yosys/frontends/ast/ast.cc

1632 lines
47 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* Copyright (C) 2018 Ruben Undheim <ruben.undheim@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* ---
*
* This is the AST frontend library.
*
* The AST frontend library is not a frontend on it's own but provides a
* generic abstract syntax tree (AST) abstraction for HDL code and can be
* used by HDL frontends. See "ast.h" for an overview of the API and the
* Verilog frontend for an usage example.
*
*/
#include "kernel/yosys.h"
#include "libs/sha1/sha1.h"
#include "ast.h"
YOSYS_NAMESPACE_BEGIN
using namespace AST;
using namespace AST_INTERNAL;
// instantiate global variables (public API)
namespace AST {
std::string current_filename;
void (*set_line_num)(int) = NULL;
int (*get_line_num)() = NULL;
}
// instantiate global variables (private API)
namespace AST_INTERNAL {
bool flag_dump_ast1, flag_dump_ast2, flag_no_dump_ptr, flag_dump_vlog1, flag_dump_vlog2, flag_dump_rtlil, flag_nolatches, flag_nomeminit;
bool flag_nomem2reg, flag_mem2reg, flag_noblackbox, flag_lib, flag_nowb, flag_noopt, flag_icells, flag_pwires, flag_autowire;
AstNode *current_ast, *current_ast_mod;
std::map<std::string, AstNode*> current_scope;
const dict<RTLIL::SigBit, RTLIL::SigBit> *genRTLIL_subst_ptr = NULL;
RTLIL::SigSpec ignoreThisSignalsInInitial;
AstNode *current_always, *current_top_block, *current_block, *current_block_child;
AstModule *current_module;
bool current_always_clocked;
}
// convert node types to string
std::string AST::type2str(AstNodeType type)
{
switch (type)
{
#define X(_item) case _item: return #_item;
X(AST_NONE)
X(AST_DESIGN)
X(AST_MODULE)
X(AST_TASK)
X(AST_FUNCTION)
X(AST_DPI_FUNCTION)
X(AST_WIRE)
X(AST_MEMORY)
X(AST_AUTOWIRE)
X(AST_PARAMETER)
X(AST_LOCALPARAM)
X(AST_DEFPARAM)
X(AST_PARASET)
X(AST_ARGUMENT)
X(AST_RANGE)
X(AST_MULTIRANGE)
X(AST_CONSTANT)
X(AST_REALVALUE)
X(AST_CELLTYPE)
X(AST_IDENTIFIER)
X(AST_PREFIX)
X(AST_ASSERT)
X(AST_ASSUME)
X(AST_LIVE)
X(AST_FAIR)
X(AST_COVER)
X(AST_FCALL)
X(AST_TO_BITS)
X(AST_TO_SIGNED)
X(AST_TO_UNSIGNED)
X(AST_CONCAT)
X(AST_REPLICATE)
X(AST_BIT_NOT)
X(AST_BIT_AND)
X(AST_BIT_OR)
X(AST_BIT_XOR)
X(AST_BIT_XNOR)
X(AST_REDUCE_AND)
X(AST_REDUCE_OR)
X(AST_REDUCE_XOR)
X(AST_REDUCE_XNOR)
X(AST_REDUCE_BOOL)
X(AST_SHIFT_LEFT)
X(AST_SHIFT_RIGHT)
X(AST_SHIFT_SLEFT)
X(AST_SHIFT_SRIGHT)
X(AST_LT)
X(AST_LE)
X(AST_EQ)
X(AST_NE)
X(AST_EQX)
X(AST_NEX)
X(AST_GE)
X(AST_GT)
X(AST_ADD)
X(AST_SUB)
X(AST_MUL)
X(AST_DIV)
X(AST_MOD)
X(AST_POW)
X(AST_POS)
X(AST_NEG)
X(AST_LOGIC_AND)
X(AST_LOGIC_OR)
X(AST_LOGIC_NOT)
X(AST_TERNARY)
X(AST_MEMRD)
X(AST_MEMWR)
X(AST_MEMINIT)
X(AST_TCALL)
X(AST_ASSIGN)
X(AST_CELL)
X(AST_PRIMITIVE)
X(AST_CELLARRAY)
X(AST_ALWAYS)
X(AST_INITIAL)
X(AST_BLOCK)
X(AST_ASSIGN_EQ)
X(AST_ASSIGN_LE)
X(AST_CASE)
X(AST_COND)
X(AST_CONDX)
X(AST_CONDZ)
X(AST_DEFAULT)
X(AST_FOR)
X(AST_WHILE)
X(AST_REPEAT)
X(AST_GENVAR)
X(AST_GENFOR)
X(AST_GENIF)
X(AST_GENCASE)
X(AST_GENBLOCK)
X(AST_TECALL)
X(AST_POSEDGE)
X(AST_NEGEDGE)
X(AST_EDGE)
X(AST_INTERFACE)
X(AST_INTERFACEPORT)
X(AST_INTERFACEPORTTYPE)
X(AST_MODPORT)
X(AST_MODPORTMEMBER)
X(AST_PACKAGE)
X(AST_WIRETYPE)
X(AST_TYPEDEF)
#undef X
default:
log_abort();
}
}
// check if attribute exists and has non-zero value
bool AstNode::get_bool_attribute(RTLIL::IdString id)
{
if (attributes.count(id) == 0)
return false;
AstNode *attr = attributes.at(id);
if (attr->type != AST_CONSTANT)
log_file_error(attr->filename, attr->linenum, "Attribute `%s' with non-constant value!\n", id.c_str());
return attr->integer != 0;
}
// create new node (AstNode constructor)
// (the optional child arguments make it easier to create AST trees)
AstNode::AstNode(AstNodeType type, AstNode *child1, AstNode *child2, AstNode *child3)
{
static unsigned int hashidx_count = 123456789;
hashidx_count = mkhash_xorshift(hashidx_count);
hashidx_ = hashidx_count;
this->type = type;
filename = current_filename;
linenum = get_line_num();
is_input = false;
is_output = false;
is_reg = false;
is_logic = false;
is_signed = false;
is_string = false;
is_wand = false;
is_wor = false;
is_unsized = false;
was_checked = false;
range_valid = false;
range_swapped = false;
is_custom_type = false;
port_id = 0;
range_left = -1;
range_right = 0;
integer = 0;
realvalue = 0;
id2ast = NULL;
basic_prep = false;
if (child1)
children.push_back(child1);
if (child2)
children.push_back(child2);
if (child3)
children.push_back(child3);
}
// create a (deep recursive) copy of a node
AstNode *AstNode::clone() const
{
AstNode *that = new AstNode;
*that = *this;
for (auto &it : that->children)
it = it->clone();
for (auto &it : that->attributes)
it.second = it.second->clone();
return that;
}
// create a (deep recursive) copy of a node use 'other' as target root node
void AstNode::cloneInto(AstNode *other) const
{
AstNode *tmp = clone();
other->delete_children();
*other = *tmp;
tmp->children.clear();
tmp->attributes.clear();
delete tmp;
}
// delete all children in this node
void AstNode::delete_children()
{
for (auto &it : children)
delete it;
children.clear();
for (auto &it : attributes)
delete it.second;
attributes.clear();
}
// AstNode destructor
AstNode::~AstNode()
{
delete_children();
}
// create a nice text representation of the node
// (traverse tree by recursion, use 'other' pointer for diffing two AST trees)
void AstNode::dumpAst(FILE *f, std::string indent) const
{
if (f == NULL) {
for (auto f : log_files)
dumpAst(f, indent);
return;
}
std::string type_name = type2str(type);
fprintf(f, "%s%s <%s:%d>", indent.c_str(), type_name.c_str(), filename.c_str(), linenum);
if (!flag_no_dump_ptr) {
if (id2ast)
fprintf(f, " [%p -> %p]", this, id2ast);
else
fprintf(f, " [%p]", this);
}
if (!str.empty())
fprintf(f, " str='%s'", str.c_str());
if (!bits.empty()) {
fprintf(f, " bits='");
for (size_t i = bits.size(); i > 0; i--)
fprintf(f, "%c", bits[i-1] == State::S0 ? '0' :
bits[i-1] == State::S1 ? '1' :
bits[i-1] == RTLIL::Sx ? 'x' :
bits[i-1] == RTLIL::Sz ? 'z' : '?');
fprintf(f, "'(%d)", GetSize(bits));
}
if (is_input)
fprintf(f, " input");
if (is_output)
fprintf(f, " output");
if (is_logic)
fprintf(f, " logic");
if (is_reg) // this is an AST dump, not Verilog - if we see "logic reg" that's fine.
