates.count("XOR"))
fprintf(f, "GATE XOR %d Y=(A*!B)+(!A*B); PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_XOR_"));
if (enabled_gates.empty() || enabled_gates.count("XNOR"))
fprintf(f, "GATE XNOR %d Y=(A*B)+(!A*!B); PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_XNOR_"));
if (enabled_gates.empty() || enabled_gates.count("AOI3"))
fprintf(f, "GATE AOI3 %d Y=!((A*B)+C); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_AOI3_"));
if (enabled_gates.empty() || enabled_gates.count("OAI3"))
fprintf(f, "GATE OAI3 %d Y=!((A+B)*C); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_OAI3_"));
if (enabled_gates.empty() || enabled_gates.count("AOI4"))
fprintf(f, "GATE AOI4 %d Y=!((A*B)+(C*D)); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_AOI4_"));
if (enabled_gates.empty() || enabled_gates.count("OAI4"))
fprintf(f, "GATE OAI4 %d Y=!((A+B)*(C+D)); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_OAI4_"));
if (enabled_gates.empty() || enabled_gates.count("MUX"))
fprintf(f, "GATE MUX %d Y=(A*B)+(S*B)+(!S*A); PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_MUX_"));
if (map_mux4)
fprintf(f, "GATE MUX4 %d Y=(!S*!T*A)+(S*!T*B)+(!S*T*C)+(S*T*D); PIN * UNKNOWN 1 999 1 0 1 0\n", 2*get_cell_cost("$_MUX_"));
if (map_mux8)
fprintf(f, "GATE MUX8 %d Y=(!S*!T*!U*A)+(S*!T*!U*B)+(!S*T*!U*C)+(S*T*!U*D)+(!S*!T*U*E)+(S*!T*U*F)+(!S*T*U*G)+(S*T*U*H); PIN * UNKNOWN 1 999 1 0 1 0\n", 4*get_cell_cost("$_MUX_"));
if (map_mux16)
fprintf(f, "GATE MUX16 %d Y=(!S*!T*!U*!V*A)+(S*!T*!U*!V*B)+(!S*T*!U*!V*C)+(S*T*!U*!V*D)+(!S*!T*U*!V*E)+(S*!T*U*!V*F)+(!S*T*U*!V*G)+(S*T*U*!V*H)+(!S*!T*!U*V*I)+(S*!T*!U*V*J)+(!S*T*!U*V*K)+(S*T*!U*V*L)+(!S*!T*U*V*M)+(S*!T*U*V*N)+(!S*T*U*V*O)+(S*T*U*V*P); PIN * UNKNOWN 1 999 1 0 1 0\n", 8*get_cell_cost("$_MUX_"));
fclose(f);
if (!lut_costs.empty()) {
buffer = stringf("%s/lutdefs.txt", tempdir_name.c_str());
f = fopen(buffer.c_str(), "wt");
if (f == NULL)
log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno));
for (int i = 0; i < GetSize(lut_costs); i++)
fprintf(f, "%d %d.00 1.00\n", i+1, lut_costs.at(i));
fclose(f);
}
buffer = stringf("%s -s -f %s/abc.script 2>&1", exe_file.c_str(), tempdir_name.c_str());
log("Running ABC command: %s\n", replace_tempdir(buffer, tempdir_name, show_tempdir).c_str());
abc_output_filter filt(tempdir_name, show_tempdir);
int ret = run_command(buffer, std::bind(&abc_output_filter::next_line, filt, std::placeholders::_1));
if (ret != 0)
log_error("ABC: execution of command \"%s\" failed: return code %d.\n", buffer.c_str(), ret);
buffer = stringf("%s/%s", tempdir_name.c_str(), "output.blif");
std::ifstream ifs;
ifs.open(buffer);
if (ifs.fail())
log_error("Can't open ABC output file `%s'.\n", buffer.c_str());
bool builtin_lib = liberty_file.empty() && script_file.empty() && lut_costs.empty();
RTLIL::Design *mapped_design = new RTLIL::Design;
parse_blif(mapped_design, ifs, builtin_lib ? "\\DFF" : "\\_dff_");
ifs.close();
log_header(design, "Re-integrating ABC results.\n");
RTLIL::Module *mapped_mod = mapped_design->modules_["\\netlist"];
if (mapped_mod == NULL)
log_error("ABC output file does not contain a module `netlist'.\n");
for (auto &it : mapped_mod->wires_) {
RTLIL::Wire *w = it.second;
RTLIL::Wire *wire = module->addWire(remap_name(w->name));
if (markgroups) wire->attributes["\\abcgroup"] = map_autoidx;
design->select(module, wire);
}
std::map<std::string, int> cell_stats;
if (builtin_lib)
{
for (auto &it : mapped_mod->cells_) {
RTLIL::Cell *c = it.second;
cell_stats[RTLIL::unescape_id(c->type)]++;
if (c->type == "\\ZERO" || c->type == "\\ONE") {
RTLIL::SigSig conn;
conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]);
conn.second = RTLIL::SigSpec(c->type == "\\ZERO" ? 0 : 1, 1);
module->connect(conn);
continue;
}
if (c->type == "\\BUF") {
RTLIL::SigSig conn;
conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]);
