yosys/passes/sat/qbfsat.cc

551 lines
19 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2020 Alberto Gonzalez <boqwxp@airmail.cc>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/celltypes.h"
#include "kernel/log.h"
#include "kernel/rtlil.h"
#include "kernel/register.h"
#include <cstdio>
#include <algorithm>
#if defined(_WIN32)
# define WIFEXITED(x) 1
# define WIFSIGNALED(x) 0
# define WIFSTOPPED(x) 0
# define WEXITSTATUS(x) ((x) & 0xff)
# define WTERMSIG(x) SIGTERM
#else
# include <sys/wait.h>
#endif
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct QbfSolutionType {
std::vector<std::string> stdout;
dict<std::string, std::string> hole_to_value;
bool sat;
bool unknown; //true if neither 'sat' nor 'unsat'
bool success; //true if exit code 0
QbfSolutionType() : sat(false), unknown(true), success(false) {}
};
struct QbfSolveOptions {
bool specialize, specialize_from_file, write_solution, nocleanup, dump_final_smt2, assume_outputs;
bool sat, unsat, show_smtbmc;
std::string specialize_soln_file;
std::string write_soln_soln_file;
std::string dump_final_smt2_file;
size_t argidx;
QbfSolveOptions() : specialize(false), specialize_from_file(false), write_solution(false),
nocleanup(false), dump_final_smt2(false), assume_outputs(false), sat(false), unsat(false),
show_smtbmc(false), argidx(0) {};
};
void recover_solution(QbfSolutionType &sol) {
YS_REGEX_TYPE sat_regex = YS_REGEX_COMPILE("Status: PASSED");
YS_REGEX_TYPE unsat_regex = YS_REGEX_COMPILE("Solver Error.*model is not available");
YS_REGEX_TYPE hole_value_regex = YS_REGEX_COMPILE_WITH_SUBS("Value for anyconst in [a-zA-Z0-9_]* \\(([^:]*:[^\\)]*)\\): (.*)");
#ifndef NDEBUG
YS_REGEX_TYPE hole_loc_regex = YS_REGEX_COMPILE("[^:]*:[0-9]+.[0-9]+-[0-9]+.[0-9]+");
YS_REGEX_TYPE hole_val_regex = YS_REGEX_COMPILE("[0-9]+");
#endif
YS_REGEX_MATCH_TYPE m;
bool sat_regex_found = false;
bool unsat_regex_found = false;
dict<std::string, bool> hole_value_recovered;
for (const std::string &x : sol.stdout) {
if(YS_REGEX_NS::regex_search(x, m, hole_value_regex)) {
std::string loc = m[1].str();
std::string val = m[2].str();
#ifndef NDEBUG
log_assert(YS_REGEX_NS::regex_search(loc, hole_loc_regex));
log_assert(YS_REGEX_NS::regex_search(val, hole_val_regex));
#endif
sol.hole_to_value[loc] = val;
}
else if (YS_REGEX_NS::regex_search(x, sat_regex))
sat_regex_found = true;
else if (YS_REGEX_NS::regex_search(x, unsat_regex))
unsat_regex_found = true;
}
#ifndef NDEBUG
log_assert(!sol.unknown && sol.sat? sat_regex_found : true);
log_assert(!sol.unknown && !sol.sat? unsat_regex_found : true);
#endif
}
dict<std::string, std::string> get_hole_loc_name_map(RTLIL::Module *module, const QbfSolutionType &sol) {
dict<std::string, std::string> hole_loc_to_name;
for (auto cell : module->cells()) {
std::string cell_src = cell->get_src_attribute();
auto pos = sol.hole_to_value.find(cell_src);
if (pos != sol.hole_to_value.end()) {
#ifndef NDEBUG
log_assert(cell->type.in("$anyconst", "$anyseq"));
log_assert(cell->getPort(ID::Y).is_wire());
#endif
hole_loc_to_name[pos->first] = cell->getPort(ID::Y).as_wire()->name.str();
}
}
return hole_loc_to_name;
}
void write_solution(RTLIL::Module *module, const QbfSolutionType &sol, const std::string &file) {
std::ofstream fout(file.c_str());
if (!fout)
log_cmd_error("could not open solution file for writing.\n");
dict<std::string, std::string> hole_loc_to_name = get_hole_loc_name_map(module, sol);