fprintf(f, " reg");
if (is_signed)
fprintf(f, " signed");
if (port_id > 0)
fprintf(f, " port=%d", port_id);
if (range_valid || range_left != -1 || range_right != 0)
fprintf(f, " %srange=[%d:%d]%s", range_swapped ? "swapped_" : "", range_left, range_right, range_valid ? "" : "!");
if (integer != 0)
fprintf(f, " int=%u", (int)integer);
if (realvalue != 0)
fprintf(f, " real=%e", realvalue);
if (!multirange_dimensions.empty()) {
fprintf(f, " multirange=[");
for (int v : multirange_dimensions)
fprintf(f, " %d", v);
fprintf(f, " ]");
}
fprintf(f, "\n");
for (auto &it : attributes) {
fprintf(f, "%s ATTR %s:\n", indent.c_str(), it.first.c_str());
it.second->dumpAst(f, indent + " ");
}
for (size_t i = 0; i < children.size(); i++)
children[i]->dumpAst(f, indent + " ");
fflush(f);
}
// helper function for AstNode::dumpVlog()
static std::string id2vl(std::string txt)
{
if (txt.size() > 1 && txt[0] == '\\')
txt = txt.substr(1);
for (size_t i = 0; i < txt.size(); i++) {
if ('A' <= txt[i] && txt[i] <= 'Z') continue;
if ('a' <= txt[i] && txt[i] <= 'z') continue;
if ('0' <= txt[i] && txt[i] <= '9') continue;
if (txt[i] == '_') continue;
txt = "\\" + txt + " ";
break;
}
return txt;
}
// dump AST node as Verilog pseudo-code
void AstNode::dumpVlog(FILE *f, std::string indent) const
{
bool first = true;
std::string txt;
std::vector<AstNode*> rem_children1, rem_children2;
if (f == NULL) {
for (auto f : log_files)
dumpVlog(f, indent);
return;
}
for (auto &it : attributes) {
fprintf(f, "%s" "(* %s = ", indent.c_str(), id2vl(it.first.str()).c_str());
it.second->dumpVlog(f, "");
fprintf(f, " *)%s", indent.empty() ? "" : "\n");
}
switch (type)
{
case AST_MODULE:
fprintf(f, "%s" "module %s(", indent.c_str(), id2vl(str).c_str());
for (auto child : children)
if (child->type == AST_WIRE && (child->is_input || child->is_output)) {
fprintf(f, "%s%s", first ? "" : ", ", id2vl(child->str).c_str());
first = false;
}
fprintf(f, ");\n");
for (auto child : children)
if (child->type == AST_PARAMETER || child->type == AST_LOCALPARAM || child->type == AST_DEFPARAM)
child->dumpVlog(f, indent + " ");
else
rem_children1.push_back(child);
for (auto child : rem_children1)
if (child->type == AST_WIRE || child->type == AST_AUTOWIRE || child->type == AST_MEMORY)
child->dumpVlog(f, indent + " ");
else
rem_children2.push_back(child);
rem_children1.clear();
for (auto child : rem_children2)
if (child->type == AST_TASK || child->type == AST_FUNCTION)
child->dumpVlog(f, indent + " ");
else
rem_children1.push_back(child);
rem_children2.clear();
for (auto child : rem_children1)
child->dumpVlog(f, indent + " ");
rem_children1.clear();
fprintf(f, "%s" "endmodule\n", indent.c_str());
break;
case AST_WIRE:
if (is_input && is_output)
fprintf(f, "%s" "inout", indent.c_str());
else if (is_input)
fprintf(f, "%s" "input", indent.c_str());
else if (is_output)
fprintf(f, "%s" "output", indent.c_str());
else if (!is_reg)
fprintf(f, "%s" "wire", indent.c_str());
if (is_reg)
fprintf(f, "%s" "reg", (is_input || is_output) ? " " : indent.c_str());
if (is_signed)
fprintf(f, " signed");
for (auto child : children) {
fprintf(f, " ");
child->dumpVlog(f, "");
}
fprintf(f, " %s", id2vl(str).c_str());
fprintf(f, ";\n");
break;
case AST_MEMORY:
fprintf(f, "%s" "memory", indent.c_str());
if (is_signed)
fprintf(f, " signed");
for (auto child : children) {
fprintf(f, " ");
child->dumpVlog(f, "");
if (first)
fprintf(f, " %s", id2vl(str).c_str());
first = false;
}
fprintf(f, ";\n");
break;
case AST_RANGE:
if (range_valid) {
if (range_swapped)
fprintf(f, "[%d:%d]", range_right, range_left);
else
fprintf(f, "[%d:%d]", range_left, range_right);
} else {
for (auto child : children) {
fprintf(f, "%c", first ? '[' : ':');
child->dumpVlog(f, "");
first = false;
}
fprintf(f, "]");
}
break;
case AST_ALWAYS:
fprintf(f, "%s" "always @", indent.c_str());
for (auto child : children) {
if (child->type != AST_POSEDGE && child->type != AST_NEGEDGE && child->type != AST_EDGE)
continue;
fprintf(f, first ? "(" : ", ");
child->dumpVlog(f, "");
first = false;
}
fprintf(f, first ? "*\n" : ")\n");
for (auto child : children) {
if (child->type != AST_POSEDGE && child->type != AST_NEGEDGE && child->type != AST_EDGE)
child->dumpVlog(f, indent + " ");
}
break;
case AST_INITIAL:
fprintf(f, "%s" "initial\n", indent.c_str());
for (auto child : children) {
if (child->type != AST_POSEDGE && child->type != AST_NEGEDGE && child->type != AST_EDGE)
child->dumpVlog(f, indent + " ");
}
break;
case AST_POSEDGE:
case AST_NEGEDGE:
case AST_EDGE:
if (type == AST_POSEDGE)
fprintf(f, "posedge ");
if (type == AST_NEGEDGE)
fprintf(f, "negedge ");
for (auto child : children)
child->dumpVlog(f, "");
break;
case AST_IDENTIFIER:
fprintf(f, "%s", id2vl(str).c_str());
for (auto child : children)
