yosys/libs/subcircuit/subcircuit.cc

1562 lines
49 KiB
C++

/*
* SubCircuit -- An implementation of the Ullmann Subgraph Isomorphism
* algorithm for coarse grain logic networks
*
* Copyright (C) 2013 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "subcircuit.h"
#include <algorithm>
#include <assert.h>
#include <stdarg.h>
#include <stdio.h>
#ifdef _YOSYS_
# include "kernel/log.h"
# define my_printf log
#else
# define my_printf printf
#endif
using namespace SubCircuit;
static std::string my_stringf(const char *fmt, ...)
{
std::string string;
char *str = NULL;
va_list ap;
va_start(ap, fmt);
if (vasprintf(&str, fmt, ap) < 0)
str = NULL;
va_end(ap);
if (str != NULL) {
string = str;
free(str);
}
return string;
}
SubCircuit::Graph::Graph(const Graph &other, const std::vector<std::string> &otherNodes)
{
allExtern = other.allExtern;
std::map<int, int> other2this;
for (int i = 0; i < int(otherNodes.size()); i++) {
assert(other.nodeMap.count(otherNodes[i]) > 0);
other2this[other.nodeMap.at(otherNodes[i])] = i;
nodeMap[otherNodes[i]] = i;
}
std::map<int, int> edges2this;
for (auto &i1 : other2this)
for (auto &i2 : other.nodes[i1.first].ports)
for (auto &i3 : i2.bits)
if (edges2this.count(i3.edgeIdx) == 0)
edges2this[i3.edgeIdx] = edges2this.size();
edges.resize(edges2this.size());
for (auto &it : edges2this) {
for (auto &bit : other.edges[it.first].portBits)
if (other2this.count(bit.nodeIdx) > 0)
edges[it.second].portBits.insert(BitRef(other2this[bit.nodeIdx], bit.portIdx, bit.bitIdx));
edges[it.second].constValue = other.edges[it.first].constValue;
edges[it.second].isExtern = other.edges[it.first].isExtern;
}
nodes.resize(other2this.size());
for (auto &it : other2this) {
nodes[it.second] = other.nodes[it.first];
for (auto &i2 : nodes[it.second].ports)
for (auto &i3 : i2.bits)
i3.edgeIdx = edges2this.at(i3.edgeIdx);
}
}
bool SubCircuit::Graph::BitRef::operator < (const BitRef &other) const
{
if (nodeIdx != other.nodeIdx)
return nodeIdx < other.nodeIdx;
if (portIdx != other.portIdx)
return portIdx < other.portIdx;
return bitIdx < other.bitIdx;
}
void SubCircuit::Graph::createNode(std::string nodeId, std::string typeId, void *userData)
{
assert(nodeMap.count(nodeId) == 0);
nodeMap[nodeId] = nodes.size();
nodes.push_back(Node());
Node &newNode = nodes.back();
newNode.nodeId = nodeId;
newNode.typeId = typeId;
newNode.userData = userData;
}
void SubCircuit::Graph::createPort(std::string nodeId, std::string portId, int width, int minWidth)
{
assert(nodeMap.count(nodeId) != 0);
int nodeIdx = nodeMap[nodeId];
Node &node = nodes[nodeIdx];
assert(node.portMap.count(portId) == 0);
int portIdx = node.ports.size();
node.portMap[portId] = portIdx;
node.ports.push_back(Port());
Port &port = node.ports.back();
port.portId = portId;
port.minWidth = minWidth < 0 ? width : minWidth;
port.bits.insert(port.bits.end(), width, PortBit());
for (int i = 0; i < width; i++) {
port.bits[i].edgeIdx = edges.size();
edges.push_back(Edge());
edges.back().portBits.insert(BitRef(nodeIdx, portIdx, i));
}
}
void SubCircuit::Graph::createConnection(std::string fromNodeId, std::string fromPortId, int fromBit, std::string toNodeId, std::string toPortId, int toBit, int width)
{
assert(nodeMap.count(fromNodeId) != 0);
assert(nodeMap.count(toNodeId) != 0);
int fromNodeIdx = nodeMap[fromNodeId];
Node &fromNode = nodes[fromNodeIdx];
int toNodeIdx = nodeMap[toNodeId];
Node &toNode = nodes[toNodeIdx];
assert(fromNode.portMap.count(fromPortId) != 0);
assert(toNode.portMap.count(toPortId) != 0);
int fromPortIdx = fromNode.portMap[fromPortId];
Port &fromPort = fromNode.ports[fromPortIdx];
int toPortIdx = toNode.portMap[toPortId];
Port &toPort = toNode.ports[toPortIdx];
if (width < 0) {
assert(fromBit == 0 && toBit == 0);
assert(fromPort.bits.size() == toPort.bits.size());
width = fromPort.bits.size();
}
assert(fromBit >= 0 && toBit >= 0);
for (int i = 0; i < width; i++)
{
assert(fromBit + i < int(fromPort.bits.size()));
assert(toBit + i < int(toPort.bits.size()));
int fromEdgeIdx = fromPort.bits[fromBit + i].edgeIdx;
int toEdgeIdx = toPort.bits[toBit + i].edgeIdx;
if (fromEdgeIdx == toEdgeIdx)
continue;
// merge toEdge into fromEdge
if (edges[toEdgeIdx].isExtern)
edges[fromEdgeIdx].isExtern = true;
if (edges[toEdgeIdx].constValue) {
assert(edges[fromEdgeIdx].constValue == 0);
edges[fromEdgeIdx].constValue = edges[toEdgeIdx].constValue;
}
for (const auto &ref : edges[toEdgeIdx].portBits) {
edges[fromEdgeIdx].portBits.insert(ref);
nodes[ref.nodeIdx].ports[ref.portIdx].bits[ref.bitIdx].edgeIdx = fromEdgeIdx;
}
// remove toEdge (move last edge over toEdge if needed)
if (toEdgeIdx+1 != int(edges.size())) {
edges[toEdgeIdx] = edges.back();
for (const auto &ref : edges[toEdgeIdx].portBits)
nodes[ref.nodeIdx].ports[ref.portIdx].bits[ref.bitIdx].edgeIdx = toEdgeIdx;
}
edges.pop_back();
}
}
void SubCircuit::Graph::createConnection(std::string fromNodeId, std::string fromPortId, std::string toNodeId, std::string toPortId)
{
createConnection(fromNodeId, fromPortId, 0, toNodeId, toPortId, 0, -1);
}
void SubCircuit::Graph::createConstant(std::string toNodeId, std::string toPortId, int toBit, int constValue)
{
assert(nodeMap.count(toNodeId) != 0);
int toNodeIdx = nodeMap[toNodeId];
Node &toNode = nodes[toNodeIdx];
assert(toNode.portMap.count(toPortId) != 0);
int toPortIdx = toNode.portMap[toPortId];
Port &toPort = toNode.ports[toPortIdx];
assert(toBit >= 0 && toBit < int(toPort.bits.size()));
int toEdgeIdx = toPort.bits[toBit].edgeIdx;
assert(edges[toEdgeIdx].constValue == 0);
edges[toEdgeIdx].constValue = constValue;
}
void SubCircuit::Graph::createConstant(std::string toNodeId, std::string toPortId, int constValue)
{
assert(nodeMap.count(toNodeId) != 0);
int toNodeIdx = nodeMap[toNodeId];
Node &toNode = nodes[toNodeIdx];
assert(toNode.portMap.count(toPortId) != 0);
int toPortIdx = toNode.portMap[toPortId];
Port &toPort = toNode.ports[toPortIdx];
for (int i = 0; i < int(toPort.bits.size()); i++) {
int toEdgeIdx = toPort.bits[i].edgeIdx;
assert(edges[toEdgeIdx].constValue == 0);
edges[toEdgeIdx].constValue = constValue % 2 ? '1' : '0';
constValue = constValue >> 1;
}
}
void SubCircuit::Graph::markExtern(std::string nodeId, std::string portId, int bit)
