mirror of https://github.com/YosysHQ/yosys.git
3004 lines
72 KiB
Verilog
3004 lines
72 KiB
Verilog
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* ---
|
|
*
|
|
* The Simulation Library.
|
|
*
|
|
* This Verilog library contains simple simulation models for the internal
|
|
* cells ($not, ...) generated by the frontends and used in most passes.
|
|
*
|
|
* This library can be used to verify the internal netlists as generated
|
|
* by the different frontends and passes.
|
|
*
|
|
* Note that memory can only be simulated when all $memrd and $memwr cells
|
|
* have been merged to stand-alone $mem cells (this is what the "memory_collect"
|
|
* pass is doing).
|
|
*
|
|
*/
|
|
|
|
// --------------------------------------------------------
|
|
|
|
//* ver 2
|
|
//* title Bit-wise inverter
|
|
//* group unary
|
|
//- This corresponds to the Verilog unary prefix '~' operator.
|
|
//-
|
|
module \$not (A, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
assign Y = ~$signed(A);
|
|
end else begin:BLOCK2
|
|
assign Y = ~A;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $pos (A, Y)
|
|
//* group unary
|
|
//-
|
|
//- A buffer. This corresponds to the Verilog unary prefix '+' operator.
|
|
//-
|
|
module \$pos (A, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A);
|
|
end else begin:BLOCK2
|
|
assign Y = A;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $buf (A, Y)
|
|
//-
|
|
//- A simple coarse-grain buffer cell type for the experimental buffered-normalized
|
|
//- mode. Note this cell does't get removed by 'opt_clean' and is not recommended
|
|
//- for general use.
|
|
//-
|
|
module \$buf (A, Y);
|
|
|
|
parameter WIDTH = 0;
|
|
|
|
input [WIDTH-1:0] A;
|
|
output [WIDTH-1:0] Y;
|
|
|
|
assign Y = A;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $neg (A, Y)
|
|
//* group unary
|
|
//-
|
|
//- An arithmetic inverter. This corresponds to the Verilog unary prefix '-' operator.
|
|
//-
|
|
module \$neg (A, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
assign Y = -$signed(A);
|
|
end else begin:BLOCK2
|
|
assign Y = -A;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $and (A, B, Y)
|
|
//-
|
|
//- A bit-wise AND. This corresponds to the Verilog '&' operator.
|
|
//-
|
|
module \$and (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) & $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A & B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $or (A, B, Y)
|
|
//-
|
|
//- A bit-wise OR. This corresponds to the Verilog '|' operator.
|
|
//-
|
|
module \$or (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) | $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A | B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $xor (A, B, Y)
|
|
//-
|
|
//- A bit-wise XOR. This corresponds to the Verilog '^' operator.
|
|
//-
|
|
module \$xor (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) ^ $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A ^ B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $xnor (A, B, Y)
|
|
//-
|
|
//- A bit-wise XNOR. This corresponds to the Verilog '~^' operator.
|
|
//-
|
|
module \$xnor (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) ~^ $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A ~^ B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $reduce_and (A, Y)
|
|
//* group unary
|
|
//-
|
|
//- An AND reduction. This corresponds to the Verilog unary prefix '&' operator.
|
|
//-
|
|
module \$reduce_and (A, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
assign Y = &$signed(A);
|
|
end else begin:BLOCK2
|
|
assign Y = &A;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $reduce_or (A, Y)
|
|
//* group unary
|
|
//-
|
|
//- An OR reduction. This corresponds to the Verilog unary prefix '|' operator.
|
|
//-
|
|
module \$reduce_or (A, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
assign Y = |$signed(A);
|
|
end else begin:BLOCK2
|
|
assign Y = |A;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $reduce_xor (A, Y)
|
|
//* group unary
|
|
//-
|
|
//- A XOR reduction. This corresponds to the Verilog unary prefix '^' operator.
|
|
//-
|
|
module \$reduce_xor (A, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
assign Y = ^$signed(A);
|
|
end else begin:BLOCK2
|
|
assign Y = ^A;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $reduce_xnor (A, Y)
|
|
//* group unary
|
|
//-
|
|
//- A XNOR reduction. This corresponds to the Verilog unary prefix '~^' operator.
|
|
//-
|
|
module \$reduce_xnor (A, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
assign Y = ~^$signed(A);
|
|
end else begin:BLOCK2
|
|
assign Y = ~^A;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $reduce_bool (A, Y)
|
|
//* group unary
|
|
//-
|
|
//- An OR reduction. This cell type is used instead of $reduce_or when a signal is
|
|
//- implicitly converted to a boolean signal, e.g. for operands of '&&' and '||'.
|
|
//-
|
|
module \$reduce_bool (A, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
assign Y = !(!$signed(A));
|
|
end else begin:BLOCK2
|
|
assign Y = !(!A);
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $shl (A, B, Y)
|
|
//-
|
|
//- A logical shift-left operation. This corresponds to the Verilog '<<' operator.
|
|
//-
|
|
module \$shl (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) << B;
|
|
end else begin:BLOCK2
|
|
assign Y = A << B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $shr (A, B, Y)
|
|
//-
|
|
//- A logical shift-right operation. This corresponds to the Verilog '>>' operator.
|
|
//-
|
|
module \$shr (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) >> B;
|
|
end else begin:BLOCK2
|
|
assign Y = A >> B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $sshl (A, B, Y)
|
|
//-
|
|
//- An arithmatic shift-left operation.
|
|
//- This corresponds to the Verilog '<<<' operator.
|
|
//-
|
|
module \$sshl (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) <<< B;
|
|
end else begin:BLOCK2
|
|
assign Y = A <<< B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $sshr (A, B, Y)
|
|
//-
|
|
//- An arithmatic shift-right operation.
|
|
//- This corresponds to the Verilog '>>>' operator.
|
|
//-
|
|
module \$sshr (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) >>> B;
|
|
end else begin:BLOCK2
|
|
assign Y = A >>> B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$shift (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
if (B_SIGNED) begin:BLOCK2
|
|
assign Y = $signed(B) < 0 ? $signed(A) << -B : $signed(A) >> B;
|
|
end else begin:BLOCK3
|
|
assign Y = $signed(A) >> B;
|
|
end
|
|
end else begin:BLOCK4
|
|
if (B_SIGNED) begin:BLOCK5
|
|
assign Y = $signed(B) < 0 ? A << -B : A >> B;
|
|
end else begin:BLOCK6
|
|
assign Y = A >> B;
|
|
end
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$shiftx (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (Y_WIDTH > 0)
|
|
if (B_SIGNED) begin:BLOCK1
|
|
assign Y = A[$signed(B) +: Y_WIDTH];
|
|
end else begin:BLOCK2
|
|
assign Y = A[B +: Y_WIDTH];
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$fa (A, B, C, X, Y);
|
|
|
|
parameter WIDTH = 1;
|
|
|
|
input [WIDTH-1:0] A, B, C;
|
|
output [WIDTH-1:0] X, Y;
|
|
|
|
wire [WIDTH-1:0] t1, t2, t3;
|
|
|
|
assign t1 = A ^ B, t2 = A & B, t3 = C & t1;
|
|
assign Y = t1 ^ C, X = (t2 | t3) ^ (Y ^ Y);
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $lcu (P, G, CI, CO)
|
|
//-
|
|
//- Lookahead carry unit
|
|
//- A building block dedicated to fast computation of carry-bits used in binary
|
|
//- arithmetic operations. By replacing the ripple carry structure used in full-adder
|
|
//- blocks, the more significant bits of the sum can be expected to be computed more
|
|
//- quickly.
|
|
//- Typically created during `techmap` of $alu cells (see the "_90_alu" rule in
|
|
//- +/techmap.v).
|
|
module \$lcu (P, G, CI, CO);
|
|
|
|
parameter WIDTH = 1;
|
|
|
|
input [WIDTH-1:0] P; // Propagate
|
|
input [WIDTH-1:0] G; // Generate
|
|
input CI; // Carry-in
|
|
|
|
output reg [WIDTH-1:0] CO; // Carry-out
|
|
|
|
integer i;
|
|
always @* begin
|
|
CO = 'bx;
|
|
if (^{P, G, CI} !== 1'bx) begin
|
|
CO[0] = G[0] || (P[0] && CI);
|
|
for (i = 1; i < WIDTH; i = i+1)
|
|
CO[i] = G[i] || (P[i] && CO[i-1]);
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
//* ver 2
|
|
//* title Arithmetic logic unit
|
|
//- A building block supporting both binary addition/subtraction operations, and
|
|
//- indirectly, comparison operations.
|
|
//- Typically created by the `alumacc` pass, which transforms:
|
|
//- `$add`, `$sub`, `$lt`, `$le`, `$ge`, `$gt`, `$eq`, `$eqx`, `$ne`, `$nex`
|
|
//- cells into this `$alu` cell.