child->dumpVlog(f, "");
break;
case AST_CONSTANT:
if (!str.empty())
fprintf(f, "\"%s\"", str.c_str());
else if (bits.size() == 32)
fprintf(f, "%d", RTLIL::Const(bits).as_int());
else
fprintf(f, "%d'b %s", GetSize(bits), RTLIL::Const(bits).as_string().c_str());
break;
case AST_REALVALUE:
fprintf(f, "%e", realvalue);
break;
case AST_BLOCK:
if (children.size() == 1) {
children[0]->dumpVlog(f, indent);
} else {
fprintf(f, "%s" "begin\n", indent.c_str());
for (auto child : children)
child->dumpVlog(f, indent + " ");
fprintf(f, "%s" "end\n", indent.c_str());
}
break;
case AST_CASE:
if (!children.empty() && children[0]->type == AST_CONDX)
fprintf(f, "%s" "casex (", indent.c_str());
else if (!children.empty() && children[0]->type == AST_CONDZ)
fprintf(f, "%s" "casez (", indent.c_str());
else
fprintf(f, "%s" "case (", indent.c_str());
children[0]->dumpVlog(f, "");
fprintf(f, ")\n");
for (size_t i = 1; i < children.size(); i++) {
AstNode *child = children[i];
child->dumpVlog(f, indent + " ");
}
fprintf(f, "%s" "endcase\n", indent.c_str());
break;
case AST_COND:
case AST_CONDX:
case AST_CONDZ:
for (auto child : children) {
if (child->type == AST_BLOCK) {
fprintf(f, ":\n");
child->dumpVlog(f, indent + " ");
first = true;
} else {
fprintf(f, "%s", first ? indent.c_str() : ", ");
if (child->type == AST_DEFAULT)
fprintf(f, "default");
else
child->dumpVlog(f, "");
first = false;
}
}
break;
case AST_ASSIGN:
fprintf(f, "%sassign ", indent.c_str());
children[0]->dumpVlog(f, "");
fprintf(f, " = ");
children[1]->dumpVlog(f, "");
fprintf(f, ";\n");
break;
case AST_ASSIGN_EQ:
case AST_ASSIGN_LE:
fprintf(f, "%s", indent.c_str());
children[0]->dumpVlog(f, "");
fprintf(f, " %s ", type == AST_ASSIGN_EQ ? "=" : "<=");
children[1]->dumpVlog(f, "");
fprintf(f, ";\n");
break;
case AST_CONCAT:
fprintf(f, "{");
for (int i = GetSize(children)-1; i >= 0; i--) {
auto child = children[i];
if (!first)
fprintf(f, ", ");
child->dumpVlog(f, "");
first = false;
}
fprintf(f, "}");
break;
case AST_REPLICATE:
fprintf(f, "{");
children[0]->dumpVlog(f, "");
fprintf(f, "{");
children[1]->dumpVlog(f, "");
fprintf(f, "}}");
break;
if (0) { case AST_BIT_NOT: txt = "~"; }
if (0) { case AST_REDUCE_AND: txt = "&"; }
if (0) { case AST_REDUCE_OR: txt = "|"; }
if (0) { case AST_REDUCE_XOR: txt = "^"; }
if (0) { case AST_REDUCE_XNOR: txt = "~^"; }
if (0) { case AST_REDUCE_BOOL: txt = "|"; }
if (0) { case AST_POS: txt = "+"; }
if (0) { case AST_NEG: txt = "-"; }
if (0) { case AST_LOGIC_NOT: txt = "!"; }
fprintf(f, "%s(", txt.c_str());
children[0]->dumpVlog(f, "");
fprintf(f, ")");
break;
if (0) { case AST_BIT_AND: txt = "&"; }
if (0) { case AST_BIT_OR: txt = "|"; }
if (0) { case AST_BIT_XOR: txt = "^"; }
if (0) { case AST_BIT_XNOR: txt = "~^"; }
if (0) { case AST_SHIFT_LEFT: txt = "<<"; }
if (0) { case AST_SHIFT_RIGHT: txt = ">>"; }
if (0) { case AST_SHIFT_SLEFT: txt = "<<<"; }
if (0) { case AST_SHIFT_SRIGHT: txt = ">>>"; }
if (0) { case AST_LT: txt = "<"; }
if (0) { case AST_LE: txt = "<="; }
if (0) { case AST_EQ: txt = "=="; }
if (0) { case AST_NE: txt = "!="; }
if (0) { case AST_EQX: txt = "==="; }
if (0) { case AST_NEX: txt = "!=="; }
if (0) { case AST_GE: txt = ">="; }
if (0) { case AST_GT: txt = ">"; }
if (0) { case AST_ADD: txt = "+"; }
if (0) { case AST_SUB: txt = "-"; }
if (0) { case AST_MUL: txt = "*"; }
if (0) { case AST_DIV: txt = "/"; }
if (0) { case AST_MOD: txt = "%"; }
if (0) { case AST_POW: txt = "**"; }
if (0) { case AST_LOGIC_AND: txt = "&&"; }
if (0) { case AST_LOGIC_OR: txt = "||"; }
fprintf(f, "(");
children[0]->dumpVlog(f, "");
fprintf(f, ")%s(", txt.c_str());
children[1]->dumpVlog(f, "");
fprintf(f, ")");
break;
case AST_TERNARY:
fprintf(f, "(");
children[0]->dumpVlog(f, "");
fprintf(f, ") ? (");
children[1]->dumpVlog(f, "");
fprintf(f, ") : (");
children[2]->dumpVlog(f, "");
fprintf(f, ")");
break;
default:
std::string type_name = type2str(type);
fprintf(f, "%s" "/** %s **/%s", indent.c_str(), type_name.c_str(), indent.empty() ? "" : "\n");
// dumpAst(f, indent, NULL);
}
fflush(f);
}
// check if two AST nodes are identical
bool AstNode::operator==(const AstNode &other) const
{
if (type != other.type)
return false;
if (children.size() != other.children.size())
return false;
if (str != other.str)
return false;
if (bits != other.bits)
return false;
if (is_input != other.is_input)
return false;
if (is_output != other.is_output)
return false;
if (is_logic != other.is_logic)
return false;
if (is_reg != other.is_reg)
return false;
if (is_signed != other.is_signed)
return false;
if (is_string != other.is_string)
return false;
if (range_valid != other.range_valid)
return false;
if (range_swapped != other.range_swapped)
return false;
if (port_id != other.port_id)
return false;