conn.second = RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]);
module->connect(conn);
continue;
}
if (c->type == "\\NOT") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_NOT_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
design->select(module, cell);
continue;
}
if (c->type == "\\AND" || c->type == "\\OR" || c->type == "\\XOR" || c->type == "\\NAND" || c->type == "\\NOR" || c->type == "\\XNOR") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_" + c->type.substr(1) + "_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
design->select(module, cell);
continue;
}
if (c->type == "\\MUX") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_MUX_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\S", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\S").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
design->select(module, cell);
continue;
}
if (c->type == "\\MUX4") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_MUX4_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)]));
cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)]));
cell->setPort("\\S", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\S").as_wire()->name)]));
cell->setPort("\\T", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\T").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
design->select(module, cell);
continue;
}
if (c->type == "\\MUX8") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_MUX8_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)]));
cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)]));
cell->setPort("\\E", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\E").as_wire()->name)]));
cell->setPort("\\F", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\F").as_wire()->name)]));
cell->setPort("\\G", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\G").as_wire()->name)]));
cell->setPort("\\H", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\H").as_wire()->name)]));
cell->setPort("\\S", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\S").as_wire()->name)]));
cell->setPort("\\T", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\T").as_wire()->name)]));
cell->setPort("\\U", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\U").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
design->select(module, cell);
continue;
}
if (c->type == "\\MUX16") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_MUX16_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)]));
cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)]));
cell->setPort("\\E", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\E").as_wire()->name)]));
cell->setPort("\\F", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\F").as_wire()->name)]));
cell->setPort("\\G", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\G").as_wire()->name)]));
cell->setPort("\\H", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\H").as_wire()->name)]));
cell->setPort("\\I", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\I").as_wire()->name)]));
cell->setPort("\\J", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\J").as_wire()->name)]));
cell->setPort("\\K", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\K").as_wire()->name)]));
cell->setPort("\\L", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\L").as_wire()->name)]));
cell->setPort("\\M", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\M").as_wire()->name)]));
cell->setPort("\\N", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\N").as_wire()->name)]));
cell->setPort("\\O", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\O").as_wire()->name)]));
cell->setPort("\\P", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\P").as_wire()->name)]));
cell->setPort("\\S", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\S").as_wire()->name)]));