|
|
//-
|
|
module \$alu (A, B, CI, BI, X, Y, CO);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
input [A_WIDTH-1:0] A; // Input operand
|
|
input [B_WIDTH-1:0] B; // Input operand
|
|
output [Y_WIDTH-1:0] X; // A xor B (sign-extended, optional B inversion,
|
|
// used in combination with
|
|
// reduction-AND for $eq/$ne ops)
|
|
output [Y_WIDTH-1:0] Y; // Sum
|
|
|
|
input CI; // Carry-in (set for $sub)
|
|
input BI; // Invert-B (set for $sub)
|
|
output [Y_WIDTH-1:0] CO; // Carry-out
|
|
|
|
wire [Y_WIDTH-1:0] AA, BB;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign AA = $signed(A), BB = BI ? ~$signed(B) : $signed(B);
|
|
end else begin:BLOCK2
|
|
assign AA = $unsigned(A), BB = BI ? ~$unsigned(B) : $unsigned(B);
|
|
end
|
|
endgenerate
|
|
|
|
// this is 'x' if Y and CO should be all 'x', and '0' otherwise
|
|
wire y_co_undef = ^{A, A, B, B, CI, CI, BI, BI};
|
|
|
|
assign X = AA ^ BB;
|
|
// Full adder
|
|
assign Y = (AA + BB + CI) ^ {Y_WIDTH{y_co_undef}};
|
|
|
|
function get_carry;
|
|
input a, b, c;
|
|
get_carry = (a&b) | (a&c) | (b&c);
|
|
endfunction
|
|
|
|
genvar i;
|
|
generate
|
|
assign CO[0] = get_carry(AA[0], BB[0], CI) ^ y_co_undef;
|
|
for (i = 1; i < Y_WIDTH; i = i+1) begin:BLOCK3
|
|
assign CO[i] = get_carry(AA[i], BB[i], CO[i-1]) ^ y_co_undef;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $lt (A, B, Y)
|
|
//-
|
|
//- A less-than comparison between inputs 'A' and 'B'.
|
|
//- This corresponds to the Verilog '<' operator.
|
|
//-
|
|
module \$lt (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) < $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A < B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $le (A, B, Y)
|
|
//-
|
|
//- A less-than-or-equal-to comparison between inputs 'A' and 'B'.
|
|
//- This corresponds to the Verilog '<=' operator.
|
|
//-
|
|
module \$le (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) <= $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A <= B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $eq (A, B, Y)
|
|
//-
|
|
//- An equality comparison between inputs 'A' and 'B'.
|
|
//- This corresponds to the Verilog '==' operator.
|
|
//-
|
|
module \$eq (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) == $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A == B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $ne (A, B, Y)
|
|
//-
|
|
//- An inequality comparison between inputs 'A' and 'B'.
|
|
//- This corresponds to the Verilog '!=' operator.
|
|
//-
|
|
module \$ne (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) != $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A != B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $eqx (A, B, Y)
|
|
//-
|
|
//- An exact equality comparison between inputs 'A' and 'B'.
|
|
//- This corresponds to the Verilog '===' operator.
|
|
//- Unlike equality comparison that can give 'x' as output,
|
|
//- an exact equality comparison will strictly give '0' or '1' as output.
|
|
//-
|
|
module \$eqx (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) === $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A === B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $nex (A, B, Y)
|
|
//-
|
|
//- An exact inequality comparison between inputs 'A' and 'B'.
|
|
//- This corresponds to the Verilog '!==' operator.
|
|
//- Unlike inequality comparison that can give 'x' as output,
|
|
//- an exact inequality comparison will strictly give '0' or '1' as output.
|
|
//-
|
|
module \$nex (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) !== $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A !== B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $ge (A, B, Y)
|
|
//-
|
|
//- A greater-than-or-equal-to comparison between inputs 'A' and 'B'.
|
|
//- This corresponds to the Verilog '>=' operator.
|
|
//-
|
|
module \$ge (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) >= $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A >= B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $gt (A, B, Y)
|
|
//-
|
|
//- A greater-than comparison between inputs 'A' and 'B'.
|
|
//- This corresponds to the Verilog '>' operator.
|
|
//-
|
|
module \$gt (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) > $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A > B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $add (A, B, Y)
|
|
//-
|
|
//- Addition of inputs 'A' and 'B'. This corresponds to the Verilog '+' operator.
|
|
//-
|
|
module \$add (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) + $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A + B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $sub (A, B, Y)
|
|
//-
|
|
//- Subtraction between inputs 'A' and 'B'.
|
|
//- This corresponds to the Verilog '-' operator.
|
|
//-
|
|
module \$sub (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) - $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A - B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $mul (A, B, Y)
|
|
//-
|
|
//- Multiplication of inputs 'A' and 'B'.
|
|
//- This corresponds to the Verilog '*' operator.
|
|
//-
|
|
module \$mul (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) * $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A * B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $macc (A, B, Y)
|
|
//-
|
|
//- Multiply and accumulate.
|
|
//- A building block for summing any number of negated and unnegated signals
|
|
//- and arithmetic products of pairs of signals. Cell port A concatenates pairs
|
|
//- of signals to be multiplied together. When the second signal in a pair is zero
|
|
//- length, a constant 1 is used instead as the second factor. Cell port B
|
|
//- concatenates 1-bit-wide signals to also be summed, such as "carry in" in adders.
|
|
//- Typically created by the `alumacc` pass, which transforms $add and $mul
|
|
//- into $macc cells.
|
|
module \$macc (A, B, Y);
|
|
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
// CONFIG determines the layout of A, as explained below
|
|
parameter CONFIG = 4'b0000;
|
|
parameter CONFIG_WIDTH = 4;
|
|
|
|
// In the terms used for this cell, there's mixed meanings for the term "port". To disambiguate:
|
|
// A cell port is for example the A input (it is constructed in C++ as cell->setPort(ID::A, ...))
|
|
// Multiplier ports are pairs of multiplier inputs ("factors").
|
|
// If the second signal in such a pair is zero length, no multiplication is necessary, and the first signal is just added to the sum.
|
|
input [A_WIDTH-1:0] A; // Cell port A is the concatenation of all arithmetic ports
|
|
input [B_WIDTH-1:0] B; // Cell port B is the concatenation of single-bit unsigned signals to be also added to the sum
|
|
output reg [Y_WIDTH-1:0] Y; // Output sum
|
|
|
|
// Xilinx XSIM does not like $clog2() below..
|
|
function integer my_clog2;
|
|
input integer v;
|
|
begin
|
|
if (v > 0)
|
|
v = v - 1;
|
|
my_clog2 = 0;
|
|
while (v) begin
|
|
v = v >> 1;
|
|
my_clog2 = my_clog2 + 1;
|
|
end
|
|
end
|
|
endfunction
|
|
|
|
// Bits that a factor's length field in CONFIG per factor in cell port A
|
|
localparam integer num_bits = CONFIG[3:0] > 0 ? CONFIG[3:0] : 1;
|
|
// Number of multiplier ports
|
|
localparam integer num_ports = (CONFIG_WIDTH-4) / (2 + 2*num_bits);
|
|
// Minium bit width of an induction variable to iterate over all bits of cell port A
|
|
localparam integer num_abits = my_clog2(A_WIDTH) > 0 ? my_clog2(A_WIDTH) : 1;
|
|
|
|
// In this pseudocode, u(foo) means an unsigned int that's foo bits long.
|
|
// The CONFIG parameter carries the following information:
|
|
// struct CONFIG {
|
|
// u4 num_bits;
|
|
// struct port_field {
|
|
// bool is_signed;
|
|
// bool is_subtract;
|
|
// u(num_bits) factor1_len;
|
|
// u(num_bits) factor2_len;
|
|
// }[num_ports];
|
|
// };
|
|
|
|
// The A cell port carries the following information:
|
|
// struct A {
|
|
// u(CONFIG.port_field[0].factor1_len) port0factor1;
|
|
// u(CONFIG.port_field[0].factor2_len) port0factor2;
|
|
// u(CONFIG.port_field[1].factor1_len) port1factor1;
|
|
// u(CONFIG.port_field[1].factor2_len) port1factor2;
|
|
// ...
|
|
// };
|
|
// and log(sizeof(A)) is num_abits.
|
|
// No factor1 may have a zero length.
|
|
// A factor2 having a zero length implies factor2 is replaced with a constant 1.
|
|
|
|
// Additionally, B is an array of 1-bit-wide unsigned integers to also be summed up.
|
|
// Finally, we have:
|
|
// Y = port0factor1 * port0factor2 + port1factor1 * port1factor2 + ...
|
|
// * B[0] + B[1] + ...