if (range_left != other.range_left)
return false;
if (range_right != other.range_right)
return false;
if (integer != other.integer)
return false;
for (size_t i = 0; i < children.size(); i++)
if (*children[i] != *other.children[i])
return false;
return true;
}
// check if two AST nodes are not identical
bool AstNode::operator!=(const AstNode &other) const
{
return !(*this == other);
}
// check if this AST contains the given node
bool AstNode::contains(const AstNode *other) const
{
if (this == other)
return true;
for (auto child : children)
if (child->contains(other))
return true;
return false;
}
// create an AST node for a constant (using a 32 bit int as value)
AstNode *AstNode::mkconst_int(uint32_t v, bool is_signed, int width)
{
AstNode *node = new AstNode(AST_CONSTANT);
node->integer = v;
node->is_signed = is_signed;
for (int i = 0; i < width; i++) {
node->bits.push_back((v & 1) ? State::S1 : State::S0);
v = v >> 1;
}
node->range_valid = true;
node->range_left = width-1;
node->range_right = 0;
return node;
}
// create an AST node for a constant (using a bit vector as value)
AstNode *AstNode::mkconst_bits(const std::vector<RTLIL::State> &v, bool is_signed, bool is_unsized)
{
AstNode *node = new AstNode(AST_CONSTANT);
node->is_signed = is_signed;
node->bits = v;
for (size_t i = 0; i < 32; i++) {
if (i < node->bits.size())
node->integer |= (node->bits[i] == State::S1) << i;
else if (is_signed && !node->bits.empty())
node->integer |= (node->bits.back() == State::S1) << i;
}
node->range_valid = true;
node->range_left = node->bits.size()-1;
node->range_right = 0;
node->is_unsized = is_unsized;
return node;
}
AstNode *AstNode::mkconst_bits(const std::vector<RTLIL::State> &v, bool is_signed)
{
return mkconst_bits(v, is_signed, false);
}
// create an AST node for a constant (using a string in bit vector form as value)
AstNode *AstNode::mkconst_str(const std::vector<RTLIL::State> &v)
{
AstNode *node = mkconst_str(RTLIL::Const(v).decode_string());
while (GetSize(node->bits) < GetSize(v))
node->bits.push_back(RTLIL::State::S0);
log_assert(node->bits == v);
return node;
}
// create an AST node for a constant (using a string as value)
AstNode *AstNode::mkconst_str(const std::string &str)
{
std::vector<RTLIL::State> data;
data.reserve(str.size() * 8);
for (size_t i = 0; i < str.size(); i++) {
unsigned char ch = str[str.size() - i - 1];
for (int j = 0; j < 8; j++) {
data.push_back((ch & 1) ? State::S1 : State::S0);
ch = ch >> 1;
}
}
AstNode *node = AstNode::mkconst_bits(data, false);
node->is_string = true;
node->str = str;
return node;
}
bool AstNode::bits_only_01() const
{
for (auto bit : bits)
if (bit != State::S0 && bit != State::S1)
return false;
return true;
}
RTLIL::Const AstNode::bitsAsUnsizedConst(int width)
{
RTLIL::State extbit = bits.back();
while (width > int(bits.size()))
bits.push_back(extbit);
return RTLIL::Const(bits);
}
RTLIL::Const AstNode::bitsAsConst(int width, bool is_signed)
{
std::vector<RTLIL::State> bits = this->bits;
if (width >= 0 && width < int(bits.size()))
bits.resize(width);
if (width >= 0 && width > int(bits.size())) {
RTLIL::State extbit = RTLIL::State::S0;
if (is_signed && !bits.empty())
extbit = bits.back();
while (width > int(bits.size()))
bits.push_back(extbit);
}
return RTLIL::Const(bits);
}
RTLIL::Const AstNode::bitsAsConst(int width)
{
return bitsAsConst(width, is_signed);
}
RTLIL::Const AstNode::asAttrConst()
{
log_assert(type == AST_CONSTANT);
RTLIL::Const val;
val.bits = bits;
if (is_string) {
val.flags |= RTLIL::CONST_FLAG_STRING;
log_assert(val.decode_string() == str);
}
return val;
}
RTLIL::Const AstNode::asParaConst()
{
RTLIL::Const val = asAttrConst();
if (is_signed)
val.flags |= RTLIL::CONST_FLAG_SIGNED;
return val;
}
bool AstNode::asBool() const
{
log_assert(type == AST_CONSTANT);
for (auto &bit : bits)
if (bit == RTLIL::State::S1)
return true;
return false;
}
int AstNode::isConst() const
{
if (type == AST_CONSTANT)
return 1;
if (type == AST_REALVALUE)
return 2;
return 0;
}
uint64_t AstNode::asInt(bool is_signed)
{
if (type == AST_CONSTANT)
{
RTLIL::Const v = bitsAsConst(64, is_signed);
uint64_t ret = 0;
for (int i = 0; i < 64; i++)
if (v.bits.at(i) == RTLIL::State::S1)
ret |= uint64_t(1) << i;
return ret;
}
if (type == AST_REALVALUE)
return uint64_t(realvalue);
log_abort();
}
double AstNode::asReal(bool is_signed)
{
if (type == AST_CONSTANT)
{
RTLIL::Const val(bits);
bool is_negative = is_signed && !val.bits.empty() && val.bits.back() == RTLIL::State::S1;
if (is_negative)
val = const_neg(val, val, false, false, val.bits.size());
double v = 0;
for (size_t i = 0; i < val.bits.size(); i++)
// IEEE Std 1800-2012 Par 6.12.2: Individual bits that are x or z in
// the net or the variable shall be treated as zero upon conversion.