{
assert(nodeMap.count(nodeId) != 0);
Node &node = nodes[nodeMap[nodeId]];
assert(node.portMap.count(portId) != 0);
Port &port = node.ports[node.portMap[portId]];
if (bit < 0) {
for (const auto portBit : port.bits)
edges[portBit.edgeIdx].isExtern = true;
} else {
assert(bit < int(port.bits.size()));
edges[port.bits[bit].edgeIdx].isExtern = true;
}
}
void SubCircuit::Graph::markAllExtern()
{
allExtern = true;
}
void SubCircuit::Graph::print()
{
for (int i = 0; i < int(nodes.size()); i++) {
const Node &node = nodes[i];
my_printf("NODE %d: %s (%s)\n", i, node.nodeId.c_str(), node.typeId.c_str());
for (int j = 0; j < int(node.ports.size()); j++) {
const Port &port = node.ports[j];
my_printf(" PORT %d: %s (%d/%d)\n", j, port.portId.c_str(), port.minWidth, int(port.bits.size()));
for (int k = 0; k < int(port.bits.size()); k++) {
int edgeIdx = port.bits[k].edgeIdx;
my_printf(" BIT %d (%d):", k, edgeIdx);
for (const auto &ref : edges[edgeIdx].portBits)
my_printf(" %d.%d.%d", ref.nodeIdx, ref.portIdx, ref.bitIdx);
if (edges[edgeIdx].isExtern)
my_printf(" [extern]");
my_printf("\n");
}
}
}
}
class SubCircuit::SolverWorker
{
// basic internal data structures
typedef std::vector<std::map<int, int>> adjMatrix_t;
struct GraphData {
std::string graphId;
Graph graph;
adjMatrix_t adjMatrix;
std::vector<bool> usedNodes;
};
static void printAdjMatrix(const adjMatrix_t &matrix)
{
my_printf("%7s", "");
for (int i = 0; i < int(matrix.size()); i++)
my_printf("%4d:", i);
my_printf("\n");
for (int i = 0; i < int(matrix.size()); i++) {
my_printf("%5d:", i);
for (int j = 0; j < int(matrix.size()); j++)
if (matrix.at(i).count(j) == 0)
my_printf("%5s", "-");
else
my_printf("%5d", matrix.at(i).at(j));
my_printf("\n");
}
}
// helper functions for handling permutations
static const int maxPermutationsLimit = 1000000;
static int numberOfPermutations(const std::vector<std::string> &list)
{
int numPermutations = 1;
for (int i = 0; i < int(list.size()); i++) {
assert(numPermutations < maxPermutationsLimit);
numPermutations *= i+1;
}
return numPermutations;
}
static void permutateVectorToMap(std::map<std::string, std::string> &map, const std::vector<std::string> &list, int idx)
{
// convert idx to a list.size() digits factoradic number
std::vector<int> factoradicDigits;
for (int i = 0; i < int(list.size()); i++) {
factoradicDigits.push_back(idx % (i+1));
idx = idx / (i+1);
}
// construct permutation
std::vector<std::string> pool = list;
std::vector<std::string> permutation;
while (!factoradicDigits.empty()) {
int i = factoradicDigits.back();
factoradicDigits.pop_back();
permutation.push_back(pool[i]);
pool.erase(pool.begin() + i);
}
// update map
for (int i = 0; i < int(list.size()); i++)
map[list[i]] = permutation[i];
}
static int numberOfPermutationsArray(const std::vector<std::vector<std::string>> &list)
{
int numPermutations = 1;
for (const auto &it : list) {
int thisPermutations = numberOfPermutations(it);
assert(float(numPermutations) * float(thisPermutations) < maxPermutationsLimit);
numPermutations *= thisPermutations;
}
return numPermutations;
}
static void permutateVectorToMapArray(std::map<std::string, std::string> &map, const std::vector<std::vector<std::string>> &list, int idx)
{
for (const auto &it : list) {
int thisPermutations = numberOfPermutations(it);
int thisIdx = idx % thisPermutations;
permutateVectorToMap(map, it, thisIdx);
idx /= thisPermutations;
}
}
static void applyPermutation(std::map<std::string, std::string> &map, const std::map<std::string, std::string> &permutation)
{
std::vector<std::pair<std::string, std::string>> changeLog;
for (const auto &it : permutation)
if (map.count(it.second))
changeLog.push_back(std::pair<std::string, std::string>(it.first, map.at(it.second)));
else
changeLog.push_back(std::pair<std::string, std::string>(it.first, it.second));
for (const auto &it : changeLog)
map[it.first] = it.second;
}
// classes for internal digraph representation
struct DiBit
{
std::string fromPort, toPort;
int fromBit, toBit;
DiBit() : fromPort(), toPort(), fromBit(-1), toBit(-1) { }
DiBit(std::string fromPort, int fromBit, std::string toPort, int toBit) : fromPort(fromPort), toPort(toPort), fromBit(fromBit), toBit(toBit) { }
bool operator < (const DiBit &other) const
{
if (fromPort != other.fromPort)
return fromPort < other.fromPort;
if (toPort != other.toPort)
return toPort < other.toPort;
if (fromBit != other.fromBit)
return fromBit < other.fromBit;
return toBit < other.toBit;
}
std::string toString() const
{
return my_stringf("%s[%d]:%s[%d]", fromPort.c_str(), fromBit, toPort.c_str(), toBit);
}
};
struct DiNode
{
std::string typeId;
std::map<std::string, int> portSizes;
DiNode()
{
}
DiNode(const Graph &graph, int nodeIdx)
{
const Graph::Node &node = graph.nodes.at(nodeIdx);
typeId = node.typeId;
for (const auto &port : node.ports)
portSizes[port.portId] = port.bits.size();
}
bool operator < (const DiNode &other) const
{
if (typeId != other.typeId)
return typeId < other.typeId;
return portSizes < other.portSizes;
}
std::string toString() const
{
std::string str;
bool firstPort = true;
for (const auto &it : portSizes) {
str += my_stringf("%s%s[%d]", firstPort ? "" : ",", it.first.c_str(), it.second);
firstPort = false;
}
return typeId + "(" + str + ")";
}
};
struct DiEdge
{
DiNode fromNode, toNode;
std::set<DiBit> bits;
std::string userAnnotation;
bool operator < (const DiEdge &other) const
{
if (fromNode < other.fromNode || other.fromNode < fromNode)
return fromNode < other.fromNode;
if (toNode < other.toNode || other.toNode < toNode)
return toNode < other.toNode;
if (bits < other.bits || other.bits < bits)
return bits < other.bits;
return userAnnotation < other.userAnnotation;
}
bool compare(const DiEdge &other, const std::map<std::string, std::string> &mapFromPorts, const std::map<std::string, std::string> &mapToPorts) const
{
// Rules for matching edges:
//
// For all bits in the needle edge:
// - ignore if needle ports don't exist in haystack edge
// - otherwise: matching bit in haystack edge must exist
//
// There is no need to check in the other direction, as checking
// of the isExtern properties is already performed in node matching.
