yosys/frontends/verific/verificsva.cc

1816 lines
47 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// Currently supported SVA sequence and property syntax:
// http://symbiyosys.readthedocs.io/en/latest/verific.html
//
// Next gen property syntax:
// basic_property
// [antecedent_condition] property
// [antecedent_condition] always.. property
// [antecedent_condition] eventually.. basic_property
// [antecedent_condition] property until.. expression
// [antecedent_condition] basic_property until.. basic_property (assert/assume only)
//
// antecedent_condition:
// sequence |->
// sequence |=>
//
// basic_property:
// sequence
// not basic_property
// sequence #-# basic_property
// sequence #=# basic_property
// basic_property or basic_property (cover only)
// basic_property and basic_property (assert/assume only)
// basic_property implies basic_property
// basic_property iff basic_property
//
// sequence:
// expression
// sequence ##N sequence
// sequence ##[*] sequence
// sequence ##[+] sequence
// sequence ##[N:M] sequence
// sequence ##[N:$] sequence
// expression [*]
// expression [+]
// expression [*N]
// expression [*N:M]
// expression [*N:$]
// sequence or sequence
// sequence and sequence
// expression throughout sequence
// sequence intersect sequence
// sequence within sequence
// first_match( sequence )
// expression [=N]
// expression [=N:M]
// expression [=N:$]
// expression [->N]
// expression [->N:M]
// expression [->N:$]
#include "kernel/yosys.h"
#include "frontends/verific/verific.h"
USING_YOSYS_NAMESPACE
#ifdef VERIFIC_NAMESPACE
using namespace Verific;
#endif
PRIVATE_NAMESPACE_BEGIN
// Non-deterministic FSM
struct SvaNFsmNode
{
// Edge: Activate the target node if ctrl signal is true, consumes clock cycle
// Link: Activate the target node if ctrl signal is true, doesn't consume clock cycle
vector<pair<int, SigBit>> edges, links;
bool is_cond_node;
};
// Non-deterministic FSM after resolving links
struct SvaUFsmNode
{
// Edge: Activate the target node if all bits in ctrl signal are true, consumes clock cycle
// Accept: This node functions as an accept node if all bits in ctrl signal are true
vector<pair<int, SigSpec>> edges;
vector<SigSpec> accept, cond;
bool reachable;
};
// Deterministic FSM
struct SvaDFsmNode
{
// A DFSM state corresponds to a set of NFSM states. We represent DFSM states as sorted vectors
// of NFSM state node ids. Edge/accept controls are constants matched against the ctrl sigspec.
SigSpec ctrl;
vector<pair<vector<int>, Const>> edges;
vector<Const> accept, reject;
// additional temp data for getReject()
Wire *ffoutwire;
SigBit statesig;
SigSpec nextstate;
// additional temp data for getDFsm()
int outnode;
};
struct SvaFsm
{
Module *module;
VerificClocking clocking;
SigBit trigger_sig = State::S1, disable_sig;
SigBit throughout_sig = State::S1;
bool in_cond_mode = false;
vector<SigBit> disable_stack;
vector<SigBit> throughout_stack;
int startNode, acceptNode, condNode;
vector<SvaNFsmNode> nodes;
vector<SvaUFsmNode> unodes;
dict<vector<int>, SvaDFsmNode> dnodes;
dict<pair<SigSpec, SigSpec>, SigBit> cond_eq_cache;
bool materialized = false;
SigBit final_accept_sig = State::Sx;
SigBit final_reject_sig = State::Sx;
SvaFsm(const VerificClocking &clking, SigBit trig = State::S1)
{
module = clking.module;
clocking = clking;
trigger_sig = trig;
startNode = createNode();
acceptNode = createNode();
in_cond_mode = true;
condNode = createNode();
in_cond_mode = false;
}
void pushDisable(SigBit sig)
{
log_assert(!materialized);
disable_stack.push_back(disable_sig);
if (disable_sig == State::S0)
disable_sig = sig;
else
disable_sig = module->Or(NEW_ID, disable_sig, sig);
}
void popDisable()
{
log_assert(!materialized);
log_assert(!disable_stack.empty());
disable_sig = disable_stack.back();
disable_stack.pop_back();
}
void pushThroughout(SigBit sig)
{
log_assert(!materialized);
throughout_stack.push_back(throughout_sig);
if (throughout_sig == State::S1)
throughout_sig = sig;
else
throughout_sig = module->And(NEW_ID, throughout_sig, sig);
}
void popThroughout()
{
log_assert(!materialized);
log_assert(!throughout_stack.empty());
throughout_sig = throughout_stack.back();
throughout_stack.pop_back();
}
int createNode(int link_node = -1)
{
log_assert(!materialized);
int idx = GetSize(nodes);
nodes.push_back(SvaNFsmNode());
nodes.back().is_cond_node = in_cond_mode;
if (link_node >= 0)
createLink(link_node, idx);
return idx;
}
int createStartNode()
{
return createNode(startNode);
}
void createEdge(int from_node, int to_node, SigBit ctrl = State::S1)
{
log_assert(!materialized);
log_assert(0 <= from_node && from_node < GetSize(nodes));
log_assert(0 <= to_node && to_node < GetSize(nodes));
log_assert(from_node != acceptNode);
log_assert(to_node != acceptNode);
log_assert(from_node != condNode);
log_assert(to_node != condNode);
log_assert(to_node != startNode);
if (from_node != startNode)
log_assert(nodes.at(from_node).is_cond_node == nodes.at(to_node).is_cond_node);
if (throughout_sig != State::S1) {
if (ctrl != State::S1)
ctrl = module->And(NEW_ID, throughout_sig, ctrl);
else
ctrl = throughout_sig;
}
nodes[from_node].edges.push_back(make_pair(to_node, ctrl));
}
void createLink(int from_node, int to_node, SigBit ctrl = State::S1)
{
log_assert(!materialized);
log_assert(0 <= from_node && from_node < GetSize(nodes));
log_assert(0 <= to_node && to_node < GetSize(nodes));