if (val.bits.at(i) == RTLIL::State::S1)
v += exp2(i);
if (is_negative)
v *= -1;
return v;
}
if (type == AST_REALVALUE)
return realvalue;
log_abort();
}
RTLIL::Const AstNode::realAsConst(int width)
{
double v = round(realvalue);
RTLIL::Const result;
#ifdef EMSCRIPTEN
if (!isfinite(v)) {
#else
if (!std::isfinite(v)) {
#endif
result.bits = std::vector<RTLIL::State>(width, RTLIL::State::Sx);
} else {
bool is_negative = v < 0;
if (is_negative)
v *= -1;
for (int i = 0; i < width; i++, v /= 2)
result.bits.push_back((fmod(floor(v), 2) != 0) ? RTLIL::State::S1 : RTLIL::State::S0);
if (is_negative)
result = const_neg(result, result, false, false, result.bits.size());
}
return result;
}
// create a new AstModule from an AST_MODULE AST node
static AstModule* process_module(AstNode *ast, bool defer, AstNode *original_ast = NULL)
{
log_assert(ast->type == AST_MODULE || ast->type == AST_INTERFACE);
if (defer)
log("Storing AST representation for module `%s'.\n", ast->str.c_str());
else
log("Generating RTLIL representation for module `%s'.\n", ast->str.c_str());
current_module = new AstModule;
current_module->ast = NULL;
current_module->name = ast->str;
current_module->attributes["\\src"] = stringf("%s:%d", ast->filename.c_str(), ast->linenum);
current_module->set_bool_attribute("\\cells_not_processed");
current_ast_mod = ast;
AstNode *ast_before_simplify;
if (original_ast != NULL)
ast_before_simplify = original_ast;
else
ast_before_simplify = ast->clone();
if (flag_dump_ast1) {
log("Dumping AST before simplification:\n");
ast->dumpAst(NULL, " ");
log("--- END OF AST DUMP ---\n");
}
if (flag_dump_vlog1) {
log("Dumping Verilog AST before simplification:\n");
ast->dumpVlog(NULL, " ");
log("--- END OF AST DUMP ---\n");
}
if (!defer)
{
bool blackbox_module = flag_lib;
if (!blackbox_module && !flag_noblackbox) {
blackbox_module = true;
for (auto child : ast->children) {
if (child->type == AST_WIRE && (child->is_input || child->is_output))
continue;
if (child->type == AST_PARAMETER || child->type == AST_LOCALPARAM)
continue;
if (child->type == AST_CELL && child->children.size() > 0 && child->children[0]->type == AST_CELLTYPE &&
(child->children[0]->str == "$specify2" || child->children[0]->str == "$specify3" || child->children[0]->str == "$specrule"))
continue;
blackbox_module = false;
break;
}
}
while (ast->simplify(!flag_noopt, false, false, 0, -1, false, false)) { }
if (flag_dump_ast2) {
log("Dumping AST after simplification:\n");
ast->dumpAst(NULL, " ");
log("--- END OF AST DUMP ---\n");
}
if (flag_dump_vlog2) {
log("Dumping Verilog AST after simplification:\n");
ast->dumpVlog(NULL, " ");
log("--- END OF AST DUMP ---\n");
}
if (flag_nowb && ast->attributes.count("\\whitebox")) {
delete ast->attributes.at("\\whitebox");
ast->attributes.erase("\\whitebox");
}
if (ast->attributes.count("\\lib_whitebox")) {
if (!flag_lib || flag_nowb) {
delete ast->attributes.at("\\lib_whitebox");
ast->attributes.erase("\\lib_whitebox");
} else {
if (ast->attributes.count("\\whitebox")) {
delete ast->attributes.at("\\whitebox");
ast->attributes.erase("\\whitebox");
}
AstNode *n = ast->attributes.at("\\lib_whitebox");
ast->attributes["\\whitebox"] = n;
ast->attributes.erase("\\lib_whitebox");
}
}
if (!blackbox_module && ast->attributes.count("\\blackbox")) {
AstNode *n = ast->attributes.at("\\blackbox");
if (n->type != AST_CONSTANT)
log_file_error(ast->filename, ast->linenum, "Got blackbox attribute with non-constant value!\n");
blackbox_module = n->asBool();
}
if (blackbox_module && ast->attributes.count("\\whitebox")) {
AstNode *n = ast->attributes.at("\\whitebox");
if (n->type != AST_CONSTANT)
log_file_error(ast->filename, ast->linenum, "Got whitebox attribute with non-constant value!\n");
blackbox_module = !n->asBool();
}
if (ast->attributes.count("\\noblackbox")) {
if (blackbox_module) {
AstNode *n = ast->attributes.at("\\noblackbox");
if (n->type != AST_CONSTANT)
log_file_error(ast->filename, ast->linenum, "Got noblackbox attribute with non-constant value!\n");
blackbox_module = !n->asBool();
}
delete ast->attributes.at("\\noblackbox");
ast->attributes.erase("\\noblackbox");
}
if (blackbox_module)
{
if (ast->attributes.count("\\whitebox")) {
delete ast->attributes.at("\\whitebox");
ast->attributes.erase("\\whitebox");
}
if (ast->attributes.count("\\lib_whitebox")) {
delete ast->attributes.at("\\lib_whitebox");
ast->attributes.erase("\\lib_whitebox");
}
std::vector<AstNode*> new_children;
for (auto child : ast->children) {
if (child->type == AST_WIRE && (child->is_input || child->is_output)) {
new_children.push_back(child);
} else if (child->type == AST_PARAMETER) {
child->delete_children();
child->children.push_back(AstNode::mkconst_int(0, false, 0));
new_children.push_back(child);
} else if (child->type == AST_CELL && child->children.size() > 0 && child->children[0]->type == AST_CELLTYPE &&
(child->children[0]->str == "$specify2" || child->children[0]->str == "$specify3" || child->children[0]->str == "$specrule")) {
new_children.push_back(child);
} else {
delete child;
}
}
ast->children.swap(new_children);
if (ast->attributes.count("\\blackbox") == 0) {
ast->attributes["\\blackbox"] = AstNode::mkconst_int(1, false);
}
}
ignoreThisSignalsInInitial = RTLIL::SigSpec();
for (auto &attr : ast->attributes) {
if (attr.second->type != AST_CONSTANT)
log_file_error(ast->filename, ast->linenum, "Attribute `%s' with non-constant value!\n", attr.first.c_str());
current_module->attributes[attr.first] = attr.second->asAttrConst();
}
for (size_t i = 0; i < ast->children.size(); i++) {
AstNode *node = ast->children[i];
if (node->type == AST_WIRE || node->type == AST_MEMORY)
node->genRTLIL();
}
for (size_t i = 0; i < ast->children.size(); i++) {
AstNode *node = ast->children[i];
if (node->type != AST_WIRE && node->type != AST_MEMORY && node->type != AST_INITIAL)
node->genRTLIL();
}
ignoreThisSignalsInInitial.sort_and_unify();
for (size_t i = 0; i < ast->children.size(); i++) {
AstNode *node = ast->children[i];
if (node->type == AST_INITIAL)
node->genRTLIL();
}
ignoreThisSignalsInInitial = RTLIL::SigSpec();