//
// Note: "this" is needle, "other" is haystack
for (auto bit : bits)
{
if (mapFromPorts.count(bit.fromPort) > 0)
bit.fromPort = mapFromPorts.at(bit.fromPort);
if (mapToPorts.count(bit.toPort) > 0)
bit.toPort = mapToPorts.at(bit.toPort);
if (other.fromNode.portSizes.count(bit.fromPort) == 0)
continue;
if (other.toNode.portSizes.count(bit.toPort) == 0)
continue;
if (bit.fromBit >= other.fromNode.portSizes.at(bit.fromPort))
continue;
if (bit.toBit >= other.toNode.portSizes.at(bit.toPort))
continue;
if (other.bits.count(bit) == 0)
return false;
}
return true;
}
bool compareWithFromAndToPermutations(const DiEdge &other, const std::map<std::string, std::string> &mapFromPorts, const std::map<std::string, std::string> &mapToPorts,
const std::map<std::string, std::set<std::map<std::string, std::string>>> &swapPermutations) const
{
if (swapPermutations.count(fromNode.typeId) > 0)
for (const auto &permutation : swapPermutations.at(fromNode.typeId)) {
std::map<std::string, std::string> thisMapFromPorts = mapFromPorts;
applyPermutation(thisMapFromPorts, permutation);
if (compareWithToPermutations(other, thisMapFromPorts, mapToPorts, swapPermutations))
return true;
}
return compareWithToPermutations(other, mapFromPorts, mapToPorts, swapPermutations);
}
bool compareWithToPermutations(const DiEdge &other, const std::map<std::string, std::string> &mapFromPorts, const std::map<std::string, std::string> &mapToPorts,
const std::map<std::string, std::set<std::map<std::string, std::string>>> &swapPermutations) const
{
if (swapPermutations.count(toNode.typeId) > 0)
for (const auto &permutation : swapPermutations.at(toNode.typeId)) {
std::map<std::string, std::string> thisMapToPorts = mapToPorts;
applyPermutation(thisMapToPorts, permutation);
if (compare(other, mapFromPorts, thisMapToPorts))
return true;
}
return compare(other, mapFromPorts, mapToPorts);
}
bool compare(const DiEdge &other, const std::map<std::string, std::set<std::set<std::string>>> &swapPorts,
const std::map<std::string, std::set<std::map<std::string, std::string>>> &swapPermutations) const
{
// brute force method for port swapping: try all variations
std::vector<std::vector<std::string>> swapFromPorts;
std::vector<std::vector<std::string>> swapToPorts;
// only use groups that are relevant for this edge
if (swapPorts.count(fromNode.typeId) > 0)
for (const auto &ports : swapPorts.at(fromNode.typeId)) {
for (const auto &bit : bits)
if (ports.count(bit.fromPort))
goto foundFromPortMatch;
if (0) {
foundFromPortMatch:
std::vector<std::string> portsVector;
for (const auto &port : ports)
portsVector.push_back(port);
swapFromPorts.push_back(portsVector);
}
}
if (swapPorts.count(toNode.typeId) > 0)
for (const auto &ports : swapPorts.at(toNode.typeId)) {
for (const auto &bit : bits)
if (ports.count(bit.toPort))
goto foundToPortMatch;
if (0) {
foundToPortMatch:
std::vector<std::string> portsVector;
for (const auto &port : ports)
portsVector.push_back(port);
swapToPorts.push_back(portsVector);
}
}
// try all permutations
std::map<std::string, std::string> mapFromPorts, mapToPorts;
int fromPortsPermutations = numberOfPermutationsArray(swapFromPorts);
int toPortsPermutations = numberOfPermutationsArray(swapToPorts);
for (int i = 0; i < fromPortsPermutations; i++)
{
permutateVectorToMapArray(mapFromPorts, swapFromPorts, i);
for (int j = 0; j < toPortsPermutations; j++) {
permutateVectorToMapArray(mapToPorts, swapToPorts, j);
if (compareWithFromAndToPermutations(other, mapFromPorts, mapToPorts, swapPermutations))
return true;
}
}
return false;
}
bool compare(const DiEdge &other, const std::map<std::string, std::string> &mapFromPorts, const std::map<std::string, std::set<std::set<std::string>>> &swapPorts,
const std::map<std::string, std::set<std::map<std::string, std::string>>> &swapPermutations) const
{
// strip-down version of the last function: only try permutations for mapToPorts, mapFromPorts is already provided by the caller
std::vector<std::vector<std::string>> swapToPorts;
if (swapPorts.count(toNode.typeId) > 0)
for (const auto &ports : swapPorts.at(toNode.typeId)) {
for (const auto &bit : bits)
if (ports.count(bit.toPort))
goto foundToPortMatch;
if (0) {
foundToPortMatch:
std::vector<std::string> portsVector;
for (const auto &port : ports)
portsVector.push_back(port);
swapToPorts.push_back(portsVector);
}
}
std::map<std::string, std::string> mapToPorts;
int toPortsPermutations = numberOfPermutationsArray(swapToPorts);
for (int j = 0; j < toPortsPermutations; j++) {
permutateVectorToMapArray(mapToPorts, swapToPorts, j);
if (compareWithToPermutations(other, mapFromPorts, mapToPorts, swapPermutations))
return true;
}
return false;
}
std::string toString() const
{
std::string buffer = fromNode.toString() + " " + toNode.toString();
for (const auto &bit : bits)
buffer += " " + bit.toString();
if (!userAnnotation.empty())
buffer += " " + userAnnotation;
return buffer;
}
static void findEdgesInGraph(const Graph &graph, std::map<std::pair<int, int>, DiEdge> &edges)
{
edges.clear();
for (const auto &edge : graph.edges) {
if (edge.constValue != 0)
continue;
for (const auto &fromBit : edge.portBits)
for (const auto &toBit : edge.portBits)
if (&fromBit != &toBit) {