log_assert(from_node != acceptNode);
log_assert(from_node != condNode);
log_assert(to_node != startNode);
if (from_node != startNode)
log_assert(nodes.at(from_node).is_cond_node == nodes.at(to_node).is_cond_node);
if (throughout_sig != State::S1) {
if (ctrl != State::S1)
ctrl = module->And(NEW_ID, throughout_sig, ctrl);
else
ctrl = throughout_sig;
}
nodes[from_node].links.push_back(make_pair(to_node, ctrl));
}
void make_link_order(vector<int> &order, int node, int min)
{
order[node] = std::max(order[node], min);
for (auto &it : nodes[node].links)
make_link_order(order, it.first, order[node]+1);
}
// ----------------------------------------------------
// Generating NFSM circuit to acquire accept signal
SigBit getAccept()
{
log_assert(!materialized);
materialized = true;
vector<Wire*> state_wire(GetSize(nodes));
vector<SigBit> state_sig(GetSize(nodes));
vector<SigBit> next_state_sig(GetSize(nodes));
// Create state signals
{
SigBit not_disable = State::S1;
if (disable_sig != State::S0)
not_disable = module->Not(NEW_ID, disable_sig);
for (int i = 0; i < GetSize(nodes); i++)
{
Wire *w = module->addWire(NEW_ID);
state_wire[i] = w;
state_sig[i] = w;
if (i == startNode)
state_sig[i] = module->Or(NEW_ID, state_sig[i], trigger_sig);
if (disable_sig != State::S0)
state_sig[i] = module->And(NEW_ID, state_sig[i], not_disable);
}
}
// Follow Links
{
vector<int> node_order(GetSize(nodes));
vector<vector<int>> order_to_nodes;
for (int i = 0; i < GetSize(nodes); i++)
make_link_order(node_order, i, 0);
for (int i = 0; i < GetSize(nodes); i++) {
if (node_order[i] >= GetSize(order_to_nodes))
order_to_nodes.resize(node_order[i]+1);
order_to_nodes[node_order[i]].push_back(i);
}
for (int order = 0; order < GetSize(order_to_nodes); order++)
for (int node : order_to_nodes[order])
{
for (auto &it : nodes[node].links)
{
int target = it.first;
SigBit ctrl = state_sig[node];
if (it.second != State::S1)
ctrl = module->And(NEW_ID, ctrl, it.second);
state_sig[target] = module->Or(NEW_ID, state_sig[target], ctrl);
}
}
}
// Construct activations
{
vector<SigSpec> activate_sig(GetSize(nodes));
vector<SigBit> activate_bit(GetSize(nodes));
for (int i = 0; i < GetSize(nodes); i++) {
for (auto &it : nodes[i].edges)
activate_sig[it.first].append(module->And(NEW_ID, state_sig[i], it.second));
}
for (int i = 0; i < GetSize(nodes); i++) {
if (GetSize(activate_sig[i]) == 0)
next_state_sig[i] = State::S0;
else if (GetSize(activate_sig[i]) == 1)
next_state_sig[i] = activate_sig[i];
else
next_state_sig[i] = module->ReduceOr(NEW_ID, activate_sig[i]);
}
}
// Create state FFs
for (int i = 0; i < GetSize(nodes); i++)
{
if (next_state_sig[i] != State::S0) {
clocking.addDff(NEW_ID, next_state_sig[i], state_wire[i], Const(0, 1));
} else {
module->connect(state_wire[i], State::S0);
}
}
final_accept_sig = state_sig[acceptNode];
return final_accept_sig;
}
// ----------------------------------------------------
// Generating quantifier-based NFSM circuit to acquire reject signal
SigBit getAnyAllRejectWorker(bool /* allMode */)
{
// FIXME
log_abort();
}
SigBit getAnyReject()
{
return getAnyAllRejectWorker(false);
}
SigBit getAllReject()
{
return getAnyAllRejectWorker(true);
}
// ----------------------------------------------------
// Generating DFSM circuit to acquire reject signal
void node_to_unode(int node, int unode, SigSpec ctrl)
{
if (node == acceptNode)
unodes[unode].accept.push_back(ctrl);
if (node == condNode)
unodes[unode].cond.push_back(ctrl);
for (auto &it : nodes[node].edges) {
if (it.second != State::S1) {
SigSpec s = {ctrl, it.second};
s.sort_and_unify();
unodes[unode].edges.push_back(make_pair(it.first, s));
} else {
unodes[unode].edges.push_back(make_pair(it.first, ctrl));
}
}
for (auto &it : nodes[node].links) {
if (it.second != State::S1) {
SigSpec s = {ctrl, it.second};
s.sort_and_unify();
node_to_unode(it.first, unode, s);
} else {
node_to_unode(it.first, unode, ctrl);
}
}
}
void mark_reachable_unode(int unode)
{
if (unodes[unode].reachable)
return;
unodes[unode].reachable = true;
for (auto &it : unodes[unode].edges)
mark_reachable_unode(it.first);
}
void usortint(vector<int> &vec)
{
vector<int> newvec;
std::sort(vec.begin(), vec.end());
for (int i = 0; i < GetSize(vec); i++)
if (i == GetSize(vec)-1 || vec[i] != vec[i+1])
newvec.push_back(vec[i]);
vec.swap(newvec);
}
bool cmp_ctrl(const pool<SigBit> &ctrl_bits, const SigSpec &ctrl)
{
for (int i = 0; i < GetSize(ctrl); i++)
if (ctrl_bits.count(ctrl[i]) == 0)
return false;
return true;
}
void create_dnode(const vector<int> &state, bool firstmatch, bool condaccept)
{
if (dnodes.count(state) != 0)
return;
SvaDFsmNode dnode;
dnodes[state] = SvaDFsmNode();
for (int unode : state) {
log_assert(unodes[unode].reachable);
for (auto &it : unodes[unode].edges)
dnode.ctrl.append(it.second);
for (auto &it : unodes[unode].accept)
dnode.ctrl.append(it);
for (auto &it : unodes[unode].cond)
dnode.ctrl.append(it);
}
dnode.ctrl.sort_and_unify();
if (GetSize(dnode.ctrl) > verific_sva_fsm_limit) {
if (verific_verbose >= 2) {
log(" detected state explosion in DFSM generation:\n");
dump();
log(" ctrl signal: %s\n", log_signal(dnode.ctrl));
}
log_error("SVA DFSM state ctrl signal has %d (>%d) bits. Stopping to prevent exponential design size explosion.\n",
GetSize(dnode.ctrl), verific_sva_fsm_limit);
}
for (int i = 0; i < (1 << GetSize(dnode.ctrl)); i++)
{
Const ctrl_val(i, GetSize(dnode.ctrl));