cell->setPort("\\T", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\T").as_wire()->name)]));
cell->setPort("\\U", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\U").as_wire()->name)]));
cell->setPort("\\V", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\V").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
design->select(module, cell);
continue;
}
if (c->type == "\\AOI3" || c->type == "\\OAI3") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_" + c->type.substr(1) + "_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
design->select(module, cell);
continue;
}
if (c->type == "\\AOI4" || c->type == "\\OAI4") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_" + c->type.substr(1) + "_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)]));
cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
design->select(module, cell);
continue;
}
if (c->type == "\\DFF") {
log_assert(clk_sig.size() == 1);
RTLIL::Cell *cell;
if (en_sig.size() == 0) {
cell = module->addCell(remap_name(c->name), clk_polarity ? "$_DFF_P_" : "$_DFF_N_");
} else {
log_assert(en_sig.size() == 1);
cell = module->addCell(remap_name(c->name), stringf("$_DFFE_%c%c_", clk_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N'));
cell->setPort("\\E", en_sig);
}
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)]));
cell->setPort("\\Q", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Q").as_wire()->name)]));
cell->setPort("\\C", clk_sig);
design->select(module, cell);
continue;
}
log_abort();
}
}
else
{
for (auto &it : mapped_mod->cells_)
{
RTLIL::Cell *c = it.second;
cell_stats[RTLIL::unescape_id(c->type)]++;
if (c->type == "\\_const0_" || c->type == "\\_const1_") {
RTLIL::SigSig conn;
conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->connections().begin()->second.as_wire()->name)]);
conn.second = RTLIL::SigSpec(c->type == "\\_const0_" ? 0 : 1, 1);
module->connect(conn);
continue;
}
if (c->type == "\\_dff_") {
log_assert(clk_sig.size() == 1);
RTLIL::Cell *cell;
if (en_sig.size() == 0) {
cell = module->addCell(remap_name(c->name), clk_polarity ? "$_DFF_P_" : "$_DFF_N_");
} else {
log_assert(en_sig.size() == 1);
cell = module->addCell(remap_name(c->name), stringf("$_DFFE_%c%c_", clk_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N'));
cell->setPort("\\E", en_sig);
}
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)]));
cell->setPort("\\Q", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Q").as_wire()->name)]));
cell->setPort("\\C", clk_sig);
design->select(module, cell);
continue;
}
if (c->type == "$lut" && GetSize(c->getPort("\\A")) == 1 && c->getParam("\\LUT").as_int() == 2) {
SigSpec my_a = module->wires_[remap_name(c->getPort("\\A").as_wire()->name)];
SigSpec my_y = module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)];
module->connect(my_y, my_a);
continue;
}
RTLIL::Cell *cell = module->addCell(remap_name(c->name), c->type);
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->parameters = c->parameters;
for (auto &conn : c->connections()) {
RTLIL::SigSpec newsig;
for (auto &c : conn.second.chunks()) {
if (c.width == 0)
continue;
log_assert(c.width == 1);
newsig.append(module->wires_[remap_name(c.wire->name)]);
}
cell->setPort(conn.first, newsig);
}
design->select(module, cell);
}
}
for (auto conn : mapped_mod->connections()) {
if (!conn.first.is_fully_const())
conn.first = RTLIL::SigSpec(module->wires_[remap_name(conn.first.as_wire()->name)]);
if (!conn.second.is_fully_const())
conn.second = RTLIL::SigSpec(module->wires_[remap_name(conn.second.as_wire()->name)]);
module->connect(conn);
}
for (auto &it : cell_stats)
log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second);
int in_wires = 0, out_wires = 0;
for (auto &si : signal_list)
if (si.is_port) {
char buffer[100];
snprintf(buffer, 100, "\\n%d", si.id);
RTLIL::SigSig conn;
if (si.type != G(NONE)) {