DiEdge &de = edges[std::pair<int, int>(fromBit.nodeIdx, toBit.nodeIdx)];
de.fromNode = DiNode(graph, fromBit.nodeIdx);
de.toNode = DiNode(graph, toBit.nodeIdx);
std::string fromPortId = graph.nodes[fromBit.nodeIdx].ports[fromBit.portIdx].portId;
std::string toPortId = graph.nodes[toBit.nodeIdx].ports[toBit.portIdx].portId;
de.bits.insert(DiBit(fromPortId, fromBit.bitIdx, toPortId, toBit.bitIdx));
}
}
}
};
struct DiCache
{
std::map<DiEdge, int> edgeTypesMap;
std::vector<DiEdge> edgeTypes;
std::map<std::pair<int, int>, bool> compareCache;
void add(const Graph &graph, adjMatrix_t &adjMatrix, const std::string &graphId, Solver *userSolver)
{
std::map<std::pair<int, int>, DiEdge> edges;
DiEdge::findEdgesInGraph(graph, edges);
adjMatrix.clear();
adjMatrix.resize(graph.nodes.size());
for (auto &it : edges) {
const Graph::Node &fromNode = graph.nodes[it.first.first];
const Graph::Node &toNode = graph.nodes[it.first.second];
it.second.userAnnotation = userSolver->userAnnotateEdge(graphId, fromNode.nodeId, fromNode.userData, toNode.nodeId, toNode.userData);
}
for (const auto &it : edges) {
if (edgeTypesMap.count(it.second) == 0) {
edgeTypesMap[it.second] = edgeTypes.size();
edgeTypes.push_back(it.second);
}
adjMatrix[it.first.first][it.first.second] = edgeTypesMap[it.second];
}
}
bool compare(int needleEdge, int haystackEdge, const std::map<std::string, std::set<std::set<std::string>>> &swapPorts,
const std::map<std::string, std::set<std::map<std::string, std::string>>> &swapPermutations)
{
std::pair<int, int> key(needleEdge, haystackEdge);
if (!compareCache.count(key))
compareCache[key] = edgeTypes.at(needleEdge).compare(edgeTypes.at(haystackEdge), swapPorts, swapPermutations);
return compareCache[key];
}
bool compare(int needleEdge, int haystackEdge, const std::map<std::string, std::string> &mapFromPorts, const std::map<std::string, std::set<std::set<std::string>>> &swapPorts,
const std::map<std::string, std::set<std::map<std::string, std::string>>> &swapPermutations) const
{
return edgeTypes.at(needleEdge).compare(edgeTypes.at(haystackEdge), mapFromPorts, swapPorts, swapPermutations);
}
bool compare(int needleEdge, int haystackEdge, const std::map<std::string, std::string> &mapFromPorts, const std::map<std::string, std::string> &mapToPorts) const
{
return edgeTypes.at(needleEdge).compare(edgeTypes.at(haystackEdge), mapFromPorts, mapToPorts);
}
void printEdgeTypes() const
{
for (int i = 0; i < int(edgeTypes.size()); i++)
my_printf("%5d: %s\n", i, edgeTypes[i].toString().c_str());
}
};
// solver state variables
Solver *userSolver;
std::map<std::string, GraphData> graphData;
std::map<std::string, std::set<std::string>> compatibleTypes;
std::map<int, std::set<int>> compatibleConstants;
std::map<std::string, std::set<std::set<std::string>>> swapPorts;
std::map<std::string, std::set<std::map<std::string, std::string>>> swapPermutations;
DiCache diCache;
bool verbose;
// main solver functions
bool matchNodes(const Graph &needle, int needleNodeIdx, const Graph &haystack, int haystackNodeIdx) const
{
// Rules for matching nodes:
//
// 1. their typeId must be identical or compatible
// (this is checked before calling this function)
//
// 2. they must have the same ports and the haystack port
// widths must match the needle port width range
//
// 3. All edges from the needle must match the haystack:
// a) if the needle edge is extern:
// - the haystack edge must have at least as many components as the needle edge
// b) if the needle edge is not extern:
// - the haystack edge must have the same number of components as the needle edge
// - the haystack edge must not be extern
const Graph::Node &nn = needle.nodes[needleNodeIdx];
const Graph::Node &hn = haystack.nodes[haystackNodeIdx];
assert(nn.typeId == hn.typeId || (compatibleTypes.count(nn.typeId) > 0 && compatibleTypes.at(nn.typeId).count(hn.typeId) > 0));
if (nn.ports.size() != hn.ports.size())
return false;
for (int i = 0; i < int(nn.ports.size()); i++)
{
if (hn.portMap.count(nn.ports[i].portId) == 0)
return false;
const Graph::Port &np = nn.ports[i];
const Graph::Port &hp = hn.ports[hn.portMap.at(nn.ports[i].portId)];
if (int(hp.bits.size()) < np.minWidth || hp.bits.size() > np.bits.size())
return false;
for (int j = 0; j < int(hp.bits.size()); j++)
{
const Graph::Edge &ne = needle.edges[np.bits[j].edgeIdx];
const Graph::Edge &he = haystack.edges[hp.bits[j].edgeIdx];
if (ne.constValue || he.constValue) {
if (ne.constValue != he.constValue)
if (compatibleConstants.count(ne.constValue) == 0 || compatibleConstants.at(ne.constValue).count(he.constValue) == 0)
return false;
continue;
}
if (ne.isExtern || needle.allExtern) {
if (he.portBits.size() < ne.portBits.size())
return false;
} else {
if (he.portBits.size() != ne.portBits.size())
return false;
if (he.isExtern || haystack.allExtern)
return false;
}
}
}
return true;
}
void generateEnumerationMatrix(std::vector<std::set<int>> &enumerationMatrix, const GraphData &needle, const GraphData &haystack, const std::map<std::string, std::set<std::string>> &initialMappings) const
{
std::map<std::string, std::set<int>> haystackNodesByTypeId;
for (int i = 0; i < int(haystack.graph.nodes.size()); i++)