pool<SigBit> ctrl_bits;
for (int i = 0; i < GetSize(dnode.ctrl); i++)
if (ctrl_val[i] == State::S1)
ctrl_bits.insert(dnode.ctrl[i]);
vector<int> new_state;
bool accept = false, cond = false;
for (int unode : state) {
for (auto &it : unodes[unode].accept)
if (cmp_ctrl(ctrl_bits, it))
accept = true;
for (auto &it : unodes[unode].cond)
if (cmp_ctrl(ctrl_bits, it))
cond = true;
}
bool new_state_cond = false;
bool new_state_noncond = false;
if (accept && condaccept)
accept = cond;
if (!accept || !firstmatch) {
for (int unode : state)
for (auto &it : unodes[unode].edges)
if (cmp_ctrl(ctrl_bits, it.second)) {
if (nodes.at(it.first).is_cond_node)
new_state_cond = true;
else
new_state_noncond = true;
new_state.push_back(it.first);
}
}
if (accept)
dnode.accept.push_back(ctrl_val);
if (condaccept && (!new_state_cond || !new_state_noncond))
new_state.clear();
if (new_state.empty()) {
if (!accept)
dnode.reject.push_back(ctrl_val);
} else {
usortint(new_state);
dnode.edges.push_back(make_pair(new_state, ctrl_val));
create_dnode(new_state, firstmatch, condaccept);
}
}
dnodes[state] = dnode;
}
void optimize_cond(vector<Const> &values)
{
bool did_something = true;
while (did_something)
{
did_something = false;
for (int i = 0; i < GetSize(values); i++)
for (int j = 0; j < GetSize(values); j++)
{
if (i == j)
continue;
log_assert(GetSize(values[i]) == GetSize(values[j]));
int delta_pos = -1;
bool i_within_j = true;
bool j_within_i = true;
for (int k = 0; k < GetSize(values[i]); k++) {
if (values[i][k] == State::Sa && values[j][k] != State::Sa) {
i_within_j = false;
continue;
}
if (values[i][k] != State::Sa && values[j][k] == State::Sa) {
j_within_i = false;
continue;
}
if (values[i][k] == values[j][k])
continue;
if (delta_pos >= 0)
goto next_pair;
delta_pos = k;
}
if (delta_pos >= 0 && i_within_j && j_within_i) {
did_something = true;
values[i][delta_pos] = State::Sa;
values[j] = values.back();
values.pop_back();
goto next_pair;
}
if (delta_pos < 0 && i_within_j) {
did_something = true;
values[i] = values.back();
values.pop_back();
goto next_pair;
}
if (delta_pos < 0 && j_within_i) {
did_something = true;
values[j] = values.back();
values.pop_back();
goto next_pair;
}
next_pair:;
}
}
}
SigBit make_cond_eq(const SigSpec &ctrl, const Const &value, SigBit enable = State::S1)
{
SigSpec sig_a, sig_b;
log_assert(GetSize(ctrl) == GetSize(value));
for (int i = 0; i < GetSize(ctrl); i++)
if (value[i] != State::Sa) {
sig_a.append(ctrl[i]);
sig_b.append(value[i]);
}
if (GetSize(sig_a) == 0)
return enable;
if (enable != State::S1) {
sig_a.append(enable);
sig_b.append(State::S1);
}
auto key = make_pair(sig_a, sig_b);
if (cond_eq_cache.count(key) == 0)
{
if (sig_b == State::S1)
cond_eq_cache[key] = sig_a;
else if (sig_b == State::S0)
cond_eq_cache[key] = module->Not(NEW_ID, sig_a);
else
cond_eq_cache[key] = module->Eq(NEW_ID, sig_a, sig_b);
if (verific_verbose >= 2) {
log(" Cond: %s := %s == %s\n", log_signal(cond_eq_cache[key]),
log_signal(sig_a), log_signal(sig_b));
}
}
return cond_eq_cache.at(key);
}
void getFirstAcceptReject(SigBit *accept_p, SigBit *reject_p)
{
log_assert(!materialized);
materialized = true;
// Create unlinked NFSM
unodes.resize(GetSize(nodes));
for (int node = 0; node < GetSize(nodes); node++)
node_to_unode(node, node, SigSpec());
mark_reachable_unode(startNode);
// Create DFSM
create_dnode(vector<int>{startNode}, true, false);
dnodes.sort();
// Create DFSM Circuit
SigSpec accept_sig, reject_sig;
for (auto &it : dnodes)
{
SvaDFsmNode &dnode = it.second;
dnode.ffoutwire = module->addWire(NEW_ID);
dnode.statesig = dnode.ffoutwire;
if (it.first == vector<int>{startNode})
dnode.statesig = module->Or(NEW_ID, dnode.statesig, trigger_sig);
}
for (auto &it : dnodes)
{
SvaDFsmNode &dnode = it.second;
dict<vector<int>, vector<Const>> edge_cond;
for (auto &edge : dnode.edges)
edge_cond[edge.first].push_back(edge.second);
for (auto &it : edge_cond) {
optimize_cond(it.second);
for (auto &value : it.second)
dnodes.at(it.first).nextstate.append(make_cond_eq(dnode.ctrl, value, dnode.statesig));
}
if (accept_p) {
vector<Const> accept_cond = dnode.accept;
optimize_cond(accept_cond);
for (auto &value : accept_cond)
accept_sig.append(make_cond_eq(dnode.ctrl, value, dnode.statesig));
}
if (reject_p) {
vector<Const> reject_cond = dnode.reject;
optimize_cond(reject_cond);
for (auto &value : reject_cond)
reject_sig.append(make_cond_eq(dnode.ctrl, value, dnode.statesig));
}
}
for (auto &it : dnodes)
{
SvaDFsmNode &dnode = it.second;
if (GetSize(dnode.nextstate) == 0) {
module->connect(dnode.ffoutwire, State::S0);
} else
if (GetSize(dnode.nextstate) == 1) {
clocking.addDff(NEW_ID, dnode.nextstate, dnode.ffoutwire, State::S0);
} else {
SigSpec nextstate = module->ReduceOr(NEW_ID, dnode.nextstate);
clocking.addDff(NEW_ID, nextstate, dnode.ffoutwire, State::S0);
}
}
if (accept_p)
{
if (GetSize(accept_sig) == 0)
final_accept_sig = State::S0;
else if (GetSize(accept_sig) == 1)
final_accept_sig = accept_sig;
else
final_accept_sig = module->ReduceOr(NEW_ID, accept_sig);
*accept_p = final_accept_sig;
}
if (reject_p)
{
if (GetSize(reject_sig) == 0)
final_reject_sig = State::S0;
else if (GetSize(reject_sig) == 1)
final_reject_sig = reject_sig;
else
final_reject_sig = module->ReduceOr(NEW_ID, reject_sig);
*reject_p = final_reject_sig;
}
}
SigBit getFirstAccept()
{
SigBit accept;
getFirstAcceptReject(&accept, nullptr);
return accept;