conn.first = si.bit;
conn.second = RTLIL::SigSpec(module->wires_[remap_name(buffer)]);
out_wires++;
} else {
conn.first = RTLIL::SigSpec(module->wires_[remap_name(buffer)]);
conn.second = si.bit;
in_wires++;
}
module->connect(conn);
}
log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
log("ABC RESULTS: input signals: %8d\n", in_wires);
log("ABC RESULTS: output signals: %8d\n", out_wires);
delete mapped_design;
}
else
{
log("Don't call ABC as there is nothing to map.\n");
}
if (cleanup)
{
log("Removing temp directory.\n");
remove_directory(tempdir_name);
}
log_pop();
}
struct AbcPass : public Pass {
AbcPass() : Pass("abc", "use ABC for technology mapping") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" abc [options] [selection]\n");
log("\n");
log("This pass uses the ABC tool [1] for technology mapping of yosys's internal gate\n");
log("library to a target architecture.\n");
log("\n");
log(" -exe <command>\n");
#ifdef ABCEXTERNAL
log(" use the specified command instead of \"" ABCEXTERNAL "\" to execute ABC.\n");
#else
log(" use the specified command instead of \"<yosys-bindir>/yosys-abc\" to execute ABC.\n");
#endif
log(" This can e.g. be used to call a specific version of ABC or a wrapper.\n");
log("\n");
log(" -script <file>\n");
log(" use the specified ABC script file instead of the default script.\n");
log("\n");
log(" if <file> starts with a plus sign (+), then the rest of the filename\n");
log(" string is interpreted as the command string to be passed to ABC. The\n");
log(" leading plus sign is removed and all commas (,) in the string are\n");
log(" replaced with blanks before the string is passed to ABC.\n");
log("\n");
log(" if no -script parameter is given, the following scripts are used:\n");
log("\n");
log(" for -liberty without -constr:\n");
log("%s\n", fold_abc_cmd(ABC_COMMAND_LIB).c_str());
log("\n");
log(" for -liberty with -constr:\n");
log("%s\n", fold_abc_cmd(ABC_COMMAND_CTR).c_str());
log("\n");
log(" for -lut/-luts (only one LUT size):\n");
log("%s\n", fold_abc_cmd(ABC_COMMAND_LUT "; lutpack").c_str());
log("\n");
log(" for -lut/-luts (different LUT sizes):\n");
log("%s\n", fold_abc_cmd(ABC_COMMAND_LUT).c_str());
log("\n");
log(" otherwise:\n");
log("%s\n", fold_abc_cmd(ABC_COMMAND_DFL).c_str());
log("\n");
log(" -fast\n");
log(" use different default scripts that are slightly faster (at the cost\n");
log(" of output quality):\n");
log("\n");
log(" for -liberty without -constr:\n");
log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_LIB).c_str());
log("\n");
log(" for -liberty with -constr:\n");
log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_CTR).c_str());
log("\n");
log(" for -lut/-luts:\n");
log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_LUT).c_str());
log("\n");
log(" otherwise:\n");
log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_DFL).c_str());
log("\n");
log(" -liberty <file>\n");
log(" generate netlists for the specified cell library (using the liberty\n");
log(" file format).\n");
log("\n");
log(" -constr <file>\n");
log(" pass this file with timing constraints to ABC. use with -liberty.\n");
log("\n");
log(" a constr file contains two lines:\n");
log(" set_driving_cell <cell_name>\n");
log(" set_load <floating_point_number>\n");
log("\n");
log(" the set_driving_cell statement defines which cell type is assumed to\n");
log(" drive the primary inputs and the set_load statement sets the load in\n");
log(" femtofarads for each primary output.\n");
log("\n");
log(" -D <picoseconds>\n");
log(" set delay target. the string {D} in the default scripts above is\n");
log(" replaced by this option when used, and an empty string otherwise.\n");
log("\n");
log(" -lut <width>\n");
log(" generate netlist using luts of (max) the specified width.\n");
log("\n");
log(" -lut <w1>:<w2>\n");