haystackNodesByTypeId[haystack.graph.nodes[i].typeId].insert(i);
enumerationMatrix.clear();
enumerationMatrix.resize(needle.graph.nodes.size());
for (int i = 0; i < int(needle.graph.nodes.size()); i++)
{
const Graph::Node &nn = needle.graph.nodes[i];
for (int j : haystackNodesByTypeId[nn.typeId]) {
const Graph::Node &hn = haystack.graph.nodes[j];
if (initialMappings.count(nn.nodeId) > 0 && initialMappings.at(nn.nodeId).count(hn.nodeId) == 0)
continue;
if (!matchNodes(needle.graph, i, haystack.graph, j))
continue;
if (userSolver->userCompareNodes(needle.graphId, nn.nodeId, nn.userData, haystack.graphId, hn.nodeId, hn.userData))
enumerationMatrix[i].insert(j);
}
if (compatibleTypes.count(nn.typeId) > 0)
for (const std::string &compatibleTypeId : compatibleTypes.at(nn.typeId))
for (int j : haystackNodesByTypeId[compatibleTypeId]) {
const Graph::Node &hn = haystack.graph.nodes[j];
if (initialMappings.count(nn.nodeId) > 0 && initialMappings.at(nn.nodeId).count(hn.nodeId) == 0)
continue;
if (!matchNodes(needle.graph, i, haystack.graph, j))
continue;
if (userSolver->userCompareNodes(needle.graphId, nn.nodeId, nn.userData, haystack.graphId, hn.nodeId, hn.userData))
enumerationMatrix[i].insert(j);
}
}
}
bool checkEnumerationMatrix(std::vector<std::set<int>> &enumerationMatrix, int i, int j, const GraphData &needle, const GraphData &haystack)
{
for (const auto &it_needle : needle.adjMatrix.at(i))
{
int needleNeighbour = it_needle.first;
int needleEdgeType = it_needle.second;
for (int haystackNeighbour : enumerationMatrix[needleNeighbour])
if (haystack.adjMatrix.at(j).count(haystackNeighbour) > 0) {
int haystackEdgeType = haystack.adjMatrix.at(j).at(haystackNeighbour);
if (diCache.compare(needleEdgeType, haystackEdgeType, swapPorts, swapPermutations)) {
const Graph::Node &needleFromNode = needle.graph.nodes[i];
const Graph::Node &needleToNode = needle.graph.nodes[needleNeighbour];
const Graph::Node &haystackFromNode = haystack.graph.nodes[j];
const Graph::Node &haystackToNode = haystack.graph.nodes[haystackNeighbour];
if (userSolver->userCompareEdge(needle.graphId, needleFromNode.nodeId, needleFromNode.userData, needleToNode.nodeId, needleToNode.userData,
haystack.graphId, haystackFromNode.nodeId, haystackFromNode.userData, haystackToNode.nodeId, haystackToNode.userData))
goto found_match;
}
}
return false;
found_match:;
}
return true;
}
bool pruneEnumerationMatrix(std::vector<std::set<int>> &enumerationMatrix, const GraphData &needle, const GraphData &haystack, int &nextRow)
{
bool didSomething = true;
while (didSomething)
{
nextRow = -1;
didSomething = false;
for (int i = 0; i < int(enumerationMatrix.size()); i++) {
std::set<int> newRow;
for (int j : enumerationMatrix[i]) {
if (checkEnumerationMatrix(enumerationMatrix, i, j, needle, haystack))
newRow.insert(j);
else
didSomething = true;
}
if (newRow.size() == 0)
return false;
if (newRow.size() >= 2 && (nextRow < 0 || needle.adjMatrix.at(nextRow).size() < needle.adjMatrix.at(i).size()))
nextRow = i;
enumerationMatrix[i].swap(newRow);
}
}
return true;
}
void printEnumerationMatrix(const std::vector<std::set<int>> &enumerationMatrix, int maxHaystackNodeIdx = -1) const
{
if (maxHaystackNodeIdx < 0) {
for (const auto &it : enumerationMatrix)
for (int idx : it)
maxHaystackNodeIdx = std::max(maxHaystackNodeIdx, idx);
}
my_printf(" ");
for (int j = 0; j < maxHaystackNodeIdx; j += 5)
my_printf("%-6d", j);
my_printf("\n");
for (int i = 0; i < int(enumerationMatrix.size()); i++)
{
my_printf("%5d:", i);
for (int j = 0; j < maxHaystackNodeIdx; j++) {
if (j % 5 == 0)
my_printf(" ");
my_printf("%c", enumerationMatrix[i].count(j) > 0 ? '*' : '.');
}
my_printf("\n");
}
}
bool checkPortmapCandidate(const std::vector<std::set<int>> &enumerationMatrix, const GraphData &needle, const GraphData &haystack, int idx, const std::map<std::string, std::string> &currentCandidate)
{
assert(enumerationMatrix[idx].size() == 1);
int idxHaystack = *enumerationMatrix[idx].begin();
for (const auto &it_needle : needle.adjMatrix.at(idx))
{
int needleNeighbour = it_needle.first;
int needleEdgeType = it_needle.second;
assert(enumerationMatrix[needleNeighbour].size() == 1);
int haystackNeighbour = *enumerationMatrix[needleNeighbour].begin();
assert(haystack.adjMatrix.at(idxHaystack).count(haystackNeighbour) > 0);
int haystackEdgeType = haystack.adjMatrix.at(idxHaystack).at(haystackNeighbour);
if (!diCache.compare(needleEdgeType, haystackEdgeType, currentCandidate, swapPorts, swapPermutations))
return false;
}
return true;
}
void generatePortmapCandidates(std::set<std::map<std::string, std::string>> &portmapCandidates, const std::vector<std::set<int>> &enumerationMatrix,
const GraphData &needle, const GraphData &haystack, int idx)
{
std::map<std::string, std::string> currentCandidate;
for (const auto &port : needle.graph.nodes[idx].ports)
currentCandidate[port.portId] = port.portId;
if (swapPorts.count(needle.graph.nodes[idx].typeId) == 0)
{
if (checkPortmapCandidate(enumerationMatrix, needle, haystack, idx, currentCandidate))
portmapCandidates.insert(currentCandidate);
if (swapPermutations.count(needle.graph.nodes[idx].typeId) > 0)
for (const auto &permutation : swapPermutations.at(needle.graph.nodes[idx].typeId)) {