}
SigBit getReject()
{
SigBit reject;
getFirstAcceptReject(nullptr, &reject);
return reject;
}
void getDFsm(SvaFsm &output_fsm, int output_start_node, int output_accept_node, int output_reject_node = -1, bool firstmatch = true, bool condaccept = false)
{
log_assert(!materialized);
materialized = true;
// Create unlinked NFSM
unodes.resize(GetSize(nodes));
for (int node = 0; node < GetSize(nodes); node++)
node_to_unode(node, node, SigSpec());
mark_reachable_unode(startNode);
// Create DFSM
create_dnode(vector<int>{startNode}, firstmatch, condaccept);
dnodes.sort();
// Create DFSM Graph
for (auto &it : dnodes)
{
SvaDFsmNode &dnode = it.second;
dnode.outnode = output_fsm.createNode();
if (it.first == vector<int>{startNode})
output_fsm.createLink(output_start_node, dnode.outnode);
if (output_accept_node >= 0) {
vector<Const> accept_cond = dnode.accept;
optimize_cond(accept_cond);
for (auto &value : accept_cond)
output_fsm.createLink(it.second.outnode, output_accept_node, make_cond_eq(dnode.ctrl, value));
}
if (output_reject_node >= 0) {
vector<Const> reject_cond = dnode.reject;
optimize_cond(reject_cond);
for (auto &value : reject_cond)
output_fsm.createLink(it.second.outnode, output_reject_node, make_cond_eq(dnode.ctrl, value));
}
}
for (auto &it : dnodes)
{
SvaDFsmNode &dnode = it.second;
dict<vector<int>, vector<Const>> edge_cond;
for (auto &edge : dnode.edges)
edge_cond[edge.first].push_back(edge.second);
for (auto &it : edge_cond) {
optimize_cond(it.second);
for (auto &value : it.second)
output_fsm.createEdge(dnode.outnode, dnodes.at(it.first).outnode, make_cond_eq(dnode.ctrl, value));
}
}
}
// ----------------------------------------------------
// State dump for verbose log messages
void dump_nodes()
{
if (nodes.empty())
return;
log(" non-deterministic encoding:\n");
for (int i = 0; i < GetSize(nodes); i++)
{
log(" node %d:%s\n", i,
i == startNode ? " [start]" :
i == acceptNode ? " [accept]" :
i == condNode ? " [cond]" : "");
for (auto &it : nodes[i].edges) {
if (it.second != State::S1)
log(" egde %s -> %d\n", log_signal(it.second), it.first);
else
log(" egde -> %d\n", it.first);
}
for (auto &it : nodes[i].links) {
if (it.second != State::S1)
log(" link %s -> %d\n", log_signal(it.second), it.first);
else
log(" link -> %d\n", it.first);
}
}
}
void dump_unodes()
{
if (unodes.empty())
return;
log(" unlinked non-deterministic encoding:\n");
for (int i = 0; i < GetSize(unodes); i++)
{
if (!unodes[i].reachable)
continue;
log(" unode %d:%s\n", i, i == startNode ? " [start]" : "");
for (auto &it : unodes[i].edges) {
if (!it.second.empty())
log(" egde %s -> %d\n", log_signal(it.second), it.first);
else
log(" egde -> %d\n", it.first);
}
for (auto &ctrl : unodes[i].accept) {
if (!ctrl.empty())
log(" accept %s\n", log_signal(ctrl));
else
log(" accept\n");
}
for (auto &ctrl : unodes[i].cond) {
if (!ctrl.empty())
log(" cond %s\n", log_signal(ctrl));
else
log(" cond\n");
}
}
}
void dump_dnodes()
{
if (dnodes.empty())
return;
log(" deterministic encoding:\n");
for (auto &it : dnodes)
{
log(" dnode {");
for (int i = 0; i < GetSize(it.first); i++)
log("%s%d", i ? "," : "", it.first[i]);
log("}:%s\n", GetSize(it.first) == 1 && it.first[0] == startNode ? " [start]" : "");
log(" ctrl %s\n", log_signal(it.second.ctrl));
for (auto &edge : it.second.edges) {
log(" edge %s -> {", log_signal(edge.second));
for (int i = 0; i < GetSize(edge.first); i++)
log("%s%d", i ? "," : "", edge.first[i]);
log("}\n");
}
for (auto &value : it.second.accept)
log(" accept %s\n", log_signal(value));
for (auto &value : it.second.reject)
log(" reject %s\n", log_signal(value));
}
}
void dump()
{
if (!nodes.empty())
log(" number of NFSM states: %d\n", GetSize(nodes));
if (!unodes.empty()) {
int count = 0;
for (auto &unode : unodes)
if (unode.reachable)
count++;
log(" number of reachable UFSM states: %d\n", count);
}
if (!dnodes.empty())
log(" number of DFSM states: %d\n", GetSize(dnodes));
if (verific_verbose >= 2) {
dump_nodes();
dump_unodes();
dump_dnodes();
}
if (trigger_sig != State::S1)
log(" trigger signal: %s\n", log_signal(trigger_sig));
if (final_accept_sig != State::Sx)
log(" accept signal: %s\n", log_signal(final_accept_sig));
if (final_reject_sig != State::Sx)
log(" reject signal: %s\n", log_signal(final_reject_sig));
}
};
PRIVATE_NAMESPACE_END
YOSYS_NAMESPACE_BEGIN
pool<int> verific_sva_prims = {
// Copy&paste from Verific 3.16_484_32_170630 Netlist.h
PRIM_SVA_IMMEDIATE_ASSERT, PRIM_SVA_ASSERT, PRIM_SVA_COVER, PRIM_SVA_ASSUME,
PRIM_SVA_EXPECT, PRIM_SVA_POSEDGE, PRIM_SVA_NOT, PRIM_SVA_FIRST_MATCH,
PRIM_SVA_ENDED, PRIM_SVA_MATCHED, PRIM_SVA_CONSECUTIVE_REPEAT,
PRIM_SVA_NON_CONSECUTIVE_REPEAT, PRIM_SVA_GOTO_REPEAT,
PRIM_SVA_MATCH_ITEM_TRIGGER, PRIM_SVA_AND, PRIM_SVA_OR, PRIM_SVA_SEQ_AND,
PRIM_SVA_SEQ_OR, PRIM_SVA_EVENT_OR, PRIM_SVA_OVERLAPPED_IMPLICATION,
PRIM_SVA_NON_OVERLAPPED_IMPLICATION, PRIM_SVA_OVERLAPPED_FOLLOWED_BY,
PRIM_SVA_NON_OVERLAPPED_FOLLOWED_BY, PRIM_SVA_INTERSECT, PRIM_SVA_THROUGHOUT,
PRIM_SVA_WITHIN, PRIM_SVA_AT, PRIM_SVA_DISABLE_IFF, PRIM_SVA_SAMPLED,
PRIM_SVA_ROSE, PRIM_SVA_FELL, PRIM_SVA_STABLE, PRIM_SVA_PAST,
PRIM_SVA_MATCH_ITEM_ASSIGN, PRIM_SVA_SEQ_CONCAT, PRIM_SVA_IF,
PRIM_SVA_RESTRICT, PRIM_SVA_TRIGGERED, PRIM_SVA_STRONG, PRIM_SVA_WEAK,
PRIM_SVA_NEXTTIME, PRIM_SVA_S_NEXTTIME, PRIM_SVA_ALWAYS, PRIM_SVA_S_ALWAYS,
PRIM_SVA_S_EVENTUALLY, PRIM_SVA_EVENTUALLY, PRIM_SVA_UNTIL, PRIM_SVA_S_UNTIL,
