yosys/kernel/satgen.h

806 lines
32 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef SATGEN_H
#define SATGEN_H
#include "kernel/rtlil.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#ifdef YOSYS_ENABLE_MINISAT
# include "libs/ezsat/ezminisat.h"
typedef ezMiniSAT ezDefaultSAT;
#else
# include "libs/ezsat/ezsat.h"
typedef ezSAT ezDefaultSAT;
#endif
struct SatGen
{
ezSAT *ez;
SigMap *sigmap;
std::string prefix;
SigPool initial_state;
std::map<std::string, RTLIL::SigSpec> asserts_a, asserts_en;
bool ignore_div_by_zero;
bool model_undef;
SatGen(ezSAT *ez, SigMap *sigmap, std::string prefix = std::string()) :
ez(ez), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false)
{
}
void setContext(SigMap *sigmap, std::string prefix = std::string())
{
this->sigmap = sigmap;
this->prefix = prefix;
}
std::vector<int> importSigSpecWorker(RTLIL::SigSpec &sig, std::string &pf, bool undef_mode, bool dup_undef)
{
log_assert(!undef_mode || model_undef);
sigmap->apply(sig);
sig.expand();
std::vector<int> vec;
vec.reserve(sig.chunks.size());
for (auto &c : sig.chunks)
if (c.wire == NULL) {
RTLIL::State bit = c.data.bits.at(0);
if (model_undef && dup_undef && bit == RTLIL::State::Sx)
vec.push_back(ez->literal());
else
vec.push_back(bit == (undef_mode ? RTLIL::State::Sx : RTLIL::State::S1) ? ez->TRUE : ez->FALSE);
} else {
std::string name = pf + stringf(c.wire->width == 1 ? "%s" : "%s [%d]", RTLIL::id2cstr(c.wire->name), c.offset);
vec.push_back(ez->literal(name));
}
return vec;
}
std::vector<int> importSigSpec(RTLIL::SigSpec sig, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(sig, pf, false, false);
}
std::vector<int> importDefSigSpec(RTLIL::SigSpec sig, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(sig, pf, false, true);
}
std::vector<int> importUndefSigSpec(RTLIL::SigSpec sig, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = "undef:" + prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(sig, pf, true, false);
}
void getAsserts(RTLIL::SigSpec &sig_a, RTLIL::SigSpec &sig_en, int timestep = -1)
{
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
sig_a = asserts_a[pf];
sig_en = asserts_en[pf];
}
int importAsserts(int timestep = -1)
{
std::vector<int> check_bits, enable_bits;
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
if (model_undef) {
check_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_a[pf], timestep)), importDefSigSpec(asserts_a[pf], timestep));
enable_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_en[pf], timestep)), importDefSigSpec(asserts_en[pf], timestep));
} else {
check_bits = importDefSigSpec(asserts_a[pf], timestep);
enable_bits = importDefSigSpec(asserts_en[pf], timestep);
}
return ez->vec_reduce_and(ez->vec_or(check_bits, ez->vec_not(enable_bits)));
}
int signals_eq(RTLIL::SigSpec lhs, RTLIL::SigSpec rhs, int timestep_lhs = -1, int timestep_rhs = -1)
{
if (timestep_rhs < 0)
timestep_rhs = timestep_lhs;
assert(lhs.width == rhs.width);
std::vector<int> vec_lhs = importSigSpec(lhs, timestep_lhs);
std::vector<int> vec_rhs = importSigSpec(rhs, timestep_rhs);
if (!model_undef)
return ez->vec_eq(vec_lhs, vec_rhs);
std::vector<int> undef_lhs = importUndefSigSpec(lhs, timestep_lhs);
std::vector<int> undef_rhs = importUndefSigSpec(rhs, timestep_rhs);
std::vector<int> eq_bits;
for (int i = 0; i < lhs.width; i++)
eq_bits.push_back(ez->AND(ez->IFF(undef_lhs.at(i), undef_rhs.at(i)),
ez->IFF(ez->OR(vec_lhs.at(i), undef_lhs.at(i)), ez->OR(vec_rhs.at(i), undef_rhs.at(i)))));
return ez->expression(ezSAT::OpAnd, eq_bits);
}
void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, RTLIL::Cell *cell, size_t y_width = 0, bool forced_signed = false)
{
bool is_signed = forced_signed;
if (!forced_signed && cell->parameters.count("\\A_SIGNED") > 0 && cell->parameters.count("\\B_SIGNED") > 0)
is_signed = cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool();
while (vec_a.size() < vec_b.size() || vec_a.size() < y_width)
vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->FALSE);