for(auto &x : sol.hole_to_value)
fout << hole_loc_to_name[x.first] << "=" << x.second << std::endl;
}
void specialize_from_file(RTLIL::Module *module, const std::string &file) {
YS_REGEX_TYPE hole_assn_regex = YS_REGEX_COMPILE_WITH_SUBS("^(.*)=([01]+)$");
YS_REGEX_MATCH_TYPE m;
std::set<RTLIL::Cell *> anyconsts_to_remove;
dict<std::string, std::string> hole_name_to_value;
std::ifstream fin(file.c_str());
if (!fin)
log_cmd_error("could not read solution file.\n");
std::string buf;
while (std::getline(fin, buf)) {
log_assert(YS_REGEX_NS::regex_search(buf, m, hole_assn_regex));
std::string hole_name = m[1].str();
std::string hole_value = m[2].str();
hole_name_to_value[hole_name] = hole_value;
}
for (auto cell : module->cells())
if (cell->type == "$anyconst") {
auto anyconst_port_y = cell->getPort(ID::Y).as_wire();
if (anyconst_port_y == nullptr)
continue;
if (hole_name_to_value.find(anyconst_port_y->name.str()) != hole_name_to_value.end())
anyconsts_to_remove.insert(cell);
}
for (auto cell : anyconsts_to_remove)
module->remove(cell);
for (auto &it : hole_name_to_value) {
std::string hole_name = it.first;
std::string hole_value = it.second;
RTLIL::Wire *wire = module->wire(hole_name);
#ifndef NDEBUG
log_assert(wire != nullptr);
log_assert(wire->width > 0 && GetSize(hole_value) == wire->width);
#endif
log("Specializing %s from file with %s = %d'b%s.\n", module->name.c_str(), hole_name.c_str(), wire->width, hole_value.c_str());
std::vector<RTLIL::SigBit> value_bv;
value_bv.reserve(wire->width);
for (char c : hole_value)
value_bv.emplace_back(c == '1'? RTLIL::S1 : RTLIL::S0);
std::reverse(value_bv.begin(), value_bv.end());
module->connect(wire, value_bv);
}
}
void specialize(RTLIL::Module *module, const QbfSolutionType &sol) {
dict<std::string, std::string> hole_loc_to_name = get_hole_loc_name_map(module, sol);
std::set<RTLIL::Cell *> anyconsts_to_remove;
for (auto cell : module->cells())
if (cell->type == "$anyconst")
if (hole_loc_to_name.find(cell->get_src_attribute()) != hole_loc_to_name.end())
anyconsts_to_remove.insert(cell);
for (auto cell : anyconsts_to_remove)
module->remove(cell);
for (auto &it : sol.hole_to_value) {
std::string hole_loc = it.first;
std::string hole_value = it.second;
#ifndef NDEBUG
auto pos = hole_loc_to_name.find(hole_loc);
log_assert(pos != hole_loc_to_name.end());
#endif
std::string hole_name = hole_loc_to_name[hole_loc];
RTLIL::Wire *wire = module->wire(hole_name);
#ifndef NDEBUG
log_assert(wire != nullptr);
log_assert(wire->width > 0 && GetSize(hole_value) == wire->width);
#endif
log("Specializing %s with %s = %d'b%s.\n", module->name.c_str(), hole_name.c_str(), wire->width, hole_value.c_str());
std::vector<RTLIL::SigBit> value_bv;
value_bv.reserve(wire->width);
for (char c : hole_value)
value_bv.emplace_back(c == '1'? RTLIL::S1 : RTLIL::S0);
std::reverse(value_bv.begin(), value_bv.end());
module->connect(wire, value_bv);
}
}
void dump_model(RTLIL::Module *module, const QbfSolutionType &sol) {
log("Satisfiable model:\n");
dict<std::string, std::string> hole_loc_to_name = get_hole_loc_name_map(module, sol);
for (auto &it : sol.hole_to_value) {
std::string hole_loc = it.first;
std::string hole_value = it.second;
#ifndef NDEBUG
auto pos = hole_loc_to_name.find(hole_loc);
log_assert(pos != hole_loc_to_name.end());
#endif
std::string hole_name = hole_loc_to_name[hole_loc];
log("\t%s = %lu'b%s\n", hole_name.c_str(), hole_value.size(), hole_value.c_str());