}
else {
for (auto &attr : ast->attributes) {
if (attr.second->type != AST_CONSTANT)
continue;
current_module->attributes[attr.first] = attr.second->asAttrConst();
}
}
if (ast->type == AST_INTERFACE)
current_module->set_bool_attribute("\\is_interface");
current_module->ast = ast_before_simplify;
current_module->nolatches = flag_nolatches;
current_module->nomeminit = flag_nomeminit;
current_module->nomem2reg = flag_nomem2reg;
current_module->mem2reg = flag_mem2reg;
current_module->noblackbox = flag_noblackbox;
current_module->lib = flag_lib;
current_module->nowb = flag_nowb;
current_module->noopt = flag_noopt;
current_module->icells = flag_icells;
current_module->pwires = flag_pwires;
current_module->autowire = flag_autowire;
current_module->fixup_ports();
if (flag_dump_rtlil) {
log("Dumping generated RTLIL:\n");
log_module(current_module);
log("--- END OF RTLIL DUMP ---\n");
}
return current_module;
}
// create AstModule instances for all modules in the AST tree and add them to 'design'
void AST::process(RTLIL::Design *design, AstNode *ast, bool dump_ast1, bool dump_ast2, bool no_dump_ptr, bool dump_vlog1, bool dump_vlog2, bool dump_rtlil,
bool nolatches, bool nomeminit, bool nomem2reg, bool mem2reg, bool noblackbox, bool lib, bool nowb, bool noopt, bool icells, bool pwires, bool nooverwrite, bool overwrite, bool defer, bool autowire)
{
current_ast = ast;
flag_dump_ast1 = dump_ast1;
flag_dump_ast2 = dump_ast2;
flag_no_dump_ptr = no_dump_ptr;
flag_dump_vlog1 = dump_vlog1;
flag_dump_vlog2 = dump_vlog2;
flag_dump_rtlil = dump_rtlil;
flag_nolatches = nolatches;
flag_nomeminit = nomeminit;
flag_nomem2reg = nomem2reg;
flag_mem2reg = mem2reg;
flag_noblackbox = noblackbox;
flag_lib = lib;
flag_nowb = nowb;
flag_noopt = noopt;
flag_icells = icells;
flag_pwires = pwires;
flag_autowire = autowire;
log_assert(current_ast->type == AST_DESIGN);
for (auto it = current_ast->children.begin(); it != current_ast->children.end(); it++)
{
if ((*it)->type == AST_MODULE || (*it)->type == AST_INTERFACE)
{
for (auto n : design->verilog_globals)
(*it)->children.push_back(n->clone());
for (auto n : design->verilog_packages){
for (auto o : n->children) {
AstNode *cloned_node = o->clone();
cloned_node->str = n->str + std::string("::") + cloned_node->str.substr(1);
(*it)->children.push_back(cloned_node);
}
}
if (flag_icells && (*it)->str.compare(0, 2, "\\$") == 0)
(*it)->str = (*it)->str.substr(1);
if (defer)
(*it)->str = "$abstract" + (*it)->str;
if (design->has((*it)->str)) {
RTLIL::Module *existing_mod = design->module((*it)->str);
if (!nooverwrite && !overwrite && !existing_mod->get_blackbox_attribute()) {
log_file_error((*it)->filename, (*it)->linenum, "Re-definition of module `%s'!\n", (*it)->str.c_str());
} else if (nooverwrite) {
log("Ignoring re-definition of module `%s' at %s:%d.\n",
(*it)->str.c_str(), (*it)->filename.c_str(), (*it)->linenum);
continue;
} else {
log("Replacing existing%s module `%s' at %s:%d.\n",
existing_mod->get_bool_attribute("\\blackbox") ? " blackbox" : "",
(*it)->str.c_str(), (*it)->filename.c_str(), (*it)->linenum);
design->remove(existing_mod);
}
}
design->add(process_module(*it, defer));
}
else if ((*it)->type == AST_PACKAGE)
design->verilog_packages.push_back((*it)->clone());
else
design->verilog_globals.push_back((*it)->clone());
}
}
// AstModule destructor
AstModule::~AstModule()
{
if (ast != NULL)
delete ast;
}
// An interface port with modport is specified like this:
// <interface_name>.<modport_name>
// This function splits the interface_name from the modport_name, and fails if it is not a valid combination
std::pair<std::string,std::string> AST::split_modport_from_type(std::string name_type)
{
std::string interface_type = "";
std::string interface_modport = "";
size_t ndots = std::count(name_type.begin(), name_type.end(), '.');
// Separate the interface instance name from any modports:
if (ndots == 0) { // Does not have modport
interface_type = name_type;
}
else {
std::stringstream name_type_stream(name_type);
std::string segment;
std::vector<std::string> seglist;
while(std::getline(name_type_stream, segment, '.')) {
seglist.push_back(segment);
}
if (ndots == 1) { // Has modport
interface_type = seglist[0];
interface_modport = seglist[1];
}
else { // Erroneous port type
log_error("More than two '.' in signal port type (%s)\n", name_type.c_str());
}
}
return std::pair<std::string,std::string>(interface_type, interface_modport);
}
AstNode * AST::find_modport(AstNode *intf, std::string name)
{
for (auto &ch : intf->children)
if (ch->type == AST_MODPORT)
if (ch->str == name) // Modport found
return ch;
return NULL;
}
// Iterate over all wires in an interface and add them as wires in the AST module:
void AST::explode_interface_port(AstNode *module_ast, RTLIL::Module * intfmodule, std::string intfname, AstNode *modport)
{
for (auto &wire_it : intfmodule->wires_){
AstNode *wire = new AstNode(AST_WIRE, new AstNode(AST_RANGE, AstNode::mkconst_int(wire_it.second->width -1, true), AstNode::mkconst_int(0, true)));
std::string origname = log_id(wire_it.first);
std::string newname = intfname + "." + origname;
wire->str = newname;
if (modport != NULL) {
bool found_in_modport = false;
// Search for the current wire in the wire list for the current modport
for (auto &ch : modport->children) {
if (ch->type == AST_MODPORTMEMBER) {
std::string compare_name = "\\" + origname;
if (ch->str == compare_name) { // Found signal. The modport decides whether it is input or output
found_in_modport = true;
wire->is_input = ch->is_input;
wire->is_output = ch->is_output;
break;
}
}
}
if (found_in_modport) {
module_ast->children.push_back(wire);
}
else { // If not found in modport, do not create port
delete wire;
}
}
else { // If no modport, set inout
wire->is_input = true;
wire->is_output = true;
module_ast->children.push_back(wire);
}
}
}
// When an interface instance is found in a module, the whole RTLIL for the module will be rederived again
// from AST. The interface members are copied into the AST module with the prefix of the interface.