while (vec_b.size() < vec_a.size() || vec_b.size() < y_width)
vec_b.push_back(is_signed && vec_b.size() > 0 ? vec_b.back() : ez->FALSE);
}
void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false)
{
extendSignalWidth(vec_a, vec_b, cell, vec_y.size(), forced_signed);
while (vec_y.size() < vec_a.size())
vec_y.push_back(ez->literal());
}
void extendSignalWidthUnary(std::vector<int> &vec_a, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false)
{
bool is_signed = forced_signed || (cell->parameters.count("\\A_SIGNED") > 0 && cell->parameters["\\A_SIGNED"].as_bool());
while (vec_a.size() < vec_y.size())
vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->FALSE);
while (vec_y.size() < vec_a.size())
vec_y.push_back(ez->literal());
}
void undefGating(std::vector<int> &vec_y, std::vector<int> &vec_yy, std::vector<int> &vec_undef)
{
assert(model_undef);
ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(vec_y, vec_yy))));
}
bool importCell(RTLIL::Cell *cell, int timestep = -1)
{
bool arith_undef_handled = false;
bool is_arith_compare = cell->type == "$lt" || cell->type == "$le" || cell->type == "$ge" || cell->type == "$gt";
if (model_undef && (cell->type == "$add" || cell->type == "$sub" || cell->type == "$mul" || cell->type == "$div" || cell->type == "$mod" || is_arith_compare))
{
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
if (is_arith_compare)
extendSignalWidth(undef_a, undef_b, cell, true);
else
extendSignalWidth(undef_a, undef_b, undef_y, cell, true);
int undef_any_a = ez->expression(ezSAT::OpOr, undef_a);
int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
int undef_y_bit = ez->OR(undef_any_a, undef_any_b);
if (cell->type == "$div" || cell->type == "$mod") {
std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
undef_y_bit = ez->OR(undef_y_bit, ez->NOT(ez->expression(ezSAT::OpOr, b)));
}
if (is_arith_compare) {
for (size_t i = 1; i < undef_y.size(); i++)
ez->SET(ez->FALSE, undef_y.at(i));
ez->SET(undef_y_bit, undef_y.at(0));
} else {
std::vector<int> undef_y_bits(undef_y.size(), undef_y_bit);
ez->assume(ez->vec_eq(undef_y_bits, undef_y));
}
arith_undef_handled = true;
}
if (cell->type == "$_AND_" || cell->type == "$_OR_" || cell->type == "$_XOR_" ||
cell->type == "$and" || cell->type == "$or" || cell->type == "$xor" || cell->type == "$xnor" ||
cell->type == "$add" || cell->type == "$sub")
{
std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidth(a, b, y, cell);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
if (cell->type == "$and" || cell->type == "$_AND_")
ez->assume(ez->vec_eq(ez->vec_and(a, b), yy));
if (cell->type == "$or" || cell->type == "$_OR_")
ez->assume(ez->vec_eq(ez->vec_or(a, b), yy));
if (cell->type == "$xor" || cell->type == "$_XOR_")
ez->assume(ez->vec_eq(ez->vec_xor(a, b), yy));
if (cell->type == "$xnor")
ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(a, b)), yy));
if (cell->type == "$add")
ez->assume(ez->vec_eq(ez->vec_add(a, b), yy));
if (cell->type == "$sub")
ez->assume(ez->vec_eq(ez->vec_sub(a, b), yy));
if (model_undef && !arith_undef_handled)
{
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidth(undef_a, undef_b, undef_y, cell, false);
if (cell->type == "$and" || cell->type == "$_AND_") {
std::vector<int> a0 = ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a));
std::vector<int> b0 = ez->vec_and(ez->vec_not(b), ez->vec_not(undef_b));
std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a0, b0)));
ez->assume(ez->vec_eq(yX, undef_y));
}
else if (cell->type == "$or" || cell->type == "$_OR_") {
std::vector<int> a1 = ez->vec_and(a, ez->vec_not(undef_a));
std::vector<int> b1 = ez->vec_and(b, ez->vec_not(undef_b));
std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a1, b1)));
ez->assume(ez->vec_eq(yX, undef_y));
}
else if (cell->type == "$xor" || cell->type == "$_XOR_" || cell->type == "$xnor") {
std::vector<int> yX = ez->vec_or(undef_a, undef_b);
ez->assume(ez->vec_eq(yX, undef_y));
}
else
log_abort();
undefGating(y, yy, undef_y);
}