|
|
|
|
function [2*num_ports*num_abits-1:0] get_port_offsets;
|
|
input [CONFIG_WIDTH-1:0] cfg;
|
|
integer i, cursor;
|
|
begin
|
|
cursor = 0;
|
|
get_port_offsets = 0;
|
|
for (i = 0; i < num_ports; i = i+1) begin
|
|
get_port_offsets[(2*i + 0)*num_abits +: num_abits] = cursor;
|
|
cursor = cursor + cfg[4 + i*(2 + 2*num_bits) + 2 +: num_bits];
|
|
get_port_offsets[(2*i + 1)*num_abits +: num_abits] = cursor;
|
|
cursor = cursor + cfg[4 + i*(2 + 2*num_bits) + 2 + num_bits +: num_bits];
|
|
end
|
|
end
|
|
endfunction
|
|
|
|
localparam [2*num_ports*num_abits-1:0] port_offsets = get_port_offsets(CONFIG);
|
|
|
|
`define PORT_IS_SIGNED (0 + CONFIG[4 + i*(2 + 2*num_bits)])
|
|
`define PORT_DO_SUBTRACT (0 + CONFIG[4 + i*(2 + 2*num_bits) + 1])
|
|
`define PORT_SIZE_A (0 + CONFIG[4 + i*(2 + 2*num_bits) + 2 +: num_bits])
|
|
`define PORT_SIZE_B (0 + CONFIG[4 + i*(2 + 2*num_bits) + 2 + num_bits +: num_bits])
|
|
`define PORT_OFFSET_A (0 + port_offsets[2*i*num_abits +: num_abits])
|
|
`define PORT_OFFSET_B (0 + port_offsets[2*i*num_abits + num_abits +: num_abits])
|
|
|
|
integer i, j;
|
|
reg [Y_WIDTH-1:0] tmp_a, tmp_b;
|
|
|
|
always @* begin
|
|
Y = 0;
|
|
for (i = 0; i < num_ports; i = i+1)
|
|
begin
|
|
tmp_a = 0;
|
|
tmp_b = 0;
|
|
|
|
for (j = 0; j < `PORT_SIZE_A; j = j+1)
|
|
tmp_a[j] = A[`PORT_OFFSET_A + j];
|
|
|
|
if (`PORT_IS_SIGNED && `PORT_SIZE_A > 0)
|
|
for (j = `PORT_SIZE_A; j < Y_WIDTH; j = j+1)
|
|
tmp_a[j] = tmp_a[`PORT_SIZE_A-1];
|
|
|
|
for (j = 0; j < `PORT_SIZE_B; j = j+1)
|
|
tmp_b[j] = A[`PORT_OFFSET_B + j];
|
|
|
|
if (`PORT_IS_SIGNED && `PORT_SIZE_B > 0)
|
|
for (j = `PORT_SIZE_B; j < Y_WIDTH; j = j+1)
|
|
tmp_b[j] = tmp_b[`PORT_SIZE_B-1];
|
|
|
|
if (`PORT_SIZE_B > 0)
|
|
tmp_a = tmp_a * tmp_b;
|
|
|
|
if (`PORT_DO_SUBTRACT)
|
|
Y = Y - tmp_a;
|
|
else
|
|
Y = Y + tmp_a;
|
|
end
|
|
for (i = 0; i < B_WIDTH; i = i+1) begin
|
|
Y = Y + B[i];
|
|
end
|
|
end
|
|
|
|
`undef PORT_IS_SIGNED
|
|
`undef PORT_DO_SUBTRACT
|
|
`undef PORT_SIZE_A
|
|
`undef PORT_SIZE_B
|
|
`undef PORT_OFFSET_A
|
|
`undef PORT_OFFSET_B
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $div (A, B, Y)
|
|
//-
|
|
//- Division with truncated result (rounded towards 0).
|
|
//-
|
|
module \$div (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) / $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A / B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $mod (A, B, Y)
|
|
//-
|
|
//- Modulo/remainder of division with truncated result (rounded towards 0).
|
|
//-
|
|
//- Invariant: $div(A, B) * B + $mod(A, B) == A
|
|
//-
|
|
module \$mod (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) % $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A % B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $divfloor (A, B, Y)
|
|
//-
|
|
//- Division with floored result (rounded towards negative infinity).
|
|
//-
|
|
module \$divfloor (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
localparam WIDTH =
|
|
A_WIDTH >= B_WIDTH && A_WIDTH >= Y_WIDTH ? A_WIDTH :
|
|
B_WIDTH >= A_WIDTH && B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH;
|
|
wire [WIDTH:0] A_buf, B_buf, N_buf;
|
|
assign A_buf = $signed(A);
|
|
assign B_buf = $signed(B);
|
|
assign N_buf = (A[A_WIDTH-1] == B[B_WIDTH-1]) || A == 0 ? A_buf : $signed(A_buf - (B[B_WIDTH-1] ? B_buf+1 : B_buf-1));
|
|
assign Y = $signed(N_buf) / $signed(B_buf);
|
|
end else begin:BLOCK2
|
|
assign Y = A / B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $modfloor (A, B, Y)
|
|
//-
|
|
//- Modulo/remainder of division with floored result (rounded towards negative infinity).
|
|
//-
|
|
//- Invariant: $divfloor(A, B) * B + $modfloor(A, B) == A
|
|
//-
|
|
module \$modfloor (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
localparam WIDTH = B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH;
|
|
wire [WIDTH-1:0] B_buf, Y_trunc;
|
|
assign B_buf = $signed(B);
|
|
assign Y_trunc = $signed(A) % $signed(B);
|
|
// flooring mod is the same as truncating mod for positive division results (A and B have
|
|
// the same sign), as well as when there's no remainder.
|
|
// For all other cases, they behave as `floor - trunc = B`
|
|
assign Y = (A[A_WIDTH-1] == B[B_WIDTH-1]) || Y_trunc == 0 ? Y_trunc : $signed(B_buf) + $signed(Y_trunc);
|
|
end else begin:BLOCK2
|
|
// no difference between truncating and flooring for unsigned
|
|
assign Y = A % B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $pow (A, B, Y)
|
|
//-
|
|
//- Exponentiation of an input (Y = A ** B).
|
|
//- This corresponds to the Verilog '**' operator.
|
|
//-
|
|
`ifndef SIMLIB_NOPOW
|
|
|
|
module \$pow (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) ** $signed(B);
|
|
end else if (A_SIGNED) begin:BLOCK2
|
|
assign Y = $signed(A) ** B;
|
|
end else if (B_SIGNED) begin:BLOCK3
|
|
assign Y = A ** $signed(B);
|
|
end else begin:BLOCK4
|
|
assign Y = A ** B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
`endif
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $logic_not (A, Y)
|
|
//-
|
|
//- A logical inverter. This corresponds to the Verilog unary prefix '!' operator.
|
|
//-
|
|
//* group unary
|
|
module \$logic_not (A, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED) begin:BLOCK1
|
|
assign Y = !$signed(A);
|
|
end else begin:BLOCK2
|
|
assign Y = !A;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $logic_and (A, B, Y)
|
|
//-
|
|
//- A logical AND. This corresponds to the Verilog '&&' operator.
|
|
//-
|
|
module \$logic_and (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) && $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A && B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $logic_or (A, B, Y)
|
|
//-
|
|
//- A logical OR. This corresponds to the Verilog '||' operator.
|
|
//-
|
|
module \$logic_or (A, B, Y);
|
|
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
generate
|
|
if (A_SIGNED && B_SIGNED) begin:BLOCK1
|
|
assign Y = $signed(A) || $signed(B);
|
|
end else begin:BLOCK2
|
|
assign Y = A || B;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$slice (A, Y);
|
|
|
|
parameter OFFSET = 0;
|
|
parameter A_WIDTH = 0;
|
|
parameter Y_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
assign Y = A >> OFFSET;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $concat (A, B, Y)
|
|
//-
|
|
//- Concatenation of inputs into a single output ( Y = {B, A} ).
|
|
//-
|
|
module \$concat (A, B, Y);
|
|
|
|
parameter A_WIDTH = 0;
|
|
parameter B_WIDTH = 0;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [A_WIDTH+B_WIDTH-1:0] Y;
|
|
|
|
assign Y = {B, A};
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $mux (A, B, S, Y)
|
|
//-
|
|
//- Multiplexer i.e selecting between two inputs based on select signal.
|
|
//-
|
|
module \$mux (A, B, S, Y);
|
|
|
|
parameter WIDTH = 0;
|
|
|
|
input [WIDTH-1:0] A, B;
|
|
input S;
|
|
output [WIDTH-1:0] Y;
|
|
|
|
assign Y = S ? B : A;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$bmux (A, S, Y);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter S_WIDTH = 0;
|
|
|
|
input [(WIDTH << S_WIDTH)-1:0] A;
|
|
input [S_WIDTH-1:0] S;
|
|
output [WIDTH-1:0] Y;
|
|
|
|
wire [WIDTH-1:0] bm0_out, bm1_out;
|
|
|
|
generate
|
|
if (S_WIDTH > 1) begin:muxlogic
|
|
\$bmux #(.WIDTH(WIDTH), .S_WIDTH(S_WIDTH-1)) bm0 (.A(A[(WIDTH << (S_WIDTH - 1))-1:0]), .S(S[S_WIDTH-2:0]), .Y(bm0_out));
|
|
\$bmux #(.WIDTH(WIDTH), .S_WIDTH(S_WIDTH-1)) bm1 (.A(A[(WIDTH << S_WIDTH)-1:WIDTH << (S_WIDTH - 1)]), .S(S[S_WIDTH-2:0]), .Y(bm1_out));
|
|
assign Y = S[S_WIDTH-1] ? bm1_out : bm0_out;
|
|
end else if (S_WIDTH == 1) begin:simple
|
|
assign Y = S ? A[2*WIDTH-1:WIDTH] : A[WIDTH-1:0];
|
|
end else begin:passthru
|
|
assign Y = A;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$pmux (A, B, S, Y);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter S_WIDTH = 0;
|
|
|
|
input [WIDTH-1:0] A;
|
|
input [WIDTH*S_WIDTH-1:0] B;
|
|
input [S_WIDTH-1:0] S;
|
|
output reg [WIDTH-1:0] Y;
|
|
|
|
integer i;
|
|
reg found_active_sel_bit;
|
|
|
|
always @* begin
|
|
Y = A;
|
|
found_active_sel_bit = 0;
|
|
for (i = 0; i < S_WIDTH; i = i+1)
|
|
case (S[i])
|
|
1'b1: begin
|
|
Y = found_active_sel_bit ? 'bx : B >> (WIDTH*i);
|
|
found_active_sel_bit = 1;
|
|
end
|
|
1'b0: ;
|
|
1'bx: begin
|
|
Y = 'bx;
|
|
found_active_sel_bit = 'bx;
|
|
end
|
|
endcase
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $demux (A, S, Y)
|
|
//-
|
|
//- Demultiplexer i.e routing single input to several outputs based on select signal.
|
|
//- Unselected outputs are driven to zero.