std::map<std::string, std::string> currentSubCandidate = currentCandidate;
applyPermutation(currentSubCandidate, permutation);
if (checkPortmapCandidate(enumerationMatrix, needle, haystack, idx, currentSubCandidate))
portmapCandidates.insert(currentSubCandidate);
}
}
else
{
std::vector<std::vector<std::string>> thisSwapPorts;
for (const auto &ports : swapPorts.at(needle.graph.nodes[idx].typeId)) {
std::vector<std::string> portsVector;
for (const auto &port : ports)
portsVector.push_back(port);
thisSwapPorts.push_back(portsVector);
}
int thisPermutations = numberOfPermutationsArray(thisSwapPorts);
for (int i = 0; i < thisPermutations; i++)
{
permutateVectorToMapArray(currentCandidate, thisSwapPorts, i);
if (checkPortmapCandidate(enumerationMatrix, needle, haystack, idx, currentCandidate))
portmapCandidates.insert(currentCandidate);
if (swapPermutations.count(needle.graph.nodes[idx].typeId) > 0)
for (const auto &permutation : swapPermutations.at(needle.graph.nodes[idx].typeId)) {
std::map<std::string, std::string> currentSubCandidate = currentCandidate;
applyPermutation(currentSubCandidate, permutation);
if (checkPortmapCandidate(enumerationMatrix, needle, haystack, idx, currentSubCandidate))
portmapCandidates.insert(currentSubCandidate);
}
}
}
}
bool prunePortmapCandidates(std::vector<std::set<std::map<std::string, std::string>>> &portmapCandidates, std::vector<std::set<int>> enumerationMatrix, const GraphData &needle, const GraphData &haystack)
{
bool didSomething = false;
// strategy #1: prune impossible port mappings
for (int i = 0; i < int(needle.graph.nodes.size()); i++)
{
assert(enumerationMatrix[i].size() == 1);
int j = *enumerationMatrix[i].begin();
std::set<std::map<std::string, std::string>> thisCandidates;
portmapCandidates[i].swap(thisCandidates);
for (const auto &testCandidate : thisCandidates)
{
for (const auto &it_needle : needle.adjMatrix.at(i))
{
int needleNeighbour = it_needle.first;
int needleEdgeType = it_needle.second;
assert(enumerationMatrix[needleNeighbour].size() == 1);
int haystackNeighbour = *enumerationMatrix[needleNeighbour].begin();
assert(haystack.adjMatrix.at(j).count(haystackNeighbour) > 0);
int haystackEdgeType = haystack.adjMatrix.at(j).at(haystackNeighbour);
for (const auto &otherCandidate : portmapCandidates[needleNeighbour]) {
if (diCache.compare(needleEdgeType, haystackEdgeType, testCandidate, otherCandidate))
goto found_match;
}
didSomething = true;
goto purgeCandidate;
found_match:;
}
portmapCandidates[i].insert(testCandidate);
purgeCandidate:;
}
if (portmapCandidates[i].size() == 0)
return false;
}
if (didSomething)
return true;
// strategy #2: prune a single random port mapping
for (int i = 0; i < int(needle.graph.nodes.size()); i++)
if (portmapCandidates[i].size() > 1) {
// remove last mapping. this keeps ports unswapped in don't-care situations
portmapCandidates[i].erase(--portmapCandidates[i].end());
return true;
}
return false;
}
void ullmannRecursion(std::vector<Solver::Result> &results, std::vector<std::set<int>> &enumerationMatrix, int iter, const GraphData &needle, GraphData &haystack, bool allowOverlap, int limitResults)
{
int i = -1;
if (!pruneEnumerationMatrix(enumerationMatrix, needle, haystack, i))
return;
if (i < 0)
{
Solver::Result result;
result.needleGraphId = needle.graphId;
result.haystackGraphId = haystack.graphId;
std::vector<std::set<std::map<std::string, std::string>>> portmapCandidates;
portmapCandidates.resize(enumerationMatrix.size());
for (int j = 0; j < int(enumerationMatrix.size()); j++) {
Solver::ResultNodeMapping mapping;
mapping.needleNodeId = needle.graph.nodes[j].nodeId;
mapping.needleUserData = needle.graph.nodes[j].userData;
mapping.haystackNodeId = haystack.graph.nodes[*enumerationMatrix[j].begin()].nodeId;
mapping.haystackUserData = haystack.graph.nodes[*enumerationMatrix[j].begin()].userData;
generatePortmapCandidates(portmapCandidates[j], enumerationMatrix, needle, haystack, j);
result.mappings[needle.graph.nodes[j].nodeId] = mapping;
}
while (prunePortmapCandidates(portmapCandidates, enumerationMatrix, needle, haystack)) { }
for (int j = 0; j < int(enumerationMatrix.size()); j++) {
if (portmapCandidates[j].size() == 0) {
if (verbose) {
my_printf("\nSolution (rejected by portmapper):\n");
printEnumerationMatrix(enumerationMatrix, haystack.graph.nodes.size());
}
return;
}
result.mappings[needle.graph.nodes[j].nodeId].portMapping = *portmapCandidates[j].begin();
}
if (!userSolver->userCheckSolution(result)) {
if (verbose) {
my_printf("\nSolution (rejected by userCheckSolution):\n");
printEnumerationMatrix(enumerationMatrix, haystack.graph.nodes.size());
}
return;
}
for (int j = 0; j < int(enumerationMatrix.size()); j++)
haystack.usedNodes[*enumerationMatrix[j].begin()] = true;
if (verbose) {
my_printf("\nSolution:\n");
printEnumerationMatrix(enumerationMatrix, haystack.graph.nodes.size());
}
results.push_back(result);
return;
}
if (verbose) {
my_printf("\n");
my_printf("Enumeration Matrix at recursion level %d (%d):\n", iter, i);
printEnumerationMatrix(enumerationMatrix, haystack.graph.nodes.size());
}
std::set<int> activeRow;
enumerationMatrix[i].swap(activeRow);
for (int j : activeRow)
{
// found enough?