std::vector<RTLIL::SigBit> value_bv;
value_bv.reserve(hole_value.size());
for (char c : hole_value)
value_bv.emplace_back(c == '1'? RTLIL::S1 : RTLIL::S0);
std::reverse(value_bv.begin(), value_bv.end());
}
}
void allconstify_inputs(RTLIL::Module *module, const std::set<std::string> &input_wires) {
for (auto &n : input_wires) {
RTLIL::Wire *input = module->wire(n);
#ifndef NDEBUG
log_assert(input != nullptr);
#endif
RTLIL::Cell *allconst = module->addCell("$allconst$" + n, "$allconst");
allconst->setParam(ID(WIDTH), input->width);
allconst->setPort(ID::Y, input);
allconst->set_src_attribute(input->get_src_attribute());
input->port_input = false;
log("Replaced input %s with $allconst cell.\n", n.c_str());
}
module->fixup_ports();
}
void assume_miter_outputs(RTLIL::Module *module) {
std::vector<RTLIL::Wire *> wires_to_assume;
for (auto w : module->wires())
if (w->port_output && w->width == 1)
wires_to_assume.push_back(w);
if (wires_to_assume.size() == 0)
return;
else {
log("Adding $assume cell for output(s): ");
for (auto w : wires_to_assume)
log("\"%s\" ", w->name.c_str());
log("\n");
}
for(auto i = 0; wires_to_assume.size() > 1; ++i) {
std::vector<RTLIL::Wire *> buf;
for (auto j = 0; j + 1 < GetSize(wires_to_assume); j += 2) {
std::stringstream strstr; strstr << i << "_" << j;
RTLIL::Wire *and_wire = module->addWire("\\_qbfsat_and_" + strstr.str(), 1);
module->addLogicAnd("$_qbfsat_and_" + strstr.str(), wires_to_assume[j], wires_to_assume[j+1], and_wire, false, wires_to_assume[j]->get_src_attribute());
buf.push_back(and_wire);
}
if (wires_to_assume.size() % 2 == 1)
buf.push_back(wires_to_assume[wires_to_assume.size() - 1]);
wires_to_assume.swap(buf);
}
#ifndef NDEBUG
log_assert(wires_to_assume.size() == 1);
#endif
module->addAssume("$assume_qbfsat_miter_outputs", wires_to_assume[0], RTLIL::S1);
}
QbfSolutionType qbf_solve(RTLIL::Module *mod, const QbfSolveOptions &opt) {
QbfSolutionType ret;
const std::string yosys_smtbmc_exe = proc_self_dirname() + "yosys-smtbmc";
const std::string smtbmc_warning = "z3: WARNING:";
const bool show_smtbmc = opt.show_smtbmc;
const std::string tempdir_name = make_temp_dir("/tmp/yosys-z3-XXXXXX");
const std::string smt2_command = "write_smt2 -stbv -wires " + tempdir_name + "/problem.smt2";
#ifndef NDEBUG
log_assert(mod->design != nullptr);
#endif
Pass::call(mod->design, smt2_command);
log_header(mod->design, "Solving QBF-SAT problem.\n");
//Execute and capture stdout from `yosys-smtbmc -s z3 -t 1 -g --binary [--dump-smt2 <file>]`
{
const std::string cmd = yosys_smtbmc_exe + " -s z3 -t 1 -g --binary " + (opt.dump_final_smt2? "--dump-smt2 " + opt.dump_final_smt2_file + " " : "") + tempdir_name + "/problem.smt2 2>&1";
auto process_line = [&ret, &smtbmc_warning, &show_smtbmc](const std::string &line) {
ret.stdout.push_back(line.substr(0, line.size()-1)); //don't include trailing newline
auto warning_pos = line.find(smtbmc_warning);
if (warning_pos != std::string::npos)
log_warning("%s", line.substr(warning_pos + smtbmc_warning.size() + 1).c_str());
else
if (show_smtbmc)
log("smtbmc output: %s", line.c_str());
};
log("Launching \"%s\".\n", cmd.c_str());
int retval = run_command(cmd, process_line);
if (retval == 0) {
ret.sat = true;
ret.unknown = false;
} else if (retval == 1) {
ret.sat = false;
ret.unknown = false;
}
}
if(!opt.nocleanup)
remove_directory(tempdir_name);
recover_solution(ret);
return ret;
}