|
|
//-
|
|
module \$demux (A, S, Y);
|
|
|
|
parameter WIDTH = 1;
|
|
parameter S_WIDTH = 1;
|
|
|
|
input [WIDTH-1:0] A;
|
|
input [S_WIDTH-1:0] S;
|
|
output [(WIDTH << S_WIDTH)-1:0] Y;
|
|
|
|
genvar i;
|
|
generate
|
|
for (i = 0; i < (1 << S_WIDTH); i = i + 1) begin:slices
|
|
assign Y[i*WIDTH+:WIDTH] = (S == i) ? A : 0;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
`ifndef SIMLIB_NOLUT
|
|
|
|
module \$lut (A, Y);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter LUT = 0;
|
|
|
|
input [WIDTH-1:0] A;
|
|
output Y;
|
|
|
|
\$bmux #(.WIDTH(1), .S_WIDTH(WIDTH)) mux(.A(LUT[(1<<WIDTH)-1:0]), .S(A), .Y(Y));
|
|
|
|
endmodule
|
|
|
|
`endif
|
|
// --------------------------------------------------------
|
|
|
|
module \$sop (A, Y);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter DEPTH = 0;
|
|
parameter TABLE = 0;
|
|
|
|
input [WIDTH-1:0] A;
|
|
output reg Y;
|
|
|
|
integer i, j;
|
|
reg match;
|
|
|
|
always @* begin
|
|
Y = 0;
|
|
for (i = 0; i < DEPTH; i=i+1) begin
|
|
match = 1;
|
|
for (j = 0; j < WIDTH; j=j+1) begin
|
|
if (TABLE[2*WIDTH*i + 2*j + 0] && A[j]) match = 0;
|
|
if (TABLE[2*WIDTH*i + 2*j + 1] && !A[j]) match = 0;
|
|
end
|
|
if (match) Y = 1;
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
//-
|
|
//- $tribuf (A, EN, Y)
|
|
//-
|
|
//- A tri-state buffer.
|
|
//- This buffer conditionally drives the output with the value of the input
|
|
//- based on the enable signal.
|
|
//-
|
|
module \$tribuf (A, EN, Y);
|
|
|
|
parameter WIDTH = 0;
|
|
|
|
input [WIDTH-1:0] A;
|
|
input EN;
|
|
output [WIDTH-1:0] Y;
|
|
|
|
assign Y = EN ? A : 'bz;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$specify2 (EN, SRC, DST);
|
|
|
|
parameter FULL = 0;
|
|
parameter SRC_WIDTH = 1;
|
|
parameter DST_WIDTH = 1;
|
|
|
|
parameter SRC_DST_PEN = 0;
|
|
parameter SRC_DST_POL = 0;
|
|
|
|
parameter T_RISE_MIN = 0;
|
|
parameter T_RISE_TYP = 0;
|
|
parameter T_RISE_MAX = 0;
|
|
|
|
parameter T_FALL_MIN = 0;
|
|
parameter T_FALL_TYP = 0;
|
|
parameter T_FALL_MAX = 0;
|
|
|
|
input EN;
|
|
input [SRC_WIDTH-1:0] SRC;
|
|
input [DST_WIDTH-1:0] DST;
|
|
|
|
localparam SD = SRC_DST_PEN ? (SRC_DST_POL ? 1 : 2) : 0;
|
|
|
|
`ifdef SIMLIB_SPECIFY
|
|
specify
|
|
if (EN && SD==0 && !FULL) (SRC => DST) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && SD==0 && FULL) (SRC *> DST) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && SD==1 && !FULL) (SRC +=> DST) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && SD==1 && FULL) (SRC +*> DST) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && SD==2 && !FULL) (SRC -=> DST) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && SD==2 && FULL) (SRC -*> DST) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
endspecify
|
|
`endif
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$specify3 (EN, SRC, DST, DAT);
|
|
|
|
parameter FULL = 0;
|
|
parameter SRC_WIDTH = 1;
|
|
parameter DST_WIDTH = 1;
|
|
|
|
parameter EDGE_EN = 0;
|
|
parameter EDGE_POL = 0;
|
|
|
|
parameter SRC_DST_PEN = 0;
|
|
parameter SRC_DST_POL = 0;
|
|
|
|
parameter DAT_DST_PEN = 0;
|
|
parameter DAT_DST_POL = 0;
|
|
|
|
parameter T_RISE_MIN = 0;
|
|
parameter T_RISE_TYP = 0;
|
|
parameter T_RISE_MAX = 0;
|
|
|
|
parameter T_FALL_MIN = 0;
|
|
parameter T_FALL_TYP = 0;
|
|
parameter T_FALL_MAX = 0;
|
|
|
|
input EN;
|
|
input [SRC_WIDTH-1:0] SRC;
|
|
input [DST_WIDTH-1:0] DST, DAT;
|
|
|
|
localparam ED = EDGE_EN ? (EDGE_POL ? 1 : 2) : 0;
|
|
localparam SD = SRC_DST_PEN ? (SRC_DST_POL ? 1 : 2) : 0;
|
|
localparam DD = DAT_DST_PEN ? (DAT_DST_POL ? 1 : 2) : 0;
|
|
|
|
`ifdef SIMLIB_SPECIFY
|
|
specify
|
|
// DD=0
|
|
|
|
if (EN && DD==0 && SD==0 && ED==0 && !FULL) ( SRC => (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==0 && ED==0 && FULL) ( SRC *> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==0 && ED==1 && !FULL) (posedge SRC => (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==0 && ED==1 && FULL) (posedge SRC *> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==0 && ED==2 && !FULL) (negedge SRC => (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==0 && ED==2 && FULL) (negedge SRC *> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
|
|
if (EN && DD==0 && SD==1 && ED==0 && !FULL) ( SRC +=> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==1 && ED==0 && FULL) ( SRC +*> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==1 && ED==1 && !FULL) (posedge SRC +=> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==1 && ED==1 && FULL) (posedge SRC +*> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==1 && ED==2 && !FULL) (negedge SRC +=> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==1 && ED==2 && FULL) (negedge SRC +*> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
|
|
if (EN && DD==0 && SD==2 && ED==0 && !FULL) ( SRC -=> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==2 && ED==0 && FULL) ( SRC -*> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==2 && ED==1 && !FULL) (posedge SRC -=> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==2 && ED==1 && FULL) (posedge SRC -*> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==2 && ED==2 && !FULL) (negedge SRC -=> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==0 && SD==2 && ED==2 && FULL) (negedge SRC -*> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
|
|
// DD=1
|
|
|
|
if (EN && DD==1 && SD==0 && ED==0 && !FULL) ( SRC => (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==0 && ED==0 && FULL) ( SRC *> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==0 && ED==1 && !FULL) (posedge SRC => (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==0 && ED==1 && FULL) (posedge SRC *> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==0 && ED==2 && !FULL) (negedge SRC => (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==0 && ED==2 && FULL) (negedge SRC *> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
|
|
if (EN && DD==1 && SD==1 && ED==0 && !FULL) ( SRC +=> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==1 && ED==0 && FULL) ( SRC +*> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==1 && ED==1 && !FULL) (posedge SRC +=> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==1 && ED==1 && FULL) (posedge SRC +*> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==1 && ED==2 && !FULL) (negedge SRC +=> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==1 && ED==2 && FULL) (negedge SRC +*> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
|
|
if (EN && DD==1 && SD==2 && ED==0 && !FULL) ( SRC -=> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==2 && ED==0 && FULL) ( SRC -*> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==2 && ED==1 && !FULL) (posedge SRC -=> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==2 && ED==1 && FULL) (posedge SRC -*> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==2 && ED==2 && !FULL) (negedge SRC -=> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==1 && SD==2 && ED==2 && FULL) (negedge SRC -*> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
|
|
// DD=2
|
|
|
|