if (limitResults >= 0 && int(results.size()) >= limitResults)
return;
// already used by other solution -> try next
if (!allowOverlap && haystack.usedNodes[j])
continue;
// create enumeration matrix for child in recursion tree
std::vector<std::set<int>> nextEnumerationMatrix = enumerationMatrix;
for (int k = 0; k < int(nextEnumerationMatrix.size()); k++)
nextEnumerationMatrix[k].erase(j);
nextEnumerationMatrix[i].insert(j);
// recursion
ullmannRecursion(results, nextEnumerationMatrix, iter+1, needle, haystack, allowOverlap, limitResults);
// we just have found something -> unroll to top recursion level
if (!allowOverlap && haystack.usedNodes[j] && iter > 0)
return;
}
}
// additional data structes and functions for mining
struct NodeSet {
std::string graphId;
std::set<int> nodes;
NodeSet(std::string graphId, int node1, int node2) {
this->graphId = graphId;
nodes.insert(node1);
nodes.insert(node2);
}
NodeSet(std::string graphId, const std::vector<int> &nodes) {
this->graphId = graphId;
for (int node : nodes)
this->nodes.insert(node);
}
void extend(const NodeSet &other) {
assert(this->graphId == other.graphId);
for (int node : other.nodes)
nodes.insert(node);
}
int extendCandidate(const NodeSet &other) const {
if (graphId != other.graphId)
return 0;
int newNodes = 0;
bool intersect = false;
for (int node : other.nodes)
if (nodes.count(node) > 0)
intersect = true;
else
newNodes++;
return intersect ? newNodes : 0;
}
bool operator <(const NodeSet &other) const {
if (graphId != other.graphId)
return graphId < other.graphId;
return nodes < other.nodes;
}
std::string to_string() const {
std::string str = graphId + "(";
bool first = true;
for (int node : nodes) {
str += my_stringf("%s%d", first ? "" : " ", node);
first = false;
}
return str + ")";
}
};
void solveForMining(std::vector<Solver::Result> &results, const GraphData &needle)
{
bool backupVerbose = verbose;
verbose = false;
for (auto &it : graphData)
{
GraphData &haystack = it.second;
std::vector<std::set<int>> enumerationMatrix;
std::map<std::string, std::set<std::string>> initialMappings;
generateEnumerationMatrix(enumerationMatrix, needle, haystack, initialMappings);
haystack.usedNodes.resize(haystack.graph.nodes.size());
ullmannRecursion(results, enumerationMatrix, 0, needle, haystack, true, -1);
}
verbose = backupVerbose;
}
int testForMining(std::vector<Solver::MineResult> &results, std::set<NodeSet> &usedSets, std::set<NodeSet> &nextPool, NodeSet &testSet,
const std::string &graphId, const Graph &graph, int minNodes, int minMatches, int limitMatchesPerGraph)
{
// my_printf("test: %s\n", testSet.to_string().c_str());
GraphData needle;
std::vector<std::string> needle_nodes;
for (int nodeIdx : testSet.nodes)
needle_nodes.push_back(graph.nodes[nodeIdx].nodeId);
needle.graph = Graph(graph, needle_nodes);
needle.graph.markAllExtern();
diCache.add(needle.graph, needle.adjMatrix, graphId, userSolver);
std::vector<Solver::Result> ullmannResults;
solveForMining(ullmannResults, needle);
int matches = 0;
std::map<std::string, int> matchesPerGraph;
std::set<NodeSet> thisNodeSetSet;
for (auto &it : ullmannResults)
{
std::vector<int> resultNodes;
for (auto &i2 : it.mappings)
resultNodes.push_back(graphData[it.haystackGraphId].graph.nodeMap[i2.second.haystackNodeId]);
NodeSet resultSet(it.haystackGraphId, resultNodes);
// my_printf("match: %s%s\n", resultSet.to_string().c_str(), usedSets.count(resultSet) > 0 ? " (dup)" : "");
#if 0
if (usedSets.count(resultSet) > 0) {
// Because of shorted pins isomorphisim is not always bidirectional!
//
// This means that the following assert is not true in all cases and subgraph A might
// show up in the matches for subgraph B but not vice versa... This also means that the
// order in which subgraphs are processed has an impact on the results set.
//
assert(thisNodeSetSet.count(resultSet) > 0);
continue;
}
#else
if (thisNodeSetSet.count(resultSet) > 0)
continue;
#endif
usedSets.insert(resultSet);
thisNodeSetSet.insert(resultSet);
matchesPerGraph[it.haystackGraphId]++;
if (limitMatchesPerGraph < 0 || matchesPerGraph[it.haystackGraphId] < limitMatchesPerGraph)
matches++;
}
if (matches < minMatches)
return matches;
if (minNodes <= int(testSet.nodes.size()))
{
Solver::MineResult result;
result.graphId = graphId;
result.totalMatchesAfterLimits = matches;
result.matchesPerGraph = matchesPerGraph;
for (int nodeIdx : testSet.nodes) {
Solver::MineResultNode resultNode;
resultNode.nodeId = graph.nodes[nodeIdx].nodeId;
resultNode.userData = graph.nodes[nodeIdx].userData;
result.nodes.push_back(resultNode);
}
results.push_back(result);
}
nextPool.insert(thisNodeSetSet.begin(), thisNodeSetSet.end());
return matches;
}
void findNodePairs(std::vector<Solver::MineResult> &results, std::set<NodeSet> &nodePairs, int minNodes, int minMatches, int limitMatchesPerGraph)
{
int groupCounter = 0;
std::set<NodeSet> usedPairs;
nodePairs.clear();
if (verbose)
my_printf("\nMining for frequent node pairs:\n");
for (auto &graph_it : graphData)
for (int node1 = 0; node1 < int(graph_it.second.graph.nodes.size()); node1++)
for (auto &adj_it : graph_it.second.adjMatrix.at(node1))
{
const std::string &graphId = graph_it.first;
const auto &graph = graph_it.second.graph;
int node2 = adj_it.first;
NodeSet pair(graphId, node1, node2);
if (usedPairs.count(pair) > 0)
continue;
int matches = testForMining(results, usedPairs, nodePairs, pair, graphId, graph, minNodes, minMatches, limitMatchesPerGraph);
if (verbose)
my_printf("Pair %s[%s,%s] -> %d%s\n", graphId.c_str(), graph.nodes[node1].nodeId.c_str(),
graph.nodes[node2].nodeId.c_str(), matches, matches < minMatches ? " *purge*" : "");
if (minMatches <= matches)
groupCounter++;
}
if (verbose)
my_printf("Found a total of %d subgraphs in %d groups.\n", int(nodePairs.size()), groupCounter);
}
void findNextPool(std::vector<Solver::MineResult> &results, std::set<NodeSet> &pool,
int oldSetSize, int increment, int minNodes, int minMatches, int limitMatchesPerGraph)
{
int groupCounter = 0;
std::map<std::string, std::vector<const NodeSet*>> poolPerGraph;
std::set<NodeSet> nextPool;
for (auto &it : pool)
poolPerGraph[it.graphId].push_back(&it);
if (verbose)
my_printf("\nMining for frequent subcircuits of size %d using increment %d:\n", oldSetSize+increment, increment);
std::set<NodeSet> usedSets;
for (auto &it : poolPerGraph)
for (int idx1 = 0; idx1 < int(it.second.size()); idx1++)
for (int idx2 = idx1; idx2 < int(it.second.size()); idx2++)
{
if (it.second[idx1]->extendCandidate(*it.second[idx2]) != increment)
continue;
NodeSet mergedSet = *it.second[idx1];
mergedSet.extend(*it.second[idx2]);