log(" generate netlist using luts of (max) the specified width <w2>. All\n");
log(" luts with width <= <w1> have constant cost. for luts larger than <w1>\n");
log(" the area cost doubles with each additional input bit. the delay cost\n");
log(" is still constant for all lut widths.\n");
log("\n");
log(" -luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..\n");
log(" generate netlist using luts. Use the specified costs for luts with 1,\n");
log(" 2, 3, .. inputs.\n");
log("\n");
// log(" -mux4, -mux8, -mux16\n");
// log(" try to extract 4-input, 8-input, and/or 16-input muxes\n");
// log(" (ignored when used with -liberty or -lut)\n");
// log("\n");
log(" -g type1,type2,...\n");
log(" Map the the specified list of gate types. Supported gates types are:\n");
log(" AND, NAND, OR, NOR, XOR, XNOR, MUX, AOI3, OAI3, AOI4, OAI4.\n");
log(" (The NOT gate is always added to this list automatically.)\n");
log("\n");
log(" -dff\n");
log(" also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many\n");
log(" clock domains are automatically partitioned in clock domains and each\n");
log(" domain is passed through ABC independently.\n");
log("\n");
log(" -clk [!]<clock-signal-name>[,[!]<enable-signal-name>]\n");
log(" use only the specified clock domain. this is like -dff, but only FF\n");
log(" cells that belong to the specified clock domain are used.\n");
log("\n");
log(" -keepff\n");
log(" set the \"keep\" attribute on flip-flop output wires. (and thus preserve\n");
log(" them, for example for equivalence checking.)\n");
log("\n");
log(" -nocleanup\n");
log(" when this option is used, the temporary files created by this pass\n");
log(" are not removed. this is useful for debugging.\n");
log("\n");
log(" -showtmp\n");
log(" print the temp dir name in log. usually this is suppressed so that the\n");
log(" command output is identical across runs.\n");
log("\n");
log(" -markgroups\n");
log(" set a 'abcgroup' attribute on all objects created by ABC. The value of\n");
log(" this attribute is a unique integer for each ABC process started. This\n");
log(" is useful for debugging the partitioning of clock domains.\n");
log("\n");
log("When neither -liberty nor -lut is used, the Yosys standard cell library is\n");
log("loaded into ABC before the ABC script is executed.\n");
log("\n");
log("This pass does not operate on modules with unprocessed processes in it.\n");
log("(I.e. the 'proc' pass should be used first to convert processes to netlists.)\n");
log("\n");
log("[1] http://www.eecs.berkeley.edu/~alanmi/abc/\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
log_header(design, "Executing ABC pass (technology mapping using ABC).\n");
log_push();
#ifdef ABCEXTERNAL
std::string exe_file = ABCEXTERNAL;
#else
std::string exe_file = proc_self_dirname() + "yosys-abc";
#endif
std::string script_file, liberty_file, constr_file, clk_str, delay_target;
bool fast_mode = false, dff_mode = false, keepff = false, cleanup = true;
bool show_tempdir = false;
vector<int> lut_costs;
markgroups = false;
map_mux4 = false;
map_mux8 = false;
map_mux16 = false;
enabled_gates.clear();
#ifdef _WIN32
#ifndef ABCEXTERNAL
if (!check_file_exists(exe_file + ".exe") && check_file_exists(proc_self_dirname() + "..\\yosys-abc.exe"))
exe_file = proc_self_dirname() + "..\\yosys-abc";
#endif
#endif
size_t argidx;
char pwd [PATH_MAX];
if (!getcwd(pwd, sizeof(pwd))) {
log_cmd_error("getcwd failed: %s\n", strerror(errno));
log_abort();
}
for (argidx = 1; argidx < args.size(); argidx++) {
std::string arg = args[argidx];
if (arg == "-exe" && argidx+1 < args.size()) {
exe_file = args[++argidx];
continue;
}
if (arg == "-script" && argidx+1 < args.size()) {
script_file = args[++argidx];
if (!script_file.empty() && !is_absolute_path(script_file) && script_file[0] != '+')
script_file = std::string(pwd) + "/" + script_file;
continue;
}
if (arg == "-liberty" && argidx+1 < args.size()) {