else if (model_undef)
{
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$_INV_" || cell->type == "$not")
{
std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidthUnary(a, y, cell);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
ez->assume(ez->vec_eq(ez->vec_not(a), yy));
if (model_undef) {
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidthUnary(undef_a, undef_y, cell, true);
ez->assume(ez->vec_eq(undef_a, undef_y));
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$_MUX_" || cell->type == "$mux")
{
std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> s = importDefSigSpec(cell->connections.at("\\S"), timestep);
std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
ez->assume(ez->vec_eq(ez->vec_ite(s.at(0), b, a), yy));
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> undef_s = importUndefSigSpec(cell->connections.at("\\S"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
std::vector<int> unequal_ab = ez->vec_not(ez->vec_iff(a, b));
std::vector<int> undef_ab = ez->vec_or(unequal_ab, ez->vec_or(undef_a, undef_b));
std::vector<int> yX = ez->vec_ite(undef_s.at(0), undef_ab, ez->vec_ite(s.at(0), undef_b, undef_a));
ez->assume(ez->vec_eq(yX, undef_y));
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$pmux" || cell->type == "$safe_pmux")
{
std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> s = importDefSigSpec(cell->connections.at("\\S"), timestep);
std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
std::vector<int> tmp = a;
for (size_t i = 0; i < s.size(); i++) {
std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size());
tmp = ez->vec_ite(s.at(i), part_of_b, tmp);
}
if (cell->type == "$safe_pmux")
tmp = ez->vec_ite(ez->onehot(s, true), tmp, a);
ez->assume(ez->vec_eq(tmp, yy));
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> undef_s = importUndefSigSpec(cell->connections.at("\\S"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
int maybe_one_hot = ez->FALSE;
int maybe_many_hot = ez->FALSE;
int sure_one_hot = ez->FALSE;
int sure_many_hot = ez->FALSE;
std::vector<int> bits_set = std::vector<int>(undef_y.size(), ez->FALSE);
std::vector<int> bits_clr = std::vector<int>(undef_y.size(), ez->FALSE);
for (size_t i = 0; i < s.size(); i++)
{
std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size());
std::vector<int> part_of_undef_b(undef_b.begin()+i*a.size(), undef_b.begin()+(i+1)*a.size());
int maybe_s = ez->OR(s.at(i), undef_s.at(i));
int sure_s = ez->AND(s.at(i), ez->NOT(undef_s.at(i)));
maybe_one_hot = ez->OR(maybe_one_hot, maybe_s);
maybe_many_hot = ez->OR(maybe_many_hot, ez->AND(maybe_one_hot, maybe_s));
sure_one_hot = ez->OR(sure_one_hot, sure_s);
sure_many_hot = ez->OR(sure_many_hot, ez->AND(sure_one_hot, sure_s));
bits_set = ez->vec_ite(maybe_s, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(part_of_b, part_of_undef_b))), bits_set);
bits_clr = ez->vec_ite(maybe_s, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(part_of_b), part_of_undef_b))), bits_clr);
}
int maybe_a = ez->NOT(maybe_one_hot);
if (cell->type == "$safe_pmux") {
maybe_a = ez->OR(maybe_a, maybe_many_hot);
bits_set = ez->vec_ite(sure_many_hot, ez->vec_or(a, undef_a), bits_set);
bits_clr = ez->vec_ite(sure_many_hot, ez->vec_or(ez->vec_not(a), undef_a), bits_clr);
}
bits_set = ez->vec_ite(maybe_a, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(a, undef_a))), bits_set);
bits_clr = ez->vec_ite(maybe_a, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(a), undef_a))), bits_clr);
ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(bits_set, bits_clr)), undef_y));
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$pos" || cell->type == "$neg")
{
std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidthUnary(a, y, cell);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
if (cell->type == "$pos") {
ez->assume(ez->vec_eq(a, yy));
} else {
std::vector<int> zero(a.size(), ez->FALSE);
ez->assume(ez->vec_eq(ez->vec_sub(zero, a), yy));
}