PRIM_SVA_UNTIL_WITH, PRIM_SVA_S_UNTIL_WITH, PRIM_SVA_IMPLIES, PRIM_SVA_IFF,
PRIM_SVA_ACCEPT_ON, PRIM_SVA_REJECT_ON, PRIM_SVA_SYNC_ACCEPT_ON,
PRIM_SVA_SYNC_REJECT_ON, PRIM_SVA_GLOBAL_CLOCKING_DEF,
PRIM_SVA_GLOBAL_CLOCKING_REF, PRIM_SVA_IMMEDIATE_ASSUME,
PRIM_SVA_IMMEDIATE_COVER, OPER_SVA_SAMPLED, OPER_SVA_STABLE
};
struct VerificSvaImporter
{
VerificImporter *importer = nullptr;
Module *module = nullptr;
Netlist *netlist = nullptr;
Instance *root = nullptr;
VerificClocking clocking;
bool mode_assert = false;
bool mode_assume = false;
bool mode_cover = false;
bool mode_trigger = false;
Instance *net_to_ast_driver(Net *n)
{
if (n == nullptr)
return nullptr;
if (n->IsMultipleDriven())
return nullptr;
Instance *inst = n->Driver();
if (inst == nullptr)
return nullptr;
if (!verific_sva_prims.count(inst->Type()))
return nullptr;
if (inst->Type() == PRIM_SVA_ROSE || inst->Type() == PRIM_SVA_FELL ||
inst->Type() == PRIM_SVA_STABLE || inst->Type() == OPER_SVA_STABLE ||
inst->Type() == PRIM_SVA_PAST || inst->Type() == PRIM_SVA_TRIGGERED)
return nullptr;
return inst;
}
Instance *get_ast_input(Instance *inst) { return net_to_ast_driver(inst->GetInput()); }
Instance *get_ast_input1(Instance *inst) { return net_to_ast_driver(inst->GetInput1()); }
Instance *get_ast_input2(Instance *inst) { return net_to_ast_driver(inst->GetInput2()); }
Instance *get_ast_input3(Instance *inst) { return net_to_ast_driver(inst->GetInput3()); }
Instance *get_ast_control(Instance *inst) { return net_to_ast_driver(inst->GetControl()); }
// ----------------------------------------------------------
// SVA Importer
struct ParserErrorException {
};
[[noreturn]] void parser_error(std::string errmsg)
{
if (!importer->mode_keep)
log_error("%s", errmsg.c_str());
log_warning("%s", errmsg.c_str());
throw ParserErrorException();
}
[[noreturn]] void parser_error(std::string errmsg, linefile_type loc)
{
parser_error(stringf("%s at %s:%d.\n", errmsg.c_str(), LineFile::GetFileName(loc), LineFile::GetLineNo(loc)));
}
[[noreturn]] void parser_error(std::string errmsg, Instance *inst)
{
parser_error(stringf("%s at %s (%s)", errmsg.c_str(), inst->View()->Owner()->Name(), inst->Name()), inst->Linefile());
}
[[noreturn]] void parser_error(Instance *inst)
{
parser_error(stringf("Verific SVA primitive %s (%s) is currently unsupported in this context",
inst->View()->Owner()->Name(), inst->Name()), inst->Linefile());
}
dict<Net*, bool, hash_ptr_ops> check_expression_cache;
bool check_expression(Net *net, bool raise_error = false)
{
while (!check_expression_cache.count(net))
{
Instance *inst = net_to_ast_driver(net);
if (inst == nullptr) {
check_expression_cache[net] = true;
break;
}
if (inst->Type() == PRIM_SVA_AT)
{
VerificClocking new_clocking(importer, net);
log_assert(new_clocking.cond_net == nullptr);
if (!clocking.property_matches_sequence(new_clocking))
parser_error("Mixed clocking is currently not supported", inst);
check_expression_cache[net] = check_expression(new_clocking.body_net, raise_error);
break;
}
if (inst->Type() == PRIM_SVA_FIRST_MATCH || inst->Type() == PRIM_SVA_NOT)
{
check_expression_cache[net] = check_expression(inst->GetInput(), raise_error);
break;
}
if (inst->Type() == PRIM_SVA_SEQ_OR || inst->Type() == PRIM_SVA_SEQ_AND || inst->Type() == PRIM_SVA_INTERSECT ||
inst->Type() == PRIM_SVA_WITHIN || inst->Type() == PRIM_SVA_THROUGHOUT ||
inst->Type() == PRIM_SVA_OR || inst->Type() == PRIM_SVA_AND)
{
check_expression_cache[net] = check_expression(inst->GetInput1(), raise_error) && check_expression(inst->GetInput2(), raise_error);
break;
}
if (inst->Type() == PRIM_SVA_SEQ_CONCAT)
{
const char *sva_low_s = inst->GetAttValue("sva:low");
const char *sva_high_s = inst->GetAttValue("sva:high");
int sva_low = atoi(sva_low_s);
int sva_high = atoi(sva_high_s);
bool sva_inf = !strcmp(sva_high_s, "$");
if (sva_low == 0 && sva_high == 0 && !sva_inf)
check_expression_cache[net] = check_expression(inst->GetInput1(), raise_error) && check_expression(inst->GetInput2(), raise_error);
else
check_expression_cache[net] = false;
break;
}
check_expression_cache[net] = false;
}
if (raise_error && !check_expression_cache.at(net))
parser_error(net_to_ast_driver(net));
return check_expression_cache.at(net);
}
SigBit parse_expression(Net *net)
{
check_expression(net, true);
Instance *inst = net_to_ast_driver(net);
if (inst == nullptr) {
return importer->net_map_at(net);
}
if (inst->Type() == PRIM_SVA_AT)
{
VerificClocking new_clocking(importer, net);
log_assert(new_clocking.cond_net == nullptr);
if (!clocking.property_matches_sequence(new_clocking))
parser_error("Mixed clocking is currently not supported", inst);
return parse_expression(new_clocking.body_net);
}
if (inst->Type() == PRIM_SVA_FIRST_MATCH)
return parse_expression(inst->GetInput());
if (inst->Type() == PRIM_SVA_NOT)
return module->Not(NEW_ID, parse_expression(inst->GetInput()));
if (inst->Type() == PRIM_SVA_SEQ_OR || inst->Type() == PRIM_SVA_OR)
return module->Or(NEW_ID, parse_expression(inst->GetInput1()), parse_expression(inst->GetInput2()));
if (inst->Type() == PRIM_SVA_SEQ_AND || inst->Type() == PRIM_SVA_AND || inst->Type() == PRIM_SVA_INTERSECT ||
inst->Type() == PRIM_SVA_WITHIN || inst->Type() == PRIM_SVA_THROUGHOUT || inst->Type() == PRIM_SVA_SEQ_CONCAT)
return module->And(NEW_ID, parse_expression(inst->GetInput1()), parse_expression(inst->GetInput2()));
log_abort();
}
bool check_zero_consecutive_repeat(Net *net)