if (EN && DD==2 && SD==0 && ED==0 && !FULL) ( SRC => (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==0 && ED==0 && FULL) ( SRC *> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==0 && ED==1 && !FULL) (posedge SRC => (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==0 && ED==1 && FULL) (posedge SRC *> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==0 && ED==2 && !FULL) (negedge SRC => (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==0 && ED==2 && FULL) (negedge SRC *> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
|
|
if (EN && DD==2 && SD==1 && ED==0 && !FULL) ( SRC +=> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==1 && ED==0 && FULL) ( SRC +*> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==1 && ED==1 && !FULL) (posedge SRC +=> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==1 && ED==1 && FULL) (posedge SRC +*> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==1 && ED==2 && !FULL) (negedge SRC +=> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==1 && ED==2 && FULL) (negedge SRC +*> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
|
|
if (EN && DD==2 && SD==2 && ED==0 && !FULL) ( SRC -=> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==2 && ED==0 && FULL) ( SRC -*> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==2 && ED==1 && !FULL) (posedge SRC -=> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==2 && ED==1 && FULL) (posedge SRC -*> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==2 && ED==2 && !FULL) (negedge SRC -=> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
if (EN && DD==2 && SD==2 && ED==2 && FULL) (negedge SRC -*> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
|
|
endspecify
|
|
`endif
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$specrule (EN_SRC, EN_DST, SRC, DST);
|
|
|
|
parameter TYPE = "";
|
|
parameter T_LIMIT = 0;
|
|
parameter T_LIMIT2 = 0;
|
|
|
|
parameter SRC_WIDTH = 1;
|
|
parameter DST_WIDTH = 1;
|
|
|
|
parameter SRC_PEN = 0;
|
|
parameter SRC_POL = 0;
|
|
|
|
parameter DST_PEN = 0;
|
|
parameter DST_POL = 0;
|
|
|
|
input EN_SRC, EN_DST;
|
|
input [SRC_WIDTH-1:0] SRC;
|
|
input [DST_WIDTH-1:0] DST;
|
|
|
|
`ifdef SIMLIB_SPECIFY
|
|
specify
|
|
// TBD
|
|
endspecify
|
|
`endif
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$bweqx (A, B, Y);
|
|
|
|
parameter WIDTH = 0;
|
|
|
|
input [WIDTH-1:0] A, B;
|
|
output [WIDTH-1:0] Y;
|
|
|
|
genvar i;
|
|
generate
|
|
for (i = 0; i < WIDTH; i = i + 1) begin:slices
|
|
assign Y[i] = A[i] === B[i];
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$bwmux (A, B, S, Y);
|
|
|
|
parameter WIDTH = 0;
|
|
|
|
input [WIDTH-1:0] A, B;
|
|
input [WIDTH-1:0] S;
|
|
output [WIDTH-1:0] Y;
|
|
|
|
genvar i;
|
|
generate
|
|
for (i = 0; i < WIDTH; i = i + 1) begin:slices
|
|
assign Y[i] = S[i] ? B[i] : A[i];
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$assert (A, EN);
|
|
|
|
input A, EN;
|
|
|
|
`ifndef SIMLIB_NOCHECKS
|
|
always @* begin
|
|
if (A !== 1'b1 && EN === 1'b1) begin
|
|
$display("Assertion %m failed!");
|
|
$stop;
|
|
end
|
|
end
|
|
`endif
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$assume (A, EN);
|
|
|
|
input A, EN;
|
|
|
|
`ifndef SIMLIB_NOCHECKS
|
|
always @* begin
|
|
if (A !== 1'b1 && EN === 1'b1) begin
|
|
$display("Assumption %m failed!");
|
|
$stop;
|
|
end
|
|
end
|
|
`endif
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$live (A, EN);
|
|
|
|
input A, EN;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$fair (A, EN);
|
|
|
|
input A, EN;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$cover (A, EN);
|
|
|
|
input A, EN;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$initstate (Y);
|
|
|
|
output reg Y = 1;
|
|
reg [3:0] cnt = 1;
|
|
reg trig = 0;
|
|
|
|
initial trig <= 1;
|
|
|
|
always @(cnt, trig) begin
|
|
Y <= |cnt;
|
|
cnt <= cnt + |cnt;
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$anyconst (Y);
|
|
|
|
parameter WIDTH = 0;
|
|
|
|
output [WIDTH-1:0] Y;
|
|
|
|
assign Y = 'bx;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$anyseq (Y);
|
|
|
|
parameter WIDTH = 0;
|
|
|
|
output [WIDTH-1:0] Y;
|
|
|
|
assign Y = 'bx;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
`ifdef SIMLIB_FF
|
|
`ifndef SIMLIB_GLOBAL_CLOCK
|
|
`define SIMLIB_GLOBAL_CLOCK $global_clk
|
|
`endif
|
|
module \$anyinit (D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
|
|
input [WIDTH-1:0] D;
|
|
output reg [WIDTH-1:0] Q;
|
|
|
|
initial Q <= 'bx;
|
|
|
|
always @(`SIMLIB_GLOBAL_CLOCK) begin
|
|
Q <= D;
|
|
end
|
|
|
|
endmodule
|
|
`endif
|
|
// --------------------------------------------------------
|
|
|
|
module \$allconst (Y);
|
|
|
|
parameter WIDTH = 0;
|
|
|
|
output [WIDTH-1:0] Y;
|
|
|
|
assign Y = 'bx;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$allseq (Y);
|
|
|
|
parameter WIDTH = 0;
|
|
|
|
output [WIDTH-1:0] Y;
|
|
|
|
assign Y = 'bx;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$equiv (A, B, Y);
|
|
|
|
input A, B;
|
|
output Y;
|
|
|
|
assign Y = (A !== 1'bx && A !== B) ? 1'bx : A;
|
|
|
|
`ifndef SIMLIB_NOCHECKS
|
|
always @* begin
|
|
if (A !== 1'bx && A !== B) begin
|
|
$display("Equivalence failed!");
|
|
$stop;
|
|
end
|
|
end
|
|
`endif
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$print (EN, TRG, ARGS);
|
|
|
|
parameter PRIORITY = 0;
|
|
|
|
parameter FORMAT = "";
|
|
parameter ARGS_WIDTH = 0;
|
|
|
|
parameter TRG_ENABLE = 1;
|
|
parameter TRG_WIDTH = 0;
|
|
parameter TRG_POLARITY = 0;
|
|
|
|
input EN;
|
|
input [TRG_WIDTH-1:0] TRG;
|
|
input [ARGS_WIDTH-1:0] ARGS;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$check (A, EN, TRG, ARGS);
|
|
|
|
parameter FLAVOR = "";
|
|
parameter PRIORITY = 0;
|
|
|
|
parameter FORMAT = "";
|
|
parameter ARGS_WIDTH = 0;
|
|
|
|
parameter TRG_ENABLE = 1;
|
|
parameter TRG_WIDTH = 0;
|
|
parameter TRG_POLARITY = 0;
|
|
|
|
input A;
|
|
input EN;
|
|
input [TRG_WIDTH-1:0] TRG;
|
|
input [ARGS_WIDTH-1:0] ARGS;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
`ifndef SIMLIB_NOSR
|
|
|
|
module \$sr (SET, CLR, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter SET_POLARITY = 1'b1;
|
|
parameter CLR_POLARITY = 1'b1;
|
|
|
|
input [WIDTH-1:0] SET, CLR;
|
|
output reg [WIDTH-1:0] Q;
|
|
|
|
wire [WIDTH-1:0] pos_set = SET_POLARITY ? SET : ~SET;
|
|
wire [WIDTH-1:0] pos_clr = CLR_POLARITY ? CLR : ~CLR;
|
|
|
|
genvar i;
|
|
generate
|
|
for (i = 0; i < WIDTH; i = i+1) begin:bitslices
|
|
always @*
|
|
if (pos_clr[i])
|
|
Q[i] <= 0;
|
|
else if (pos_set[i])
|
|
Q[i] <= 1;
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
`endif
|
|
// --------------------------------------------------------
|
|
`ifdef SIMLIB_FF
|
|
`ifndef SIMLIB_GLOBAL_CLOCK
|
|
`define SIMLIB_GLOBAL_CLOCK $global_clk
|
|
`endif
|
|
|
|
module \$ff (D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
|
|
input [WIDTH-1:0] D;
|
|
output reg [WIDTH-1:0] Q;
|
|
|
|
always @(`SIMLIB_GLOBAL_CLOCK) begin
|
|
Q <= D;
|
|
end
|
|
|
|
endmodule
|
|
|
|
`endif
|
|
// --------------------------------------------------------
|
|
|
|