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidthUnary(undef_a, undef_y, cell, true);
if (cell->type == "$pos") {
ez->assume(ez->vec_eq(undef_a, undef_y));
} else {
int undef_any_a = ez->expression(ezSAT::OpOr, undef_a);
std::vector<int> undef_y_bits(undef_y.size(), undef_any_a);
ez->assume(ez->vec_eq(undef_y_bits, undef_y));
}
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$reduce_and" || cell->type == "$reduce_or" || cell->type == "$reduce_xor" ||
cell->type == "$reduce_xnor" || cell->type == "$reduce_bool" || cell->type == "$logic_not")
{
std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
if (cell->type == "$reduce_and")
ez->SET(ez->expression(ez->OpAnd, a), yy.at(0));
if (cell->type == "$reduce_or" || cell->type == "$reduce_bool")
ez->SET(ez->expression(ez->OpOr, a), yy.at(0));
if (cell->type == "$reduce_xor")
ez->SET(ez->expression(ez->OpXor, a), yy.at(0));
if (cell->type == "$reduce_xnor")
ez->SET(ez->NOT(ez->expression(ez->OpXor, a)), yy.at(0));
if (cell->type == "$logic_not")
ez->SET(ez->NOT(ez->expression(ez->OpOr, a)), yy.at(0));
for (size_t i = 1; i < y.size(); i++)
ez->SET(ez->FALSE, yy.at(i));
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
int aX = ez->expression(ezSAT::OpOr, undef_a);
if (cell->type == "$reduce_and") {
int a0 = ez->expression(ezSAT::OpOr, ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a)));
ez->assume(ez->IFF(ez->AND(ez->NOT(a0), aX), undef_y.at(0)));
}
else if (cell->type == "$reduce_or" || cell->type == "$reduce_bool" || cell->type == "$logic_not") {
int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(a, ez->vec_not(undef_a)));
ez->assume(ez->IFF(ez->AND(ez->NOT(a1), aX), undef_y.at(0)));
}
else if (cell->type == "$reduce_xor" || cell->type == "$reduce_xnor") {
ez->assume(ez->IFF(aX, undef_y.at(0)));
} else
log_abort();
for (size_t i = 1; i < undef_y.size(); i++)
ez->SET(ez->FALSE, undef_y.at(i));
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$logic_and" || cell->type == "$logic_or")
{
std::vector<int> vec_a = importDefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> vec_b = importDefSigSpec(cell->connections.at("\\B"), timestep);
int a = ez->expression(ez->OpOr, vec_a);
int b = ez->expression(ez->OpOr, vec_b);
std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
if (cell->type == "$logic_and")
ez->SET(ez->expression(ez->OpAnd, a, b), yy.at(0));
else
ez->SET(ez->expression(ez->OpOr, a, b), yy.at(0));
for (size_t i = 1; i < y.size(); i++)
ez->SET(ez->FALSE, yy.at(i));
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
int a0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_a), ez->expression(ezSAT::OpOr, undef_a)));
int b0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_b), ez->expression(ezSAT::OpOr, undef_b)));
int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_a, ez->vec_not(undef_a)));
int b1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_b, ez->vec_not(undef_b)));
int aX = ez->expression(ezSAT::OpOr, undef_a);
int bX = ez->expression(ezSAT::OpOr, undef_b);
if (cell->type == "$logic_and")
ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a1, b1)), ez->NOT(a0), ez->NOT(b0)), undef_y.at(0));
else if (cell->type == "$logic_or")
ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a0, b0)), ez->NOT(a1), ez->NOT(b1)), undef_y.at(0));
else
log_abort();
for (size_t i = 1; i < undef_y.size(); i++)
ez->SET(ez->FALSE, undef_y.at(i));
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$eqx" || cell->type == "$nex" || cell->type == "$ge" || cell->type == "$gt")
{
bool is_signed = cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool();
std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidth(a, b, cell);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
if (model_undef && (cell->type == "$eqx" || cell->type == "$nex")) {
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
extendSignalWidth(undef_a, undef_b, cell, true);
a = ez->vec_or(a, undef_a);
b = ez->vec_or(b, undef_b);
}
if (cell->type == "$lt")
ez->SET(is_signed ? ez->vec_lt_signed(a, b) : ez->vec_lt_unsigned(a, b), yy.at(0));