{
Instance *inst = net_to_ast_driver(net);
if (inst == nullptr)
return false;
if (inst->Type() != PRIM_SVA_CONSECUTIVE_REPEAT)
return false;
const char *sva_low_s = inst->GetAttValue("sva:low");
int sva_low = atoi(sva_low_s);
return sva_low == 0;
}
int parse_consecutive_repeat(SvaFsm &fsm, int start_node, Net *net, bool add_pre_delay, bool add_post_delay)
{
Instance *inst = net_to_ast_driver(net);
log_assert(inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT);
const char *sva_low_s = inst->GetAttValue("sva:low");
const char *sva_high_s = inst->GetAttValue("sva:high");
int sva_low = atoi(sva_low_s);
int sva_high = atoi(sva_high_s);
bool sva_inf = !strcmp(sva_high_s, "$");
Net *body_net = inst->GetInput();
if (add_pre_delay || add_post_delay)
log_assert(sva_low == 0);
if (sva_low == 0) {
if (!add_pre_delay && !add_post_delay)
parser_error("Possibly zero-length consecutive repeat must follow or precede a delay of at least one cycle", inst);
sva_low++;
}
int node = fsm.createNode(start_node);
start_node = node;
if (add_pre_delay) {
node = fsm.createNode(start_node);
fsm.createEdge(start_node, node);
}
int prev_node = node;
node = parse_sequence(fsm, node, body_net);
for (int i = 1; i < sva_low; i++)
{
int next_node = fsm.createNode();
fsm.createEdge(node, next_node);
prev_node = node;
node = parse_sequence(fsm, next_node, body_net);
}
if (sva_inf)
{
log_assert(prev_node >= 0);
fsm.createEdge(node, prev_node);
}
else
{
for (int i = sva_low; i < sva_high; i++)
{
int next_node = fsm.createNode();
fsm.createEdge(node, next_node);
prev_node = node;
node = parse_sequence(fsm, next_node, body_net);
fsm.createLink(prev_node, node);
}
}
if (add_post_delay) {
int next_node = fsm.createNode();
fsm.createEdge(node, next_node);
node = next_node;
}
if (add_pre_delay || add_post_delay)
fsm.createLink(start_node, node);
return node;
}
int parse_sequence(SvaFsm &fsm, int start_node, Net *net)
{
if (check_expression(net)) {
int node = fsm.createNode();
fsm.createLink(start_node, node, parse_expression(net));
return node;
}
Instance *inst = net_to_ast_driver(net);
if (inst->Type() == PRIM_SVA_AT)
{
VerificClocking new_clocking(importer, net);
log_assert(new_clocking.cond_net == nullptr);
if (!clocking.property_matches_sequence(new_clocking))
parser_error("Mixed clocking is currently not supported", inst);
return parse_sequence(fsm, start_node, new_clocking.body_net);
}
if (inst->Type() == PRIM_SVA_FIRST_MATCH)
{
SvaFsm match_fsm(clocking);
match_fsm.createLink(parse_sequence(match_fsm, match_fsm.createStartNode(), inst->GetInput()), match_fsm.acceptNode);
int node = fsm.createNode();
match_fsm.getDFsm(fsm, start_node, node);
if (verific_verbose) {
log(" First Match FSM:\n");
match_fsm.dump();
}
return node;
}
if (inst->Type() == PRIM_SVA_SEQ_CONCAT)
{
const char *sva_low_s = inst->GetAttValue("sva:low");
const char *sva_high_s = inst->GetAttValue("sva:high");
int sva_low = atoi(sva_low_s);
int sva_high = atoi(sva_high_s);
bool sva_inf = !strcmp(sva_high_s, "$");
int node = -1;
bool past_add_delay = false;
if (check_zero_consecutive_repeat(inst->GetInput1()) && sva_low > 0) {
node = parse_consecutive_repeat(fsm, start_node, inst->GetInput1(), false, true);
sva_low--, sva_high--;
} else {
node = parse_sequence(fsm, start_node, inst->GetInput1());
}
if (check_zero_consecutive_repeat(inst->GetInput2()) && sva_low > 0) {
past_add_delay = true;
sva_low--, sva_high--;
}
for (int i = 0; i < sva_low; i++) {
int next_node = fsm.createNode();
fsm.createEdge(node, next_node);
node = next_node;
}
if (sva_inf)
{
fsm.createEdge(node, node);
}
else
{
for (int i = sva_low; i < sva_high; i++)
{
int next_node = fsm.createNode();
fsm.createEdge(node, next_node);
fsm.createLink(node, next_node);
node = next_node;
}
}
if (past_add_delay)
node = parse_consecutive_repeat(fsm, node, inst->GetInput2(), true, false);
else
node = parse_sequence(fsm, node, inst->GetInput2());
return node;
}
if (inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT)
{
return parse_consecutive_repeat(fsm, start_node, net, false, false);
}
if (inst->Type() == PRIM_SVA_NON_CONSECUTIVE_REPEAT || inst->Type() == PRIM_SVA_GOTO_REPEAT)
{
const char *sva_low_s = inst->GetAttValue("sva:low");
const char *sva_high_s = inst->GetAttValue("sva:high");
int sva_low = atoi(sva_low_s);
int sva_high = atoi(sva_high_s);
bool sva_inf = !strcmp(sva_high_s, "$");
Net *body_net = inst->GetInput();
int node = fsm.createNode(start_node);
SigBit cond = parse_expression(body_net);
SigBit not_cond = module->Not(NEW_ID, cond);
for (int i = 0; i < sva_low; i++)
{
int wait_node = fsm.createNode();
fsm.createEdge(wait_node, wait_node, not_cond);
if (i == 0)
fsm.createLink(node, wait_node);
else
fsm.createEdge(node, wait_node);
int next_node = fsm.createNode();
fsm.createLink(wait_node, next_node, cond);
node = next_node;
}
if (sva_inf)
{
int wait_node = fsm.createNode();
fsm.createEdge(wait_node, wait_node, not_cond);
fsm.createEdge(node, wait_node);
fsm.createLink(wait_node, node, cond);
}
else
{
for (int i = sva_low; i < sva_high; i++)
{
int wait_node = fsm.createNode();
fsm.createEdge(wait_node, wait_node, not_cond);
if (i == 0)
fsm.createLink(node, wait_node);
else
fsm.createEdge(node, wait_node);
int next_node = fsm.createNode();
fsm.createLink(wait_node, next_node, cond);
fsm.createLink(node, next_node);
node = next_node;
}
}