std::set<std::string> validate_design_and_get_inputs(RTLIL::Module *module, const QbfSolveOptions &opt) {
bool found_input = false;
bool found_hole = false;
bool found_1bit_output = false;
bool found_assert_assume = false;
std::set<std::string> input_wires;
for (auto wire : module->wires()) {
if (wire->port_input) {
found_input = true;
input_wires.insert(wire->name.str());
}
if (wire->port_output && wire->width == 1)
found_1bit_output = true;
}
for (auto cell : module->cells()) {
if (cell->type == "$allconst")
found_input = true;
if (cell->type == "$anyconst")
found_hole = true;
if (cell->type.in("$assert", "$assume"))
found_assert_assume = true;
}
if (!found_input)
log_cmd_error("Can't perform QBF-SAT on a miter with no inputs!\n");
if (!found_hole)
log_cmd_error("Did not find any existentially-quantified variables. Use 'sat' instead.\n");
if (!found_1bit_output && !found_assert_assume)
log_cmd_error("Did not find any single-bit outputs or $assert/$assume cells. Is this a miter circuit?\n");
if (!found_assert_assume && !opt.assume_outputs)
log_cmd_error("Did not find any $assert/$assume cells. Single-bit outputs were found, but `-assume-outputs` was not specified.\n");
return input_wires;
}
QbfSolveOptions parse_args(const std::vector<std::string> &args) {
QbfSolveOptions opt;
for (opt.argidx = 1; opt.argidx < args.size(); opt.argidx++) {
if (args[opt.argidx] == "-nocleanup") {
opt.nocleanup = true;
continue;
}
else if (args[opt.argidx] == "-specialize") {
opt.specialize = true;
continue;
}
else if (args[opt.argidx] == "-assume-outputs") {
opt.assume_outputs = true;
continue;
}
else if (args[opt.argidx] == "-sat") {
opt.sat = true;
continue;
}
else if (args[opt.argidx] == "-unsat") {
opt.unsat = true;
continue;
}
else if (args[opt.argidx] == "-show-smtbmc") {
opt.show_smtbmc = true;
continue;
}
else if (args[opt.argidx] == "-dump-final-smt2") {
opt.dump_final_smt2 = true;
if (args.size() <= opt.argidx + 1)
log_cmd_error("smt2 file not specified.\n");
else
opt.dump_final_smt2_file = args[++opt.argidx];
continue;
}
else if (args[opt.argidx] == "-specialize-from-file") {
opt.specialize_from_file = true;
if (args.size() <= opt.argidx + 1)
log_cmd_error("solution file not specified.\n");
else
opt.specialize_soln_file = args[++opt.argidx];
continue;
}
else if (args[opt.argidx] == "-write-solution") {
opt.write_solution = true;
if (args.size() <= opt.argidx + 1)
log_cmd_error("solution file not specified.\n");
else
opt.write_soln_soln_file = args[++opt.argidx];
continue;
}
break;
}
return opt;
}
void print_proof_failed()
{
log("\n");
log(" ______ ___ ___ _ _ _ _ \n");
log(" (_____ \\ / __) / __) (_) | | | |\n");
log(" _____) )___ ___ ___ _| |__ _| |__ _____ _| | _____ __| | |\n");
log(" | ____/ ___) _ \\ / _ (_ __) (_ __|____ | | || ___ |/ _ |_|\n");
log(" | | | | | |_| | |_| || | | | / ___ | | || ____( (_| |_ \n");
log(" |_| |_| \\___/ \\___/ |_| |_| \\_____|_|\\_)_____)\\____|_|\n");
log("\n");
}
void print_qed()
{
log("\n");
log(" /$$$$$$ /$$$$$$$$ /$$$$$$$ \n");
log(" /$$__ $$ | $$_____/ | $$__ $$ \n");
log(" | $$ \\ $$ | $$ | $$ \\ $$ \n");
log(" | $$ | $$ | $$$$$ | $$ | $$ \n");
log(" | $$ | $$ | $$__/ | $$ | $$ \n");
log(" | $$/$$ $$ | $$ | $$ | $$ \n");
log(" | $$$$$$/ /$$| $$$$$$$$ /$$| $$$$$$$//$$\n");
log(" \\____ $$$|__/|________/|__/|_______/|__/\n");
log(" \\__/ \n");
log("\n");
}
struct QbfSatPass : public Pass {