module \$dff (CLK, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter CLK_POLARITY = 1'b1;
|
|
|
|
input CLK;
|
|
input [WIDTH-1:0] D;
|
|
output reg [WIDTH-1:0] Q;
|
|
wire pos_clk = CLK == CLK_POLARITY;
|
|
|
|
always @(posedge pos_clk) begin
|
|
Q <= D;
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$dffe (CLK, EN, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter CLK_POLARITY = 1'b1;
|
|
parameter EN_POLARITY = 1'b1;
|
|
|
|
input CLK, EN;
|
|
input [WIDTH-1:0] D;
|
|
output reg [WIDTH-1:0] Q;
|
|
wire pos_clk = CLK == CLK_POLARITY;
|
|
|
|
always @(posedge pos_clk) begin
|
|
if (EN == EN_POLARITY) Q <= D;
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
`ifndef SIMLIB_NOSR
|
|
|
|
module \$dffsr (CLK, SET, CLR, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter CLK_POLARITY = 1'b1;
|
|
parameter SET_POLARITY = 1'b1;
|
|
parameter CLR_POLARITY = 1'b1;
|
|
|
|
input CLK;
|
|
input [WIDTH-1:0] SET, CLR, D;
|
|
output reg [WIDTH-1:0] Q;
|
|
|
|
wire pos_clk = CLK == CLK_POLARITY;
|
|
wire [WIDTH-1:0] pos_set = SET_POLARITY ? SET : ~SET;
|
|
wire [WIDTH-1:0] pos_clr = CLR_POLARITY ? CLR : ~CLR;
|
|
|
|
genvar i;
|
|
generate
|
|
for (i = 0; i < WIDTH; i = i+1) begin:bitslices
|
|
always @(posedge pos_set[i], posedge pos_clr[i], posedge pos_clk)
|
|
if (pos_clr[i])
|
|
Q[i] <= 0;
|
|
else if (pos_set[i])
|
|
Q[i] <= 1;
|
|
else
|
|
Q[i] <= D[i];
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$dffsre (CLK, SET, CLR, EN, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter CLK_POLARITY = 1'b1;
|
|
parameter SET_POLARITY = 1'b1;
|
|
parameter CLR_POLARITY = 1'b1;
|
|
parameter EN_POLARITY = 1'b1;
|
|
|
|
input CLK, EN;
|
|
input [WIDTH-1:0] SET, CLR, D;
|
|
output reg [WIDTH-1:0] Q;
|
|
|
|
wire pos_clk = CLK == CLK_POLARITY;
|
|
wire [WIDTH-1:0] pos_set = SET_POLARITY ? SET : ~SET;
|
|
wire [WIDTH-1:0] pos_clr = CLR_POLARITY ? CLR : ~CLR;
|
|
|
|
genvar i;
|
|
generate
|
|
for (i = 0; i < WIDTH; i = i+1) begin:bitslices
|
|
always @(posedge pos_set[i], posedge pos_clr[i], posedge pos_clk)
|
|
if (pos_clr[i])
|
|
Q[i] <= 0;
|
|
else if (pos_set[i])
|
|
Q[i] <= 1;
|
|
else if (EN == EN_POLARITY)
|
|
Q[i] <= D[i];
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
`endif
|
|
// --------------------------------------------------------
|
|
|
|
module \$adff (CLK, ARST, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter CLK_POLARITY = 1'b1;
|
|
parameter ARST_POLARITY = 1'b1;
|
|
parameter ARST_VALUE = 0;
|
|
|
|
input CLK, ARST;
|
|
input [WIDTH-1:0] D;
|
|
output reg [WIDTH-1:0] Q;
|
|
wire pos_clk = CLK == CLK_POLARITY;
|
|
wire pos_arst = ARST == ARST_POLARITY;
|
|
|
|
always @(posedge pos_clk, posedge pos_arst) begin
|
|
if (pos_arst)
|
|
Q <= ARST_VALUE;
|
|
else
|
|
Q <= D;
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$aldff (CLK, ALOAD, AD, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter CLK_POLARITY = 1'b1;
|
|
parameter ALOAD_POLARITY = 1'b1;
|
|
|
|
input CLK, ALOAD;
|
|
input [WIDTH-1:0] AD;
|
|
input [WIDTH-1:0] D;
|
|
output reg [WIDTH-1:0] Q;
|
|
wire pos_clk = CLK == CLK_POLARITY;
|
|
wire pos_aload = ALOAD == ALOAD_POLARITY;
|
|
|
|
always @(posedge pos_clk, posedge pos_aload) begin
|
|
if (pos_aload)
|
|
Q <= AD;
|
|
else
|
|
Q <= D;
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$sdff (CLK, SRST, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter CLK_POLARITY = 1'b1;
|
|
parameter SRST_POLARITY = 1'b1;
|
|
parameter SRST_VALUE = 0;
|
|
|
|
input CLK, SRST;
|
|
input [WIDTH-1:0] D;
|
|
output reg [WIDTH-1:0] Q;
|
|
wire pos_clk = CLK == CLK_POLARITY;
|
|
wire pos_srst = SRST == SRST_POLARITY;
|
|
|
|
always @(posedge pos_clk) begin
|
|
if (pos_srst)
|
|
Q <= SRST_VALUE;
|
|
else
|
|
Q <= D;
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$adffe (CLK, ARST, EN, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter CLK_POLARITY = 1'b1;
|
|
parameter EN_POLARITY = 1'b1;
|
|
parameter ARST_POLARITY = 1'b1;
|
|
parameter ARST_VALUE = 0;
|
|
|
|
input CLK, ARST, EN;
|
|
input [WIDTH-1:0] D;
|
|
output reg [WIDTH-1:0] Q;
|
|
wire pos_clk = CLK == CLK_POLARITY;
|
|
wire pos_arst = ARST == ARST_POLARITY;
|
|
|
|
always @(posedge pos_clk, posedge pos_arst) begin
|
|
if (pos_arst)
|
|
Q <= ARST_VALUE;
|
|
else if (EN == EN_POLARITY)
|
|
Q <= D;
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$aldffe (CLK, ALOAD, AD, EN, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter CLK_POLARITY = 1'b1;
|
|
parameter EN_POLARITY = 1'b1;
|
|
parameter ALOAD_POLARITY = 1'b1;
|
|
|
|
input CLK, ALOAD, EN;
|
|
input [WIDTH-1:0] D;
|
|
input [WIDTH-1:0] AD;
|
|
output reg [WIDTH-1:0] Q;
|
|
wire pos_clk = CLK == CLK_POLARITY;
|
|
wire pos_aload = ALOAD == ALOAD_POLARITY;
|
|
|
|
always @(posedge pos_clk, posedge pos_aload) begin
|
|
if (pos_aload)
|
|
Q <= AD;
|
|
else if (EN == EN_POLARITY)
|
|
Q <= D;
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$sdffe (CLK, SRST, EN, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter CLK_POLARITY = 1'b1;
|
|
parameter EN_POLARITY = 1'b1;
|
|
parameter SRST_POLARITY = 1'b1;
|
|
parameter SRST_VALUE = 0;
|
|
|
|
input CLK, SRST, EN;
|
|
input [WIDTH-1:0] D;
|
|
output reg [WIDTH-1:0] Q;
|
|
wire pos_clk = CLK == CLK_POLARITY;
|
|
wire pos_srst = SRST == SRST_POLARITY;
|
|
|
|
always @(posedge pos_clk) begin
|
|
if (pos_srst)
|
|
Q <= SRST_VALUE;
|
|
else if (EN == EN_POLARITY)
|
|
Q <= D;
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$sdffce (CLK, SRST, EN, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter CLK_POLARITY = 1'b1;
|
|
parameter EN_POLARITY = 1'b1;
|
|
parameter SRST_POLARITY = 1'b1;
|
|
parameter SRST_VALUE = 0;
|
|
|
|
input CLK, SRST, EN;
|
|
input [WIDTH-1:0] D;
|
|
output reg [WIDTH-1:0] Q;
|
|
wire pos_clk = CLK == CLK_POLARITY;
|
|
wire pos_srst = SRST == SRST_POLARITY;
|
|
|
|
always @(posedge pos_clk) begin
|
|
if (EN == EN_POLARITY) begin
|
|
if (pos_srst)
|
|
Q <= SRST_VALUE;
|
|
else
|
|
Q <= D;
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$dlatch (EN, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter EN_POLARITY = 1'b1;
|
|
|
|
input EN;
|
|
input [WIDTH-1:0] D;
|
|
output reg [WIDTH-1:0] Q;
|
|
|
|
always @* begin
|
|
if (EN == EN_POLARITY)
|
|
Q = D;
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$adlatch (EN, ARST, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter EN_POLARITY = 1'b1;
|
|
parameter ARST_POLARITY = 1'b1;
|
|
parameter ARST_VALUE = 0;
|
|
|
|
input EN, ARST;
|
|
input [WIDTH-1:0] D;
|
|
output reg [WIDTH-1:0] Q;
|
|
|
|
always @* begin
|
|
if (ARST == ARST_POLARITY)
|
|
Q = ARST_VALUE;
|
|
else if (EN == EN_POLARITY)
|
|
Q = D;
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
`ifndef SIMLIB_NOSR
|
|
|
|
module \$dlatchsr (EN, SET, CLR, D, Q);
|
|
|
|
parameter WIDTH = 0;
|
|
parameter EN_POLARITY = 1'b1;
|
|
parameter SET_POLARITY = 1'b1;
|
|
parameter CLR_POLARITY = 1'b1;
|
|
|
|
input EN;
|
|
input [WIDTH-1:0] SET, CLR, D;
|
|
output reg [WIDTH-1:0] Q;
|
|
|
|
wire pos_en = EN == EN_POLARITY;
|
|
wire [WIDTH-1:0] pos_set = SET_POLARITY ? SET : ~SET;