if (cell->type == "$le")
ez->SET(is_signed ? ez->vec_le_signed(a, b) : ez->vec_le_unsigned(a, b), yy.at(0));
if (cell->type == "$eq" || cell->type == "$eqx")
ez->SET(ez->vec_eq(a, b), yy.at(0));
if (cell->type == "$ne" || cell->type == "$nex")
ez->SET(ez->vec_ne(a, b), yy.at(0));
if (cell->type == "$ge")
ez->SET(is_signed ? ez->vec_ge_signed(a, b) : ez->vec_ge_unsigned(a, b), yy.at(0));
if (cell->type == "$gt")
ez->SET(is_signed ? ez->vec_gt_signed(a, b) : ez->vec_gt_unsigned(a, b), yy.at(0));
for (size_t i = 1; i < y.size(); i++)
ez->SET(ez->FALSE, yy.at(i));
if (model_undef && (cell->type == "$eqx" || cell->type == "$nex"))
{
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidth(undef_a, undef_b, cell, true);
if (cell->type == "$eqx")
yy.at(0) = ez->AND(yy.at(0), ez->vec_eq(undef_a, undef_b));
else
yy.at(0) = ez->OR(yy.at(0), ez->vec_ne(undef_a, undef_b));
for (size_t i = 0; i < y.size(); i++)
ez->SET(ez->FALSE, undef_y.at(i));
ez->assume(ez->vec_eq(y, yy));
}
else if (model_undef && (cell->type == "$eq" || cell->type == "$ne"))
{
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidth(undef_a, undef_b, cell, true);
int undef_any_a = ez->expression(ezSAT::OpOr, undef_a);
int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
int undef_any = ez->OR(undef_any_a, undef_any_b);
std::vector<int> masked_a_bits = ez->vec_or(a, ez->vec_or(undef_a, undef_b));
std::vector<int> masked_b_bits = ez->vec_or(b, ez->vec_or(undef_a, undef_b));
int masked_ne = ez->vec_ne(masked_a_bits, masked_b_bits);
int undef_y_bit = ez->AND(undef_any, ez->NOT(masked_ne));
for (size_t i = 1; i < undef_y.size(); i++)
ez->SET(ez->FALSE, undef_y.at(i));
ez->SET(undef_y_bit, undef_y.at(0));
undefGating(y, yy, undef_y);
}
else
{
if (model_undef) {
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
undefGating(y, yy, undef_y);
}
log_assert(!model_undef || arith_undef_handled);
}
return true;
}
if (cell->type == "$shl" || cell->type == "$shr" || cell->type == "$sshl" || cell->type == "$sshr")
{
std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
char shift_left = cell->type == "$shl" || cell->type == "$sshl";
bool sign_extend = cell->type == "$sshr" && cell->parameters["\\A_SIGNED"].as_bool();
while (y.size() < a.size())
y.push_back(ez->literal());
while (y.size() > a.size())
a.push_back(cell->parameters["\\A_SIGNED"].as_bool() ? a.back() : ez->FALSE);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
std::vector<int> tmp = a;
for (size_t i = 0; i < b.size(); i++)
{
std::vector<int> tmp_shifted(tmp.size());
for (size_t j = 0; j < tmp.size(); j++) {
int idx = j + (1 << (i > 30 ? 30 : i)) * (shift_left ? -1 : +1);
tmp_shifted.at(j) = (0 <= idx && idx < int(tmp.size())) ? tmp.at(idx) : sign_extend ? tmp.back() : ez->FALSE;
}
tmp = ez->vec_ite(b.at(i), tmp_shifted, tmp);
}
ez->assume(ez->vec_eq(tmp, yy));
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
while (undef_y.size() < undef_a.size())
undef_y.push_back(ez->literal());
while (undef_y.size() > undef_a.size())
undef_a.push_back(undef_a.back());
tmp = undef_a;
for (size_t i = 0; i < b.size(); i++)
{
std::vector<int> tmp_shifted(tmp.size());
for (size_t j = 0; j < tmp.size(); j++) {
int idx = j + (1 << (i > 30 ? 30 : i)) * (shift_left ? -1 : +1);
tmp_shifted.at(j) = (0 <= idx && idx < int(tmp.size())) ? tmp.at(idx) : sign_extend ? tmp.back() : ez->FALSE;
}
tmp = ez->vec_ite(b.at(i), tmp_shifted, tmp);
}
int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
std::vector<int> undef_all_y_bits(undef_y.size(), undef_any_b);
ez->assume(ez->vec_eq(ez->vec_or(tmp, undef_all_y_bits), undef_y));
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$mul")
{
std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidth(a, b, y, cell);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
std::vector<int> tmp(a.size(), ez->FALSE);
for (int i = 0; i < int(a.size()); i++)
{
std::vector<int> shifted_a(a.size(), ez->FALSE);
for (int j = i; j < int(a.size()); j++)