void AstModule::reprocess_module(RTLIL::Design *design, dict<RTLIL::IdString, RTLIL::Module*> local_interfaces)
{
loadconfig();
bool is_top = false;
AstNode *new_ast = ast->clone();
for (auto &intf : local_interfaces) {
std::string intfname = intf.first.str();
RTLIL::Module *intfmodule = intf.second;
for (auto &wire_it : intfmodule->wires_){
AstNode *wire = new AstNode(AST_WIRE, new AstNode(AST_RANGE, AstNode::mkconst_int(wire_it.second->width -1, true), AstNode::mkconst_int(0, true)));
std::string newname = log_id(wire_it.first);
newname = intfname + "." + newname;
wire->str = newname;
new_ast->children.push_back(wire);
}
}
AstNode *ast_before_replacing_interface_ports = new_ast->clone();
// Explode all interface ports. Note this will only have an effect on 'top
// level' modules. Other sub-modules will have their interface ports
// exploded via the derive(..) function
for (size_t i =0; i<new_ast->children.size(); i++)
{
AstNode *ch2 = new_ast->children[i];
if (ch2->type == AST_INTERFACEPORT) { // Is an interface port
std::string name_port = ch2->str; // Name of the interface port
if (ch2->children.size() > 0) {
for(size_t j=0; j<ch2->children.size();j++) {
AstNode *ch = ch2->children[j];
if(ch->type == AST_INTERFACEPORTTYPE) { // Found the AST node containing the type of the interface
std::pair<std::string,std::string> res = split_modport_from_type(ch->str);
std::string interface_type = res.first;
std::string interface_modport = res.second; // Is "", if no modport
if (design->modules_.count(interface_type) > 0) {
// Add a cell to the module corresponding to the interface port such that
// it can further propagated down if needed:
AstNode *celltype_for_intf = new AstNode(AST_CELLTYPE);
celltype_for_intf->str = interface_type;
AstNode *cell_for_intf = new AstNode(AST_CELL, celltype_for_intf);
cell_for_intf->str = name_port + "_inst_from_top_dummy";
new_ast->children.push_back(cell_for_intf);
// Get all members of this non-overridden dummy interface instance:
RTLIL::Module *intfmodule = design->modules_[interface_type]; // All interfaces should at this point in time (assuming
// reprocess_module is called from the hierarchy pass) be
// present in design->modules_
AstModule *ast_module_of_interface = (AstModule*)intfmodule;
std::string interface_modport_compare_str = "\\" + interface_modport;
AstNode *modport = find_modport(ast_module_of_interface->ast, interface_modport_compare_str); // modport == NULL if no modport
// Iterate over all wires in the interface and add them to the module:
explode_interface_port(new_ast, intfmodule, name_port, modport);
}
break;
}
}
}
}
}
// The old module will be deleted. Rename and mark for deletion:
std::string original_name = this->name.str();
std::string changed_name = original_name + "_before_replacing_local_interfaces";
design->rename(this, changed_name);
this->set_bool_attribute("\\to_delete");
// Check if the module was the top module. If it was, we need to remove the top attribute and put it on the
// new module.
if (this->get_bool_attribute("\\initial_top")) {
this->attributes.erase("\\initial_top");
is_top = true;
}
// Generate RTLIL from AST for the new module and add to the design:
AstModule *newmod = process_module(new_ast, false, ast_before_replacing_interface_ports);
delete(new_ast);
design->add(newmod);
RTLIL::Module* mod = design->module(original_name);
if (is_top)
mod->set_bool_attribute("\\top");
// Set the attribute "interfaces_replaced_in_module" so that it does not happen again.
mod->set_bool_attribute("\\interfaces_replaced_in_module");
}
// create a new parametric module (when needed) and return the name of the generated module - WITH support for interfaces
// This method is used to explode the interface when the interface is a port of the module (not instantiated inside)
RTLIL::IdString AstModule::derive(RTLIL::Design *design, dict<RTLIL::IdString, RTLIL::Const> parameters, dict<RTLIL::IdString, RTLIL::Module*> interfaces, dict<RTLIL::IdString, RTLIL::IdString> modports, bool /*mayfail*/)
{
AstNode *new_ast = NULL;
std::string modname = derive_common(design, parameters, &new_ast);
// Since interfaces themselves may be instantiated with different parameters,
// "modname" must also take those into account, so that unique modules
// are derived for any variant of interface connections:
std::string interf_info = "";
bool has_interfaces = false;
for(auto &intf : interfaces) {
interf_info += log_id(intf.second->name);
has_interfaces = true;
}
std::string new_modname = modname;
if (has_interfaces)
new_modname += "$interfaces$" + interf_info;
if (!design->has(new_modname)) {
if (!new_ast) {
auto mod = dynamic_cast<AstModule*>(design->module(modname));
new_ast = mod->ast->clone();
}
modname = new_modname;
new_ast->str = modname;
// Iterate over all interfaces which are ports in this module:
for(auto &intf : interfaces) {
RTLIL::Module * intfmodule = intf.second;
std::string intfname = intf.first.str();
// Check if a modport applies for the interface port:
AstNode *modport = NULL;
if (modports.count(intfname) > 0) {
std::string interface_modport = modports.at(intfname).str();
AstModule *ast_module_of_interface = (AstModule*)intfmodule;
AstNode *ast_node_of_interface = ast_module_of_interface->ast;
modport = find_modport(ast_node_of_interface, interface_modport);
}
// Iterate over all wires in the interface and add them to the module:
explode_interface_port(new_ast, intfmodule, intfname, modport);
}
design->add(process_module(new_ast, false));
design->module(modname)->check();
RTLIL::Module* mod = design->module(modname);
// Now that the interfaces have been exploded, we can delete the dummy port related to every interface.
for(auto &intf : interfaces) {
if(mod->wires_.count(intf.first)) {
mod->wires_.erase(intf.first);
mod->fixup_ports();
// We copy the cell of the interface to the sub-module such that it can further be found if it is propagated
// down to sub-sub-modules etc.