if (usedSets.count(mergedSet) > 0)
continue;
const std::string &graphId = it.first;
const auto &graph = graphData[it.first].graph;
int matches = testForMining(results, usedSets, nextPool, mergedSet, graphId, graph, minNodes, minMatches, limitMatchesPerGraph);
if (verbose) {
my_printf("Set %s[", graphId.c_str());
bool first = true;
for (int nodeIdx : mergedSet.nodes) {
my_printf("%s%s", first ? "" : ",", graph.nodes[nodeIdx].nodeId.c_str());
first = false;
}
my_printf("] -> %d%s\n", matches, matches < minMatches ? " *purge*" : "");
}
if (minMatches <= matches)
groupCounter++;
}
pool.swap(nextPool);
if (verbose)
my_printf("Found a total of %d subgraphs in %d groups.\n", int(pool.size()), groupCounter);
}
// interface to the public solver class
protected:
SolverWorker(Solver *userSolver) : userSolver(userSolver), verbose(false)
{
}
void setVerbose()
{
verbose = true;
}
void addGraph(std::string graphId, const Graph &graph)
{
assert(graphData.count(graphId) == 0);
GraphData &gd = graphData[graphId];
gd.graphId = graphId;
gd.graph = graph;
diCache.add(gd.graph, gd.adjMatrix, graphId, userSolver);
}
void addCompatibleTypes(std::string needleTypeId, std::string haystackTypeId)
{
compatibleTypes[needleTypeId].insert(haystackTypeId);
}
void addCompatibleConstants(int needleConstant, int haystackConstant)
{
compatibleConstants[needleConstant].insert(haystackConstant);
}
void addSwappablePorts(std::string needleTypeId, const std::set<std::string> &ports)
{
swapPorts[needleTypeId].insert(ports);
diCache.compareCache.clear();
}
void addSwappablePortsPermutation(std::string needleTypeId, const std::map<std::string, std::string> &portMapping)
{
swapPermutations[needleTypeId].insert(portMapping);
diCache.compareCache.clear();
}
void solve(std::vector<Solver::Result> &results, std::string needleGraphId, std::string haystackGraphId,
const std::map<std::string, std::set<std::string>> &initialMappings, bool allowOverlap, int maxSolutions)
{
assert(graphData.count(needleGraphId) > 0);
assert(graphData.count(haystackGraphId) > 0);
const GraphData &needle = graphData[needleGraphId];
GraphData &haystack = graphData[haystackGraphId];
std::vector<std::set<int>> enumerationMatrix;
generateEnumerationMatrix(enumerationMatrix, needle, haystack, initialMappings);
if (verbose)
{
my_printf("\n");
my_printf("Needle Adjecency Matrix:\n");
printAdjMatrix(needle.adjMatrix);
my_printf("\n");
my_printf("Haystack Adjecency Matrix:\n");
printAdjMatrix(haystack.adjMatrix);
my_printf("\n");
my_printf("Edge Types:\n");
diCache.printEdgeTypes();
my_printf("\n");
my_printf("Enumeration Matrix:\n");
printEnumerationMatrix(enumerationMatrix, haystack.graph.nodes.size());
}
haystack.usedNodes.resize(haystack.graph.nodes.size());
ullmannRecursion(results, enumerationMatrix, 0, needle, haystack, allowOverlap, maxSolutions > 0 ? results.size() + maxSolutions : -1);
}
void mine(std::vector<Solver::MineResult> &results, int minNodes, int maxNodes, int minMatches, int limitMatchesPerGraph)
{
int nodeSetSize = 2;
std::set<NodeSet> pool;
findNodePairs(results, pool, minNodes, minMatches, limitMatchesPerGraph);
while ((maxNodes < 0 || nodeSetSize < maxNodes) && pool.size() > 0)
{
int increment = nodeSetSize - 1;
if (nodeSetSize + increment >= minNodes)
increment = minNodes - nodeSetSize;
if (nodeSetSize >= minNodes)
increment = 1;
findNextPool(results, pool, nodeSetSize, increment, minNodes, minMatches, limitMatchesPerGraph);
nodeSetSize += increment;
}
}
void clearOverlapHistory()
{
for (auto &it : graphData)
it.second.usedNodes.clear();
}
void clearConfig()
{
compatibleTypes.clear();
compatibleConstants.clear();
swapPorts.clear();
swapPermutations.clear();
diCache.compareCache.clear();
}
friend class Solver;
};
bool Solver::userCompareNodes(const std::string&, const std::string&, void*, const std::string&, const std::string&, void*)
{
return true;
}
std::string Solver::userAnnotateEdge(const std::string&, const std::string&, void*, const std::string&, void*)
{
return std::string();
}
bool Solver::userCompareEdge(const std::string&, const std::string&, void*, const std::string&, void*, const std::string&, const std::string&, void*, const std::string&, void*)
{
return true;
}
bool Solver::userCheckSolution(const Result&)
{
return true;
}
SubCircuit::Solver::Solver()
{
worker = new SolverWorker(this);
}
SubCircuit::Solver::~Solver()
{
delete worker;
}
void SubCircuit::Solver::setVerbose()
{
worker->setVerbose();
}
void SubCircuit::Solver::addGraph(std::string graphId, const Graph &graph)
{
worker->addGraph(graphId, graph);
}
void SubCircuit::Solver::addCompatibleTypes(std::string needleTypeId, std::string haystackTypeId)
{
worker->addCompatibleTypes(needleTypeId, haystackTypeId);
}
void SubCircuit::Solver::addCompatibleConstants(int needleConstant, int haystackConstant)
{
worker->addCompatibleConstants(needleConstant, haystackConstant);
}
void SubCircuit::Solver::addSwappablePorts(std::string needleTypeId, std::string portId1, std::string portId2, std::string portId3, std::string portId4)
{
std::set<std::string> ports;
ports.insert(portId1);
ports.insert(portId2);
ports.insert(portId3);
ports.insert(portId4);
ports.erase(std::string());
addSwappablePorts(needleTypeId, ports);
}
void SubCircuit::Solver::addSwappablePorts(std::string needleTypeId, std::set<std::string> ports)
{
worker->addSwappablePorts(needleTypeId, ports);
}
void SubCircuit::Solver::addSwappablePortsPermutation(std::string needleTypeId, std::map<std::string, std::string> portMapping)
{
worker->addSwappablePortsPermutation(needleTypeId, portMapping);
}
void SubCircuit::Solver::solve(std::vector<Result> &results, std::string needleGraphId, std::string haystackGraphId, bool allowOverlap, int maxSolutions)
{
std::map<std::string, std::set<std::string>> emptyInitialMapping;
worker->solve(results, needleGraphId, haystackGraphId, emptyInitialMapping, allowOverlap, maxSolutions);
}
void SubCircuit::Solver::solve(std::vector<Result> &results, std::string needleGraphId, std::string haystackGraphId,
const std::map<std::string, std::set<std::string>> &initialMappings, bool allowOverlap, int maxSolutions)
{
worker->solve(results, needleGraphId, haystackGraphId, initialMappings, allowOverlap, maxSolutions);
}
void SubCircuit::Solver::mine(std::vector<MineResult> &results, int minNodes, int maxNodes, int minMatches, int limitMatchesPerGraph)
{
worker->mine(results, minNodes, maxNodes, minMatches, limitMatchesPerGraph);
}
void SubCircuit::Solver::clearOverlapHistory()
{
worker->clearOverlapHistory();
}
void SubCircuit::Solver::clearConfig()
{
worker->clearConfig();
}