if (inst->Type() == PRIM_SVA_NON_CONSECUTIVE_REPEAT)
fsm.createEdge(node, node);
return node;
}
if (inst->Type() == PRIM_SVA_SEQ_OR || inst->Type() == PRIM_SVA_OR)
{
int node = parse_sequence(fsm, start_node, inst->GetInput1());
int node2 = parse_sequence(fsm, start_node, inst->GetInput2());
fsm.createLink(node2, node);
return node;
}
if (inst->Type() == PRIM_SVA_SEQ_AND || inst->Type() == PRIM_SVA_AND)
{
SvaFsm fsm1(clocking);
fsm1.createLink(parse_sequence(fsm1, fsm1.createStartNode(), inst->GetInput1()), fsm1.acceptNode);
SvaFsm fsm2(clocking);
fsm2.createLink(parse_sequence(fsm2, fsm2.createStartNode(), inst->GetInput2()), fsm2.acceptNode);
SvaFsm combined_fsm(clocking);
fsm1.getDFsm(combined_fsm, combined_fsm.createStartNode(), -1, combined_fsm.acceptNode);
fsm2.getDFsm(combined_fsm, combined_fsm.createStartNode(), -1, combined_fsm.acceptNode);
int node = fsm.createNode();
combined_fsm.getDFsm(fsm, start_node, -1, node);
if (verific_verbose)
{
log(" Left And FSM:\n");
fsm1.dump();
log(" Right And FSM:\n");
fsm1.dump();
log(" Combined And FSM:\n");
combined_fsm.dump();
}
return node;
}
if (inst->Type() == PRIM_SVA_INTERSECT || inst->Type() == PRIM_SVA_WITHIN)
{
SvaFsm intersect_fsm(clocking);
if (inst->Type() == PRIM_SVA_INTERSECT)
{
intersect_fsm.createLink(parse_sequence(intersect_fsm, intersect_fsm.createStartNode(), inst->GetInput1()), intersect_fsm.acceptNode);
}
else
{
int n = intersect_fsm.createNode();
intersect_fsm.createLink(intersect_fsm.createStartNode(), n);
intersect_fsm.createEdge(n, n);
n = parse_sequence(intersect_fsm, n, inst->GetInput1());
intersect_fsm.createLink(n, intersect_fsm.acceptNode);
intersect_fsm.createEdge(n, n);
}
intersect_fsm.in_cond_mode = true;
intersect_fsm.createLink(parse_sequence(intersect_fsm, intersect_fsm.createStartNode(), inst->GetInput2()), intersect_fsm.condNode);
intersect_fsm.in_cond_mode = false;
int node = fsm.createNode();
intersect_fsm.getDFsm(fsm, start_node, node, -1, false, true);
if (verific_verbose) {
log(" Intersect FSM:\n");
intersect_fsm.dump();
}
return node;
}
if (inst->Type() == PRIM_SVA_THROUGHOUT)
{
SigBit expr = parse_expression(inst->GetInput1());
fsm.pushThroughout(expr);
int node = parse_sequence(fsm, start_node, inst->GetInput2());
fsm.popThroughout();
return node;
}
parser_error(inst);
}
void get_fsm_accept_reject(SvaFsm &fsm, SigBit *accept_p, SigBit *reject_p, bool swap_accept_reject = false)
{
log_assert(accept_p != nullptr || reject_p != nullptr);
if (swap_accept_reject)
get_fsm_accept_reject(fsm, reject_p, accept_p);
else if (reject_p == nullptr)
*accept_p = fsm.getAccept();
else if (accept_p == nullptr)
*reject_p = fsm.getReject();
else
fsm.getFirstAcceptReject(accept_p, reject_p);
}
bool eventually_property(Net *&net, SigBit &trig)
{
Instance *inst = net_to_ast_driver(net);
if (inst == nullptr)
return false;
if (clocking.cond_net != nullptr)
trig = importer->net_map_at(clocking.cond_net);
else
trig = State::S1;
if (inst->Type() == PRIM_SVA_S_EVENTUALLY || inst->Type() == PRIM_SVA_EVENTUALLY)
{
if (mode_cover || mode_trigger)
parser_error(inst);
net = inst->GetInput();
clocking.cond_net = nullptr;
return true;
}
if (inst->Type() == PRIM_SVA_OVERLAPPED_IMPLICATION ||
inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
{
Net *antecedent_net = inst->GetInput1();
Net *consequent_net = inst->GetInput2();
Instance *consequent_inst = net_to_ast_driver(consequent_net);
if (consequent_inst == nullptr)
return false;
if (consequent_inst->Type() != PRIM_SVA_S_EVENTUALLY && consequent_inst->Type() != PRIM_SVA_EVENTUALLY)
return false;
if (mode_cover || mode_trigger)
parser_error(consequent_inst);
int node;
SvaFsm antecedent_fsm(clocking, trig);
node = parse_sequence(antecedent_fsm, antecedent_fsm.createStartNode(), antecedent_net);
if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION) {
int next_node = antecedent_fsm.createNode();
antecedent_fsm.createEdge(node, next_node);
node = next_node;
}
antecedent_fsm.createLink(node, antecedent_fsm.acceptNode);
trig = antecedent_fsm.getAccept();
net = consequent_inst->GetInput();
clocking.cond_net = nullptr;
if (verific_verbose) {
log(" Eventually Antecedent FSM:\n");
antecedent_fsm.dump();
}
return true;
}
return false;
}
void parse_property(Net *net, SigBit *accept_p, SigBit *reject_p)
{
Instance *inst = net_to_ast_driver(net);
SigBit trig = State::S1;
if (clocking.cond_net != nullptr)
trig = importer->net_map_at(clocking.cond_net);
if (inst == nullptr)
{
log_assert(trig == State::S1);
if (accept_p != nullptr)
*accept_p = importer->net_map_at(net);
if (reject_p != nullptr)
*reject_p = module->Not(NEW_ID, importer->net_map_at(net));
}
else
if (inst->Type() == PRIM_SVA_OVERLAPPED_IMPLICATION ||
inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
{
Net *antecedent_net = inst->GetInput1();
Net *consequent_net = inst->GetInput2();
int node;
SvaFsm antecedent_fsm(clocking, trig);
node = parse_sequence(antecedent_fsm, antecedent_fsm.createStartNode(), antecedent_net);
if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION) {
int next_node = antecedent_fsm.createNode();
antecedent_fsm.createEdge(node, next_node);
node = next_node;
}
Instance *consequent_inst = net_to_ast_driver(consequent_net);
if (consequent_inst && (consequent_inst->Type() == PRIM_SVA_UNTIL || consequent_inst->Type() == PRIM_SVA_S_UNTIL ||
consequent_inst->Type() == PRIM_SVA_UNTIL_WITH || consequent_inst->Type() == PRIM_SVA_S_UNTIL_WITH))