|
|
wire [WIDTH-1:0] pos_clr = CLR_POLARITY ? CLR : ~CLR;
|
|
|
|
genvar i;
|
|
generate
|
|
for (i = 0; i < WIDTH; i = i+1) begin:bitslices
|
|
always @*
|
|
if (pos_clr[i])
|
|
Q[i] = 0;
|
|
else if (pos_set[i])
|
|
Q[i] = 1;
|
|
else if (pos_en)
|
|
Q[i] = D[i];
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
`endif
|
|
// --------------------------------------------------------
|
|
|
|
module \$fsm (CLK, ARST, CTRL_IN, CTRL_OUT);
|
|
|
|
parameter NAME = "";
|
|
|
|
parameter CLK_POLARITY = 1'b1;
|
|
parameter ARST_POLARITY = 1'b1;
|
|
|
|
parameter CTRL_IN_WIDTH = 1;
|
|
parameter CTRL_OUT_WIDTH = 1;
|
|
|
|
parameter STATE_BITS = 1;
|
|
parameter STATE_NUM = 1;
|
|
parameter STATE_NUM_LOG2 = 1;
|
|
parameter STATE_RST = 0;
|
|
parameter STATE_TABLE = 1'b0;
|
|
|
|
parameter TRANS_NUM = 1;
|
|
parameter TRANS_TABLE = 4'b0x0x;
|
|
|
|
input CLK, ARST;
|
|
input [CTRL_IN_WIDTH-1:0] CTRL_IN;
|
|
output reg [CTRL_OUT_WIDTH-1:0] CTRL_OUT;
|
|
|
|
wire pos_clk = CLK == CLK_POLARITY;
|
|
wire pos_arst = ARST == ARST_POLARITY;
|
|
|
|
reg [STATE_BITS-1:0] state;
|
|
reg [STATE_BITS-1:0] state_tmp;
|
|
reg [STATE_BITS-1:0] next_state;
|
|
|
|
reg [STATE_BITS-1:0] tr_state_in;
|
|
reg [STATE_BITS-1:0] tr_state_out;
|
|
reg [CTRL_IN_WIDTH-1:0] tr_ctrl_in;
|
|
reg [CTRL_OUT_WIDTH-1:0] tr_ctrl_out;
|
|
|
|
integer i;
|
|
|
|
task tr_fetch;
|
|
input [31:0] tr_num;
|
|
reg [31:0] tr_pos;
|
|
reg [STATE_NUM_LOG2-1:0] state_num;
|
|
begin
|
|
tr_pos = (2*STATE_NUM_LOG2+CTRL_IN_WIDTH+CTRL_OUT_WIDTH)*tr_num;
|
|
tr_ctrl_out = TRANS_TABLE >> tr_pos;
|
|
tr_pos = tr_pos + CTRL_OUT_WIDTH;
|
|
state_num = TRANS_TABLE >> tr_pos;
|
|
tr_state_out = STATE_TABLE >> (STATE_BITS*state_num);
|
|
tr_pos = tr_pos + STATE_NUM_LOG2;
|
|
tr_ctrl_in = TRANS_TABLE >> tr_pos;
|
|
tr_pos = tr_pos + CTRL_IN_WIDTH;
|
|
state_num = TRANS_TABLE >> tr_pos;
|
|
tr_state_in = STATE_TABLE >> (STATE_BITS*state_num);
|
|
tr_pos = tr_pos + STATE_NUM_LOG2;
|
|
end
|
|
endtask
|
|
|
|
always @(posedge pos_clk, posedge pos_arst) begin
|
|
if (pos_arst) begin
|
|
state_tmp = STATE_TABLE[STATE_BITS*(STATE_RST+1)-1:STATE_BITS*STATE_RST];
|
|
for (i = 0; i < STATE_BITS; i = i+1)
|
|
if (state_tmp[i] === 1'bz)
|
|
state_tmp[i] = 0;
|
|
state <= state_tmp;
|
|
end else begin
|
|
state_tmp = next_state;
|
|
for (i = 0; i < STATE_BITS; i = i+1)
|
|
if (state_tmp[i] === 1'bz)
|
|
state_tmp[i] = 0;
|
|
state <= state_tmp;
|
|
end
|
|
end
|
|
|
|
always @(state, CTRL_IN) begin
|
|
next_state <= STATE_TABLE[STATE_BITS*(STATE_RST+1)-1:STATE_BITS*STATE_RST];
|
|
CTRL_OUT <= 'bx;
|
|
// $display("---");
|
|
// $display("Q: %b %b", state, CTRL_IN);
|
|
for (i = 0; i < TRANS_NUM; i = i+1) begin
|
|
tr_fetch(i);
|
|
// $display("T: %b %b -> %b %b [%d]", tr_state_in, tr_ctrl_in, tr_state_out, tr_ctrl_out, i);
|
|
casez ({state, CTRL_IN})
|
|
{tr_state_in, tr_ctrl_in}: begin
|
|
// $display("-> %b %b <- MATCH", state, CTRL_IN);
|
|
{next_state, CTRL_OUT} <= {tr_state_out, tr_ctrl_out};
|
|
end
|
|
endcase
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
`ifndef SIMLIB_NOMEM
|
|
|
|
module \$memrd (CLK, EN, ADDR, DATA);
|
|
|
|
parameter MEMID = "";
|
|
parameter ABITS = 8;
|
|
parameter WIDTH = 8;
|
|
|
|
parameter CLK_ENABLE = 0;
|
|
parameter CLK_POLARITY = 0;
|
|
parameter TRANSPARENT = 0;
|
|
|
|
input CLK, EN;
|
|
input [ABITS-1:0] ADDR;
|
|
output [WIDTH-1:0] DATA;
|
|
|
|
initial begin
|
|
if (MEMID != "") begin
|
|
$display("ERROR: Found non-simulatable instance of $memrd!");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
module \$memrd_v2 (CLK, EN, ARST, SRST, ADDR, DATA);
|
|
|
|
parameter MEMID = "";
|
|
parameter ABITS = 8;
|
|
parameter WIDTH = 8;
|
|
|
|
parameter CLK_ENABLE = 0;
|
|
parameter CLK_POLARITY = 0;
|
|
parameter TRANSPARENCY_MASK = 0;
|
|
parameter COLLISION_X_MASK = 0;
|
|
parameter ARST_VALUE = 0;
|
|
parameter SRST_VALUE = 0;
|
|
parameter INIT_VALUE = 0;
|
|
parameter CE_OVER_SRST = 0;
|
|
|
|
input CLK, EN, ARST, SRST;
|
|
input [ABITS-1:0] ADDR;
|
|
output [WIDTH-1:0] DATA;
|
|
|
|
initial begin
|
|
if (MEMID != "") begin
|
|
$display("ERROR: Found non-simulatable instance of $memrd_v2!");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$memwr (CLK, EN, ADDR, DATA);
|
|
|
|
parameter MEMID = "";
|
|
parameter ABITS = 8;
|
|
parameter WIDTH = 8;
|
|
|
|
parameter CLK_ENABLE = 0;
|
|
parameter CLK_POLARITY = 0;
|
|
parameter PRIORITY = 0;
|
|
|
|
input CLK;
|
|
input [WIDTH-1:0] EN;
|
|
input [ABITS-1:0] ADDR;
|
|
input [WIDTH-1:0] DATA;
|
|
|
|
initial begin
|
|
if (MEMID != "") begin
|
|
$display("ERROR: Found non-simulatable instance of $memwr!");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
module \$memwr_v2 (CLK, EN, ADDR, DATA);
|
|
|
|
parameter MEMID = "";
|
|
parameter ABITS = 8;
|
|
parameter WIDTH = 8;
|
|
|
|
parameter CLK_ENABLE = 0;
|
|
parameter CLK_POLARITY = 0;
|
|
parameter PORTID = 0;
|
|
parameter PRIORITY_MASK = 0;
|
|
|
|
input CLK;
|
|
input [WIDTH-1:0] EN;
|
|
input [ABITS-1:0] ADDR;
|
|
input [WIDTH-1:0] DATA;
|
|
|
|
initial begin
|
|
if (MEMID != "") begin
|
|
$display("ERROR: Found non-simulatable instance of $memwr_v2!");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$meminit (ADDR, DATA);
|
|
|
|
parameter MEMID = "";
|
|
parameter ABITS = 8;
|
|
parameter WIDTH = 8;
|
|
parameter WORDS = 1;
|
|
|
|
parameter PRIORITY = 0;
|
|
|
|
input [ABITS-1:0] ADDR;
|
|
input [WORDS*WIDTH-1:0] DATA;
|
|
|
|
initial begin
|
|
if (MEMID != "") begin
|
|
$display("ERROR: Found non-simulatable instance of $meminit!");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$meminit_v2 (ADDR, DATA, EN);
|
|
|
|
parameter MEMID = "";
|
|
parameter ABITS = 8;
|
|
parameter WIDTH = 8;
|
|
parameter WORDS = 1;
|
|
|
|
parameter PRIORITY = 0;
|
|
|
|
input [ABITS-1:0] ADDR;
|
|
input [WORDS*WIDTH-1:0] DATA;
|
|
input [WIDTH-1:0] EN;
|
|
|
|
initial begin
|
|
if (MEMID != "") begin
|
|
$display("ERROR: Found non-simulatable instance of $meminit_v2!");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$mem (RD_CLK, RD_EN, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA);
|
|
|
|
parameter MEMID = "";
|
|
parameter signed SIZE = 4;
|
|
parameter signed OFFSET = 0;
|
|
parameter signed ABITS = 2;
|
|
parameter signed WIDTH = 8;
|
|
parameter signed INIT = 1'bx;
|
|
|
|
parameter signed RD_PORTS = 1;
|
|
parameter RD_CLK_ENABLE = 1'b1;
|
|
parameter RD_CLK_POLARITY = 1'b1;
|
|
parameter RD_TRANSPARENT = 1'b1;
|
|
|
|
parameter signed WR_PORTS = 1;
|
|
parameter WR_CLK_ENABLE = 1'b1;
|
|
parameter WR_CLK_POLARITY = 1'b1;
|
|
|
|
input [RD_PORTS-1:0] RD_CLK;
|
|
input [RD_PORTS-1:0] RD_EN;
|
|
input [RD_PORTS*ABITS-1:0] RD_ADDR;
|
|
output reg [RD_PORTS*WIDTH-1:0] RD_DATA;
|
|
|
|
input [WR_PORTS-1:0] WR_CLK;
|
|
input [WR_PORTS*WIDTH-1:0] WR_EN;
|
|
input [WR_PORTS*ABITS-1:0] WR_ADDR;
|
|
input [WR_PORTS*WIDTH-1:0] WR_DATA;
|
|
|
|
reg [WIDTH-1:0] memory [SIZE-1:0];
|
|
|
|
integer i, j;
|
|
reg [WR_PORTS-1:0] LAST_WR_CLK;
|
|
reg [RD_PORTS-1:0] LAST_RD_CLK;
|
|
|
|
function port_active;
|
|