QbfSatPass() : Pass("qbfsat", "solve a 2QBF-SAT problem in the circuit") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" qbfsat [options] [selection]\n");
log("\n");
log("This command solves a 2QBF-SAT problem defined over the currently selected module.\n");
log("Existentially-quantified variables are declared by assigning a wire \"$anyconst\".\n");
log("Universally-quantified variables may be explicitly declared by assigning a wire\n");
log("\"$allconst\", but module inputs will be treated as universally-quantified variables\n");
log("by default.\n");
log("\n");
log(" -nocleanup\n");
log(" Do not delete temporary files and directories. Useful for\n");
log(" debugging.\n");
log("\n");
log(" -dump-final-smt2 <file>\n");
log(" Pass the --dump-smt2 option to yosys-smtbmc.\n");
log("\n");
log(" -assume-outputs\n");
log(" Add an $assume cell for the conjunction of all one-bit module output wires.\n");
log("\n");
log(" -sat\n");
log(" Generate an error if the solver does not return \"sat\".\n");
log("\n");
log(" -unsat\n");
log(" Generate an error if the solver does not return \"unsat\".\n");
log("\n");
log(" -show-smtbmc\n");
log(" Print the output from yosys-smtbmc.\n");
log("\n");
log(" -specialize\n");
log(" Replace all \"$anyconst\" cells with constant values determined by the solver.\n");
log("\n");
log(" -specialize-from-file <solution file>\n");
log(" Do not run the solver, but instead only attempt to replace all \"$anyconst\"\n");
log(" cells in the current module with values provided by the specified file.\n");
log("\n");
log(" -write-solution <solution file>\n");
log(" Write the assignments discovered by the solver for all \"$anyconst\" cells\n");
log(" to the specified file.");
log("\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing QBFSAT pass (solving QBF-SAT problems in the circuit).\n");
QbfSolveOptions opt = parse_args(args);
extra_args(args, opt.argidx, design);
RTLIL::Module *module = nullptr;
for (auto mod : design->selected_modules()) {
if (module)
log_cmd_error("Only one module must be selected for the QBF-SAT pass! (selected: %s and %s)\n", log_id(module), log_id(mod));
module = mod;
}
if (module == nullptr)
log_cmd_error("Can't perform QBF-SAT on an empty selection!\n");
log_push();
if (!opt.specialize_from_file) {
//Save the design to restore after modiyfing the current module.
std::string module_name = module->name.str();
Pass::call(design, "design -push-copy");
//Replace input wires with wires assigned $allconst cells.
std::set<std::string> input_wires = validate_design_and_get_inputs(module, opt);
allconstify_inputs(module, input_wires);
if (opt.assume_outputs)
assume_miter_outputs(module);
QbfSolutionType ret = qbf_solve(module, opt);
Pass::call(design, "design -pop");
module = design->module(module_name);
if (ret.unknown)
log_warning("solver did not give an answer\n");
else if (ret.sat)
print_qed();
else
print_proof_failed();
if(!ret.unknown && ret.sat) {
if (opt.write_solution) {
write_solution(module, ret, opt.write_soln_soln_file);
}
if (opt.specialize) {
specialize(module, ret);
} else {
dump_model(module, ret);
}
if (opt.unsat)
log_cmd_error("expected problem to be UNSAT\n");
}
else if (!ret.unknown && !ret.sat && opt.sat)
log_cmd_error("expected problem to be SAT\n");
else if (ret.unknown && (opt.sat || opt.unsat))
log_cmd_error("expected problem to be %s\n", opt.sat? "SAT" : "UNSAT");
} else
specialize_from_file(module, opt.specialize_soln_file);
log_pop();
}
} QbfSatPass;
PRIVATE_NAMESPACE_END