shifted_a.at(j) = a.at(j-i);
tmp = ez->vec_ite(b.at(i), ez->vec_add(tmp, shifted_a), tmp);
}
ez->assume(ez->vec_eq(tmp, yy));
if (model_undef) {
log_assert(arith_undef_handled);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$div" || cell->type == "$mod")
{
std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidth(a, b, y, cell);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
std::vector<int> a_u, b_u;
if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) {
a_u = ez->vec_ite(a.back(), ez->vec_neg(a), a);
b_u = ez->vec_ite(b.back(), ez->vec_neg(b), b);
} else {
a_u = a;
b_u = b;
}
std::vector<int> chain_buf = a_u;
std::vector<int> y_u(a_u.size(), ez->FALSE);
for (int i = int(a.size())-1; i >= 0; i--)
{
chain_buf.insert(chain_buf.end(), chain_buf.size(), ez->FALSE);
std::vector<int> b_shl(i, ez->FALSE);
b_shl.insert(b_shl.end(), b_u.begin(), b_u.end());
b_shl.insert(b_shl.end(), chain_buf.size()-b_shl.size(), ez->FALSE);
y_u.at(i) = ez->vec_ge_unsigned(chain_buf, b_shl);
chain_buf = ez->vec_ite(y_u.at(i), ez->vec_sub(chain_buf, b_shl), chain_buf);
chain_buf.erase(chain_buf.begin() + a_u.size(), chain_buf.end());
}
std::vector<int> y_tmp = ignore_div_by_zero ? yy : ez->vec_var(y.size());
if (cell->type == "$div") {
if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool())
ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(ez->XOR(a.back(), b.back()), ez->vec_neg(y_u), y_u)));
else
ez->assume(ez->vec_eq(y_tmp, y_u));
} else {
if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool())
ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(a.back(), ez->vec_neg(chain_buf), chain_buf)));
else
ez->assume(ez->vec_eq(y_tmp, chain_buf));
}
if (ignore_div_by_zero) {
ez->assume(ez->expression(ezSAT::OpOr, b));
} else {
std::vector<int> div_zero_result;
if (cell->type == "$div") {
if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) {
std::vector<int> all_ones(y.size(), ez->TRUE);
std::vector<int> only_first_one(y.size(), ez->FALSE);
only_first_one.at(0) = ez->TRUE;
div_zero_result = ez->vec_ite(a.back(), only_first_one, all_ones);
} else {
div_zero_result.insert(div_zero_result.end(), cell->connections.at("\\A").width, ez->TRUE);
div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->FALSE);
}
} else {
int copy_a_bits = std::min(cell->connections.at("\\A").width, cell->connections.at("\\B").width);
div_zero_result.insert(div_zero_result.end(), a.begin(), a.begin() + copy_a_bits);
if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool())
div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), div_zero_result.back());
else
div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->FALSE);
}
ez->assume(ez->vec_eq(yy, ez->vec_ite(ez->expression(ezSAT::OpOr, b), y_tmp, div_zero_result)));
}
if (model_undef) {
log_assert(arith_undef_handled);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
undefGating(y, yy, undef_y);
}
return true;
}
if (timestep > 0 && (cell->type == "$dff" || cell->type == "$_DFF_N_" || cell->type == "$_DFF_P_"))
{
if (timestep == 1)
{
initial_state.add((*sigmap)(cell->connections.at("\\Q")));
}
else
{
std::vector<int> d = importDefSigSpec(cell->connections.at("\\D"), timestep-1);
std::vector<int> q = importDefSigSpec(cell->connections.at("\\Q"), timestep);
std::vector<int> qq = model_undef ? ez->vec_var(q.size()) : q;
ez->assume(ez->vec_eq(d, qq));
if (model_undef)
{
std::vector<int> undef_d = importUndefSigSpec(cell->connections.at("\\D"), timestep-1);
std::vector<int> undef_q = importUndefSigSpec(cell->connections.at("\\Q"), timestep);
ez->assume(ez->vec_eq(undef_d, undef_q));
undefGating(q, qq, undef_q);
}
}
return true;
}
if (cell->type == "$assert")
{
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
asserts_a[pf].append((*sigmap)(cell->connections.at("\\A")));
asserts_en[pf].append((*sigmap)(cell->connections.at("\\EN")));
return true;
}
// Unsupported internal cell types: $pow $lut
// .. and all sequential cells except $dff and $_DFF_[NP]_
return false;
}
};
#endif