RTLIL::Cell * new_subcell = mod->addCell(intf.first, intf.second->name);
new_subcell->set_bool_attribute("\\is_interface");
}
else {
log_error("No port with matching name found (%s) in %s. Stopping\n", log_id(intf.first), modname.c_str());
}
}
// If any interfaces were replaced, set the attribute 'interfaces_replaced_in_module':
if (interfaces.size() > 0) {
mod->set_bool_attribute("\\interfaces_replaced_in_module");
}
} else {
log("Found cached RTLIL representation for module `%s'.\n", modname.c_str());
}
delete new_ast;
return modname;
}
// create a new parametric module (when needed) and return the name of the generated module - without support for interfaces
RTLIL::IdString AstModule::derive(RTLIL::Design *design, dict<RTLIL::IdString, RTLIL::Const> parameters, bool /*mayfail*/)
{
AstNode *new_ast = NULL;
std::string modname = derive_common(design, parameters, &new_ast);
if (!design->has(modname)) {
new_ast->str = modname;
design->add(process_module(new_ast, false));
design->module(modname)->check();
} else {
log("Found cached RTLIL representation for module `%s'.\n", modname.c_str());
}
delete new_ast;
return modname;
}
// create a new parametric module (when needed) and return the name of the generated module
std::string AstModule::derive_common(RTLIL::Design *design, dict<RTLIL::IdString, RTLIL::Const> parameters, AstNode **new_ast_out)
{
std::string stripped_name = name.str();
if (stripped_name.compare(0, 9, "$abstract") == 0)
stripped_name = stripped_name.substr(9);
std::string para_info;
int para_counter = 0;
for (const auto child : ast->children) {
if (child->type != AST_PARAMETER)
continue;
para_counter++;
std::string para_id = child->str;
if (parameters.count(para_id) > 0) {
log("Parameter %s = %s\n", child->str.c_str(), log_signal(RTLIL::SigSpec(parameters[child->str])));
para_info += stringf("%s=%s", child->str.c_str(), log_signal(RTLIL::SigSpec(parameters[para_id])));
continue;
}
para_id = stringf("$%d", para_counter);
if (parameters.count(para_id) > 0) {
log("Parameter %d (%s) = %s\n", para_counter, child->str.c_str(), log_signal(RTLIL::SigSpec(parameters[para_id])));
para_info += stringf("%s=%s", child->str.c_str(), log_signal(RTLIL::SigSpec(parameters[para_id])));
continue;
}
}
std::string modname;
if (parameters.size() == 0)
modname = stripped_name;
else if (para_info.size() > 60)
modname = "$paramod$" + sha1(para_info) + stripped_name;
else
modname = "$paramod" + stripped_name + para_info;
if (design->has(modname))
return modname;
log_header(design, "Executing AST frontend in derive mode using pre-parsed AST for module `%s'.\n", stripped_name.c_str());
loadconfig();
AstNode *new_ast = ast->clone();
para_counter = 0;
for (auto child : new_ast->children) {
if (child->type != AST_PARAMETER)
continue;
para_counter++;
std::string para_id = child->str;
if (parameters.count(para_id) > 0) {
log("Parameter %s = %s\n", child->str.c_str(), log_signal(RTLIL::SigSpec(parameters[child->str])));
goto rewrite_parameter;
}
para_id = stringf("$%d", para_counter);
if (parameters.count(para_id) > 0) {
log("Parameter %d (%s) = %s\n", para_counter, child->str.c_str(), log_signal(RTLIL::SigSpec(parameters[para_id])));
goto rewrite_parameter;
}
continue;
rewrite_parameter:
delete child->children.at(0);
if ((parameters[para_id].flags & RTLIL::CONST_FLAG_REAL) != 0) {
child->children[0] = new AstNode(AST_REALVALUE);
child->children[0]->realvalue = std::stod(parameters[para_id].decode_string());
} else if ((parameters[para_id].flags & RTLIL::CONST_FLAG_STRING) != 0)
child->children[0] = AstNode::mkconst_str(parameters[para_id].decode_string());
else
child->children[0] = AstNode::mkconst_bits(parameters[para_id].bits, (parameters[para_id].flags & RTLIL::CONST_FLAG_SIGNED) != 0);
parameters.erase(para_id);
}
for (auto param : parameters) {
AstNode *defparam = new AstNode(AST_DEFPARAM, new AstNode(AST_IDENTIFIER));
defparam->children[0]->str = param.first.str();
if ((param.second.flags & RTLIL::CONST_FLAG_STRING) != 0)
defparam->children.push_back(AstNode::mkconst_str(param.second.decode_string()));
else
defparam->children.push_back(AstNode::mkconst_bits(param.second.bits, (param.second.flags & RTLIL::CONST_FLAG_SIGNED) != 0));
new_ast->children.push_back(defparam);
}
(*new_ast_out) = new_ast;
return modname;
}
RTLIL::Module *AstModule::clone() const
{
AstModule *new_mod = new AstModule;
new_mod->name = name;
cloneInto(new_mod);
new_mod->ast = ast->clone();
new_mod->nolatches = nolatches;
new_mod->nomeminit = nomeminit;
new_mod->nomem2reg = nomem2reg;
new_mod->mem2reg = mem2reg;
new_mod->noblackbox = noblackbox;
new_mod->lib = lib;
new_mod->nowb = nowb;
new_mod->noopt = noopt;
new_mod->icells = icells;
new_mod->pwires = pwires;
new_mod->autowire = autowire;
return new_mod;
}
void AstModule::loadconfig() const
{
current_ast = NULL;
flag_dump_ast1 = false;
flag_dump_ast2 = false;
flag_dump_vlog1 = false;
flag_dump_vlog2 = false;
flag_nolatches = nolatches;
flag_nomeminit = nomeminit;
flag_nomem2reg = nomem2reg;
flag_mem2reg = mem2reg;
flag_noblackbox = noblackbox;
flag_lib = lib;
flag_nowb = nowb;
flag_noopt = noopt;
flag_icells = icells;
flag_pwires = pwires;
flag_autowire = autowire;
use_internal_line_num();
}
// internal dummy line number callbacks
namespace {
int internal_line_num;
void internal_set_line_num(int n) {
internal_line_num = n;
}
int internal_get_line_num() {
return internal_line_num;
}
}
// use internal dummy line number callbacks
void AST::use_internal_line_num()
{
set_line_num = &internal_set_line_num;
get_line_num = &internal_get_line_num;
}
YOSYS_NAMESPACE_END