input clk_enable;
|
|
input clk_polarity;
|
|
input last_clk;
|
|
input this_clk;
|
|
begin
|
|
casez ({clk_enable, clk_polarity, last_clk, this_clk})
|
|
4'b0???: port_active = 1;
|
|
4'b1101: port_active = 1;
|
|
4'b1010: port_active = 1;
|
|
default: port_active = 0;
|
|
endcase
|
|
end
|
|
endfunction
|
|
|
|
initial begin
|
|
for (i = 0; i < SIZE; i = i+1)
|
|
memory[i] = INIT >>> (i*WIDTH);
|
|
end
|
|
|
|
always @(RD_CLK, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA) begin
|
|
`ifdef SIMLIB_MEMDELAY
|
|
#`SIMLIB_MEMDELAY;
|
|
`endif
|
|
for (i = 0; i < RD_PORTS; i = i+1) begin
|
|
if (!RD_TRANSPARENT[i] && RD_CLK_ENABLE[i] && RD_EN[i] && port_active(RD_CLK_ENABLE[i], RD_CLK_POLARITY[i], LAST_RD_CLK[i], RD_CLK[i])) begin
|
|
// $display("Read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
|
|
RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET];
|
|
end
|
|
end
|
|
|
|
for (i = 0; i < WR_PORTS; i = i+1) begin
|
|
if (port_active(WR_CLK_ENABLE[i], WR_CLK_POLARITY[i], LAST_WR_CLK[i], WR_CLK[i]))
|
|
for (j = 0; j < WIDTH; j = j+1)
|
|
if (WR_EN[i*WIDTH+j]) begin
|
|
// $display("Write to %s: addr=%b data=%b", MEMID, WR_ADDR[i*ABITS +: ABITS], WR_DATA[i*WIDTH+j]);
|
|
memory[WR_ADDR[i*ABITS +: ABITS] - OFFSET][j] = WR_DATA[i*WIDTH+j];
|
|
end
|
|
end
|
|
|
|
for (i = 0; i < RD_PORTS; i = i+1) begin
|
|
if ((RD_TRANSPARENT[i] || !RD_CLK_ENABLE[i]) && port_active(RD_CLK_ENABLE[i], RD_CLK_POLARITY[i], LAST_RD_CLK[i], RD_CLK[i])) begin
|
|
// $display("Transparent read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
|
|
RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET];
|
|
end
|
|
end
|
|
|
|
LAST_RD_CLK <= RD_CLK;
|
|
LAST_WR_CLK <= WR_CLK;
|
|
end
|
|
|
|
endmodule
|
|
|
|
module \$mem_v2 (RD_CLK, RD_EN, RD_ARST, RD_SRST, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA);
|
|
|
|
parameter MEMID = "";
|
|
parameter signed SIZE = 4;
|
|
parameter signed OFFSET = 0;
|
|
parameter signed ABITS = 2;
|
|
parameter signed WIDTH = 8;
|
|
parameter signed INIT = 1'bx;
|
|
|
|
parameter signed RD_PORTS = 1;
|
|
parameter RD_CLK_ENABLE = 1'b1;
|
|
parameter RD_CLK_POLARITY = 1'b1;
|
|
parameter RD_TRANSPARENCY_MASK = 1'b0;
|
|
parameter RD_COLLISION_X_MASK = 1'b0;
|
|
parameter RD_WIDE_CONTINUATION = 1'b0;
|
|
parameter RD_CE_OVER_SRST = 1'b0;
|
|
parameter RD_ARST_VALUE = 1'b0;
|
|
parameter RD_SRST_VALUE = 1'b0;
|
|
parameter RD_INIT_VALUE = 1'b0;
|
|
|
|
parameter signed WR_PORTS = 1;
|
|
parameter WR_CLK_ENABLE = 1'b1;
|
|
parameter WR_CLK_POLARITY = 1'b1;
|
|
parameter WR_PRIORITY_MASK = 1'b0;
|
|
parameter WR_WIDE_CONTINUATION = 1'b0;
|
|
|
|
input [RD_PORTS-1:0] RD_CLK;
|
|
input [RD_PORTS-1:0] RD_EN;
|
|
input [RD_PORTS-1:0] RD_ARST;
|
|
input [RD_PORTS-1:0] RD_SRST;
|
|
input [RD_PORTS*ABITS-1:0] RD_ADDR;
|
|
output reg [RD_PORTS*WIDTH-1:0] RD_DATA;
|
|
|
|
input [WR_PORTS-1:0] WR_CLK;
|
|
input [WR_PORTS*WIDTH-1:0] WR_EN;
|
|
input [WR_PORTS*ABITS-1:0] WR_ADDR;
|
|
input [WR_PORTS*WIDTH-1:0] WR_DATA;
|
|
|
|
reg [WIDTH-1:0] memory [SIZE-1:0];
|
|
|
|
integer i, j, k;
|
|
reg [WR_PORTS-1:0] LAST_WR_CLK;
|
|
reg [RD_PORTS-1:0] LAST_RD_CLK;
|
|
|
|
function port_active;
|
|
input clk_enable;
|
|
input clk_polarity;
|
|
input last_clk;
|
|
input this_clk;
|
|
begin
|
|
casez ({clk_enable, clk_polarity, last_clk, this_clk})
|
|
4'b0???: port_active = 1;
|
|
4'b1101: port_active = 1;
|
|
4'b1010: port_active = 1;
|
|
default: port_active = 0;
|
|
endcase
|
|
end
|
|
endfunction
|
|
|
|
initial begin
|
|
for (i = 0; i < SIZE; i = i+1)
|
|
memory[i] = INIT >>> (i*WIDTH);
|
|
RD_DATA = RD_INIT_VALUE;
|
|
end
|
|
|
|
always @(RD_CLK, RD_ARST, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA) begin
|
|
`ifdef SIMLIB_MEMDELAY
|
|
#`SIMLIB_MEMDELAY;
|
|
`endif
|
|
for (i = 0; i < RD_PORTS; i = i+1) begin
|
|
if (RD_CLK_ENABLE[i] && RD_EN[i] && port_active(RD_CLK_ENABLE[i], RD_CLK_POLARITY[i], LAST_RD_CLK[i], RD_CLK[i])) begin
|
|
// $display("Read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
|
|
RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET];
|
|
|
|
for (j = 0; j < WR_PORTS; j = j+1) begin
|
|
if (RD_TRANSPARENCY_MASK[i*WR_PORTS + j] && port_active(WR_CLK_ENABLE[j], WR_CLK_POLARITY[j], LAST_WR_CLK[j], WR_CLK[j]) && RD_ADDR[i*ABITS +: ABITS] == WR_ADDR[j*ABITS +: ABITS])
|
|
for (k = 0; k < WIDTH; k = k+1)
|
|
if (WR_EN[j*WIDTH+k])
|
|
RD_DATA[i*WIDTH+k] <= WR_DATA[j*WIDTH+k];
|
|
if (RD_COLLISION_X_MASK[i*WR_PORTS + j] && port_active(WR_CLK_ENABLE[j], WR_CLK_POLARITY[j], LAST_WR_CLK[j], WR_CLK[j]) && RD_ADDR[i*ABITS +: ABITS] == WR_ADDR[j*ABITS +: ABITS])
|
|
for (k = 0; k < WIDTH; k = k+1)
|
|
if (WR_EN[j*WIDTH+k])
|
|
RD_DATA[i*WIDTH+k] <= 1'bx;
|
|
end
|
|
end
|
|
end
|
|
|
|
for (i = 0; i < WR_PORTS; i = i+1) begin
|
|
if (port_active(WR_CLK_ENABLE[i], WR_CLK_POLARITY[i], LAST_WR_CLK[i], WR_CLK[i]))
|
|
for (j = 0; j < WIDTH; j = j+1)
|
|
if (WR_EN[i*WIDTH+j]) begin
|
|
// $display("Write to %s: addr=%b data=%b", MEMID, WR_ADDR[i*ABITS +: ABITS], WR_DATA[i*WIDTH+j]);
|
|
memory[WR_ADDR[i*ABITS +: ABITS] - OFFSET][j] = WR_DATA[i*WIDTH+j];
|
|
end
|
|
end
|
|
|
|
for (i = 0; i < RD_PORTS; i = i+1) begin
|
|
if (!RD_CLK_ENABLE[i]) begin
|
|
// $display("Combinatorial read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
|
|
RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET];
|
|
end
|
|
end
|
|
|
|
for (i = 0; i < RD_PORTS; i = i+1) begin
|
|
if (RD_SRST[i] && port_active(RD_CLK_ENABLE[i], RD_CLK_POLARITY[i], LAST_RD_CLK[i], RD_CLK[i]) && (RD_EN[i] || !RD_CE_OVER_SRST[i]))
|
|
RD_DATA[i*WIDTH +: WIDTH] <= RD_SRST_VALUE[i*WIDTH +: WIDTH];
|
|
if (RD_ARST[i])
|
|
RD_DATA[i*WIDTH +: WIDTH] <= RD_ARST_VALUE[i*WIDTH +: WIDTH];
|
|
end
|
|
|
|
LAST_RD_CLK <= RD_CLK;
|
|
LAST_WR_CLK <= WR_CLK;
|
|
end
|
|
|
|
endmodule
|
|
|
|
`endif
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$set_tag (A, SET, CLR, Y);
|
|
|
|
parameter TAG = "";
|
|
parameter WIDTH = 0;
|
|
|
|
input [WIDTH-1:0] A;
|
|
input [WIDTH-1:0] SET;
|
|
input [WIDTH-1:0] CLR;
|
|
output [WIDTH-1:0] Y;
|
|
|
|
assign Y = A;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$get_tag (A, Y);
|
|
|
|
parameter TAG = "";
|
|
parameter WIDTH = 0;
|
|
|
|
input [WIDTH-1:0] A;
|
|
output [WIDTH-1:0] Y;
|
|
|
|
assign Y = A;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$overwrite_tag (A, SET, CLR);
|
|
|
|
parameter TAG = "";
|
|
parameter WIDTH = 0;
|
|
|
|
input [WIDTH-1:0] A;
|
|
input [WIDTH-1:0] SET;
|
|
input [WIDTH-1:0] CLR;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$original_tag (A, Y);
|
|
|
|
parameter TAG = "";
|
|
parameter WIDTH = 0;
|
|
|
|
input [WIDTH-1:0] A;
|
|
output [WIDTH-1:0] Y;
|
|
|
|
assign Y = A;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
module \$future_ff (A, Y);
|
|
|
|
parameter WIDTH = 0;
|
|
|
|
input [WIDTH-1:0] A;
|
|
output [WIDTH-1:0] Y;
|
|
|
|
assign Y = A;
|
|
|
|
endmodule
|
|
|
|
// --------------------------------------------------------
|
|
|
|
(* noblackbox *)
|
|
module \$scopeinfo ();
|
|
|
|
parameter TYPE = "";
|
|
|
|
endmodule
|