liberty_file = args[++argidx];
if (!liberty_file.empty() && !is_absolute_path(liberty_file))
liberty_file = std::string(pwd) + "/" + liberty_file;
continue;
}
if (arg == "-constr" && argidx+1 < args.size()) {
constr_file = args[++argidx];
if (!constr_file.empty() && !is_absolute_path(constr_file))
constr_file = std::string(pwd) + "/" + constr_file;
continue;
}
if (arg == "-D" && argidx+1 < args.size()) {
delay_target = "-D " + args[++argidx];
continue;
}
if (arg == "-lut" && argidx+1 < args.size()) {
string arg = args[++argidx];
size_t pos = arg.find_first_of(':');
int lut_mode = 0, lut_mode2 = 0;
if (pos != string::npos) {
lut_mode = atoi(arg.substr(0, pos).c_str());
lut_mode2 = atoi(arg.substr(pos+1).c_str());
} else {
lut_mode = atoi(arg.c_str());
lut_mode2 = lut_mode;
}
lut_costs.clear();
for (int i = 0; i < lut_mode; i++)
lut_costs.push_back(1);
for (int i = lut_mode; i < lut_mode2; i++)
lut_costs.push_back(2 << (i - lut_mode));
continue;
}
if (arg == "-luts" && argidx+1 < args.size()) {
lut_costs.clear();
for (auto &tok : split_tokens(args[++argidx], ",")) {
auto parts = split_tokens(tok, ":");
if (GetSize(parts) == 0 && !lut_costs.empty())
lut_costs.push_back(lut_costs.back());
else if (GetSize(parts) == 1)
lut_costs.push_back(atoi(parts.at(0).c_str()));
else if (GetSize(parts) == 2)
while (GetSize(lut_costs) < atoi(parts.at(0).c_str()))
lut_costs.push_back(atoi(parts.at(1).c_str()));
else
log_cmd_error("Invalid -luts syntax.\n");
}
continue;
}
if (arg == "-mux4") {
map_mux4 = true;
continue;
}
if (arg == "-mux8") {
map_mux8 = true;
continue;
}
if (arg == "-mux16") {
map_mux16 = true;
continue;
}
if (arg == "-g" && argidx+1 < args.size()) {
for (auto g : split_tokens(args[++argidx], ",")) {
if (g == "AND") goto ok_gate;
if (g == "NAND") goto ok_gate;
if (g == "OR") goto ok_gate;
if (g == "NOR") goto ok_gate;
if (g == "XOR") goto ok_gate;
if (g == "XNOR") goto ok_gate;
if (g == "MUX") goto ok_gate;
if (g == "AOI3") goto ok_gate;
if (g == "OAI3") goto ok_gate;
if (g == "AOI4") goto ok_gate;
if (g == "OAI4") goto ok_gate;
cmd_error(args, argidx, stringf("Unsupported gate type: %s", g.c_str()));
ok_gate:
enabled_gates.insert(g);
}
continue;
}
if (arg == "-fast") {
fast_mode = true;
continue;
}
if (arg == "-dff") {
dff_mode = true;
continue;
}
if (arg == "-clk" && argidx+1 < args.size()) {
clk_str = args[++argidx];
dff_mode = true;
continue;
}
if (arg == "-keepff") {
keepff = true;
continue;
}
if (arg == "-nocleanup") {
cleanup = false;
continue;
}
if (arg == "-showtmp") {
show_tempdir = true;
continue;
}
if (arg == "-markgroups") {
markgroups = true;
continue;
}
break;
}
extra_args(args, argidx, design);
if (!lut_costs.empty() && !liberty_file.empty())
log_cmd_error("Got -lut and -liberty! This two options are exclusive.\n");
if (!constr_file.empty() && liberty_file.empty())
log_cmd_error("Got -constr but no -liberty!\n");
for (auto mod : design->selected_modules())
if (mod->processes.size() > 0)
log("Skipping module %s as it contains processes.\n", log_id(mod));
else if (!dff_mode || !clk_str.empty())
abc_module(design, mod, script_file, exe_file, liberty_file, constr_file, cleanup, lut_costs, dff_mode, clk_str, keepff, delay_target, fast_mode, mod->selected_cells(), show_tempdir);
else
{
assign_map.set(mod);
CellTypes ct(design);
std::vector<RTLIL::Cell*> all_cells = mod->selected_cells();
std::set<RTLIL::Cell*> unassigned_cells(all_cells.begin(), all_cells.end());
std::set<RTLIL::Cell*> expand_queue, next_expand_queue;
std::set<RTLIL::Cell*> expand_queue_up, next_expand_queue_up;
std::set<RTLIL::Cell*> expand_queue_down, next_expand_queue_down;
typedef tuple<bool, RTLIL::SigSpec, bool, RTLIL::SigSpec> clkdomain_t;
std::map<clkdomain_t, std::vector<RTLIL::Cell*>> assigned_cells;
std::map<RTLIL::Cell*, clkdomain_t> assigned_cells_reverse;