{
bool until_with = consequent_inst->Type() == PRIM_SVA_UNTIL_WITH || consequent_inst->Type() == PRIM_SVA_S_UNTIL_WITH;
Net *until_net = consequent_inst->GetInput2();
consequent_net = consequent_inst->GetInput1();
consequent_inst = net_to_ast_driver(consequent_net);
SigBit until_sig = parse_expression(until_net);
SigBit not_until_sig = module->Not(NEW_ID, until_sig);
antecedent_fsm.createEdge(node, node, not_until_sig);
antecedent_fsm.createLink(node, antecedent_fsm.acceptNode, until_with ? State::S1 : not_until_sig);
}
else
{
antecedent_fsm.createLink(node, antecedent_fsm.acceptNode);
}
SigBit antecedent_match = antecedent_fsm.getAccept();
if (verific_verbose) {
log(" Antecedent FSM:\n");
antecedent_fsm.dump();
}
bool consequent_not = false;
if (consequent_inst && consequent_inst->Type() == PRIM_SVA_NOT) {
consequent_not = true;
consequent_net = consequent_inst->GetInput();
consequent_inst = net_to_ast_driver(consequent_net);
}
SvaFsm consequent_fsm(clocking, antecedent_match);
node = parse_sequence(consequent_fsm, consequent_fsm.createStartNode(), consequent_net);
consequent_fsm.createLink(node, consequent_fsm.acceptNode);
get_fsm_accept_reject(consequent_fsm, accept_p, reject_p, consequent_not);
if (verific_verbose) {
log(" Consequent FSM:\n");
consequent_fsm.dump();
}
}
else
{
bool prop_not = inst->Type() == PRIM_SVA_NOT;
if (prop_not) {
net = inst->GetInput();
inst = net_to_ast_driver(net);
}
SvaFsm fsm(clocking, trig);
int node = parse_sequence(fsm, fsm.createStartNode(), net);
fsm.createLink(node, fsm.acceptNode);
get_fsm_accept_reject(fsm, accept_p, reject_p, prop_not);
if (verific_verbose) {
log(" Sequence FSM:\n");
fsm.dump();
}
}
}
void import()
{
try
{
module = importer->module;
netlist = root->Owner();
if (verific_verbose)
log(" importing SVA property at root cell %s (%s) at %s:%d.\n", root->Name(), root->View()->Owner()->Name(),
LineFile::GetFileName(root->Linefile()), LineFile::GetLineNo(root->Linefile()));
RTLIL::IdString root_name = module->uniquify(importer->mode_names || root->IsUserDeclared() ? RTLIL::escape_id(root->Name()) : NEW_ID);
// parse SVA sequence into trigger signal
clocking = VerificClocking(importer, root->GetInput(), true);
SigBit accept_bit = State::S0, reject_bit = State::S0;
if (clocking.body_net == nullptr)
{
if (clocking.clock_net != nullptr || clocking.enable_net != nullptr || clocking.disable_net != nullptr || clocking.cond_net != nullptr)
parser_error(stringf("Failed to parse SVA clocking"), root);
if (mode_assert || mode_assume) {
reject_bit = module->Not(NEW_ID, parse_expression(root->GetInput()));
} else {
accept_bit = parse_expression(root->GetInput());
}
}
else
{
Net *net = clocking.body_net;
SigBit trig;
if (eventually_property(net, trig))
{
SigBit sig_a, sig_en = trig;
parse_property(net, &sig_a, nullptr);
// add final FF stage
SigBit sig_a_q, sig_en_q;
if (clocking.body_net == nullptr) {
sig_a_q = sig_a;
sig_en_q = sig_en;
} else {
sig_a_q = module->addWire(NEW_ID);
sig_en_q = module->addWire(NEW_ID);
clocking.addDff(NEW_ID, sig_a, sig_a_q, State::S0);
clocking.addDff(NEW_ID, sig_en, sig_en_q, State::S0);
}
// generate fair/live cell
RTLIL::Cell *c = nullptr;
if (mode_assert) c = module->addLive(root_name, sig_a_q, sig_en_q);
if (mode_assume) c = module->addFair(root_name, sig_a_q, sig_en_q);
importer->import_attributes(c->attributes, root);
return;
}
else
{
if (mode_assert || mode_assume) {
parse_property(net, nullptr, &reject_bit);
} else {
parse_property(net, &accept_bit, nullptr);
}
}
}
if (mode_trigger)
{
module->connect(importer->net_map_at(root->GetOutput()), accept_bit);
}
else
{
SigBit sig_a = module->Not(NEW_ID, reject_bit);
SigBit sig_en = module->Or(NEW_ID, accept_bit, reject_bit);
// add final FF stage
SigBit sig_a_q, sig_en_q;
if (clocking.body_net == nullptr) {
sig_a_q = sig_a;
sig_en_q = sig_en;
} else {
sig_a_q = module->addWire(NEW_ID);
sig_en_q = module->addWire(NEW_ID);
clocking.addDff(NEW_ID, sig_a, sig_a_q, State::S0);
clocking.addDff(NEW_ID, sig_en, sig_en_q, State::S0);
}
// generate assert/assume/cover cell
RTLIL::Cell *c = nullptr;
if (mode_assert) c = module->addAssert(root_name, sig_a_q, sig_en_q);
if (mode_assume) c = module->addAssume(root_name, sig_a_q, sig_en_q);
if (mode_cover) c = module->addCover(root_name, sig_a_q, sig_en_q);
importer->import_attributes(c->attributes, root);
}
}
catch (ParserErrorException)
{
}
}
};
void verific_import_sva_assert(VerificImporter *importer, Instance *inst)
{
VerificSvaImporter worker;
worker.importer = importer;
worker.root = inst;
worker.mode_assert = true;
worker.import();
}
void verific_import_sva_assume(VerificImporter *importer, Instance *inst)
{
VerificSvaImporter worker;
worker.importer = importer;
worker.root = inst;
worker.mode_assume = true;
worker.import();
}
void verific_import_sva_cover(VerificImporter *importer, Instance *inst)
{
VerificSvaImporter worker;
worker.importer = importer;
worker.root = inst;
worker.mode_cover = true;
worker.import();
}
void verific_import_sva_trigger(VerificImporter *importer, Instance *inst)
{
VerificSvaImporter worker;
worker.importer = importer;
worker.root = inst;
worker.mode_trigger = true;
worker.import();
}
bool verific_is_sva_net(VerificImporter *importer, Verific::Net *net)
{
VerificSvaImporter worker;
worker.importer = importer;
return worker.net_to_ast_driver(net) != nullptr;
}
YOSYS_NAMESPACE_END