std::map<RTLIL::Cell*, std::set<RTLIL::SigBit>> cell_to_bit, cell_to_bit_up, cell_to_bit_down;
std::map<RTLIL::SigBit, std::set<RTLIL::Cell*>> bit_to_cell, bit_to_cell_up, bit_to_cell_down;
for (auto cell : all_cells)
{
clkdomain_t key;
for (auto &conn : cell->connections())
for (auto bit : conn.second) {
bit = assign_map(bit);
if (bit.wire != nullptr) {
cell_to_bit[cell].insert(bit);
bit_to_cell[bit].insert(cell);
if (ct.cell_input(cell->type, conn.first)) {
cell_to_bit_up[cell].insert(bit);
bit_to_cell_down[bit].insert(cell);
}
if (ct.cell_output(cell->type, conn.first)) {
cell_to_bit_down[cell].insert(bit);
bit_to_cell_up[bit].insert(cell);
}
}
}
if (cell->type == "$_DFF_N_" || cell->type == "$_DFF_P_")
{
key = clkdomain_t(cell->type == "$_DFF_P_", assign_map(cell->getPort("\\C")), true, RTLIL::SigSpec());
}
else
if (cell->type == "$_DFFE_NN_" || cell->type == "$_DFFE_NP_" || cell->type == "$_DFFE_PN_" || cell->type == "$_DFFE_PP_")
{
bool this_clk_pol = cell->type == "$_DFFE_PN_" || cell->type == "$_DFFE_PP_";
bool this_en_pol = cell->type == "$_DFFE_NP_" || cell->type == "$_DFFE_PP_";
key = clkdomain_t(this_clk_pol, assign_map(cell->getPort("\\C")), this_en_pol, assign_map(cell->getPort("\\E")));
}
else
continue;
unassigned_cells.erase(cell);
expand_queue.insert(cell);
expand_queue_up.insert(cell);
expand_queue_down.insert(cell);
assigned_cells[key].push_back(cell);
assigned_cells_reverse[cell] = key;
}
while (!expand_queue_up.empty() || !expand_queue_down.empty())
{
if (!expand_queue_up.empty())
{
RTLIL::Cell *cell = *expand_queue_up.begin();
clkdomain_t key = assigned_cells_reverse.at(cell);
expand_queue_up.erase(cell);
for (auto bit : cell_to_bit_up[cell])
for (auto c : bit_to_cell_up[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue_up.insert(c);
assigned_cells[key].push_back(c);
assigned_cells_reverse[c] = key;
expand_queue.insert(c);
}
}
if (!expand_queue_down.empty())
{
RTLIL::Cell *cell = *expand_queue_down.begin();
clkdomain_t key = assigned_cells_reverse.at(cell);
expand_queue_down.erase(cell);
for (auto bit : cell_to_bit_down[cell])
for (auto c : bit_to_cell_down[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue_up.insert(c);
assigned_cells[key].push_back(c);
assigned_cells_reverse[c] = key;
expand_queue.insert(c);
}
}
if (expand_queue_up.empty() && expand_queue_down.empty()) {
expand_queue_up.swap(next_expand_queue_up);
expand_queue_down.swap(next_expand_queue_down);
}
}
while (!expand_queue.empty())
{
RTLIL::Cell *cell = *expand_queue.begin();
clkdomain_t key = assigned_cells_reverse.at(cell);
expand_queue.erase(cell);
for (auto bit : cell_to_bit.at(cell)) {
for (auto c : bit_to_cell[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue.insert(c);
assigned_cells[key].push_back(c);
assigned_cells_reverse[c] = key;
}
bit_to_cell[bit].clear();
}
if (expand_queue.empty())
expand_queue.swap(next_expand_queue);
}
clkdomain_t key(true, RTLIL::SigSpec(), true, RTLIL::SigSpec());
for (auto cell : unassigned_cells) {
assigned_cells[key].push_back(cell);
assigned_cells_reverse[cell] = key;
}
log_header(design, "Summary of detected clock domains:\n");
for (auto &it : assigned_cells)
log(" %d cells in clk=%s%s, en=%s%s\n", GetSize(it.second),
std::get<0>(it.first) ? "" : "!", log_signal(std::get<1>(it.first)),
std::get<2>(it.first) ? "" : "!", log_signal(std::get<3>(it.first)));
for (auto &it : assigned_cells) {
clk_polarity = std::get<0>(it.first);
clk_sig = assign_map(std::get<1>(it.first));
en_polarity = std::get<2>(it.first);
en_sig = assign_map(std::get<3>(it.first));
abc_module(design, mod, script_file, exe_file, liberty_file, constr_file, cleanup, lut_costs,
!clk_sig.empty(), "$", keepff, delay_target, fast_mode, it.second, show_tempdir);
assign_map.set(mod);
}
}
assign_map.clear();
signal_list.clear();
signal_map.clear();
log_pop();
}
} AbcPass;
PRIVATE_NAMESPACE_END