yosys/techlibs/gatemate/brams_map.v

521 lines
12 KiB
Verilog

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2021 Cologne Chip AG <support@colognechip.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
module \$__CC_BRAM_20K_SDP (CLK2, CLK3, A1ADDR, A1DATA, A1EN, B1ADDR, B1DATA, B1EN);
parameter CFG_ABITS = 14;
parameter CFG_DBITS = 40;
parameter CFG_ENABLE_A = 1;
parameter CFG_ENABLE_B = 1;
parameter CLKPOL2 = 1;
parameter CLKPOL3 = 1;
// 512 x 40 bit
parameter [20479:0] INIT = 20480'b0;
input CLK2;
input CLK3;
// write side of the memory
input [15:0] A1ADDR;
input [39:0] A1DATA;
input [39:0] A1EN;
// read side of the memory
input [15:0] B1ADDR;
output [39:0] B1DATA;
input [0:0] B1EN;
// unconnected signals
wire ECC_1B_ERR, ECC_2B_ERR;
// internal signals
wire [15:0] ADDRA = {A1ADDR, 7'b0};
wire [15:0] ADDRB = {B1ADDR, 7'b0};
localparam INIT_CHUNK_SIZE = 320;
function [319:0] permute_init;
input [INIT_CHUNK_SIZE-1:0] chunk;
integer i;
begin
permute_init = chunk;
end
endfunction
CC_BRAM_20K #(
`include "brams_init_20.vh"
.LOC("UNPLACED"),
.A_RD_WIDTH(0), .B_RD_WIDTH(CFG_DBITS),
.A_WR_WIDTH(CFG_DBITS), .B_WR_WIDTH(0),
.RAM_MODE("SDP"),
.A_WR_MODE("NO_CHANGE"), .B_WR_MODE("NO_CHANGE"),
.A_CLK_INV(!CLKPOL2), .B_CLK_INV(!CLKPOL3),
.A_EN_INV(1'b0), .B_EN_INV(1'b0),
.A_WE_INV(1'b0), .B_WE_INV(1'b0),
.A_DO_REG(1'b0), .B_DO_REG(1'b0),
.ECC_EN(1'b0)
) _TECHMAP_REPLACE_ (
.A_DO(B1DATA[19:0]),
.B_DO(B1DATA[39:20]),
.ECC_1B_ERR(ECC_1B_ERR),
.ECC_2B_ERR(ECC_2B_ERR),
.A_CLK(CLK2),
.B_CLK(CLK3),
.A_EN(1'b1),
.B_EN(B1EN),
.A_WE(|A1EN),
.B_WE(1'b0),
.A_ADDR(ADDRA),
.B_ADDR(ADDRB),
.A_DI(A1DATA[19:0]),
.B_DI(A1DATA[39:20]),
.A_BM(A1EN[19:0]),
.B_BM(A1EN[39:20])
);
endmodule
module \$__CC_BRAM_40K_SDP (CLK2, CLK3, A1ADDR, A1DATA, A1EN, B1ADDR, B1DATA, B1EN);
parameter CFG_ABITS = 15;
parameter CFG_DBITS = 80;
parameter CFG_ENABLE_A = 1;
parameter CFG_ENABLE_B = 1;
parameter CLKPOL2 = 1;
parameter CLKPOL3 = 1;
// 512 x 80 bit
parameter [40959:0] INIT = 40960'b0;
input CLK2;
input CLK3;
// write side of the memory
input [15:0] A1ADDR;
input [79:0] A1DATA;
input [79:0] A1EN;
// read side of the memory
input [15:0] B1ADDR;
output [79:0] B1DATA;
input [0:0] B1EN;
// unconnected signals
wire A_ECC_1B_ERR, B_ECC_1B_ERR, A_ECC_2B_ERR, B_ECC_2B_ERR;
// internal signals
wire [15:0] ADDRA = {A1ADDR, 7'b0};
wire [15:0] ADDRB = {B1ADDR, 7'b0};
localparam INIT_CHUNK_SIZE = 320;
function [319:0] permute_init;
input [INIT_CHUNK_SIZE-1:0] chunk;
integer i;
begin
permute_init = chunk;
end
endfunction
CC_BRAM_40K #(
`define INIT_LOWER
`include "brams_init_40.vh"
`undef INIT_LOWER
.LOC("UNPLACED"),
.CAS("NONE"),
.A_RD_WIDTH(0), .B_RD_WIDTH(CFG_DBITS),
.A_WR_WIDTH(CFG_DBITS), .B_WR_WIDTH(0),
.RAM_MODE("SDP"),
.A_WR_MODE("NO_CHANGE"), .B_WR_MODE("NO_CHANGE"),
.A_CLK_INV(!CLKPOL2), .B_CLK_INV(!CLKPOL3),
.A_EN_INV(1'b0), .B_EN_INV(1'b0),
.A_WE_INV(1'b0), .B_WE_INV(1'b0),
.A_DO_REG(1'b0), .B_DO_REG(1'b0),
.A_ECC_EN(1'b0), .B_ECC_EN(1'b0)
) _TECHMAP_REPLACE_ (
.A_DO(B1DATA[39:0]),
.B_DO(B1DATA[79:40]),
.A_ECC_1B_ERR(A_ECC_1B_ERR),
.B_ECC_1B_ERR(B_ECC_1B_ERR),
.A_ECC_2B_ERR(A_ECC_2B_ERR),
.B_ECC_2B_ERR(B_ECC_2B_ERR),
.A_CLK(CLK2),
.B_CLK(CLK3),
.A_EN(1'b1),
.B_EN(B1EN),
.A_WE(|A1EN),
.B_WE(1'b0),
.A_ADDR(ADDRA),
.B_ADDR(ADDRB),
.A_DI(A1DATA[39:0]),
.B_DI(A1DATA[79:40]),
.A_BM(A1EN[39:0]),
.B_BM(A1EN[79:40])
);
endmodule
module \$__CC_BRAM_20K_TDP (CLK2, CLK3, A1ADDR, A1DATA, A1EN, B1ADDR, B1DATA, B1EN);
parameter CFG_ABITS = 14;
parameter CFG_DBITS = 20;
parameter CFG_ENABLE_A = 1;
parameter CFG_ENABLE_B = 1;
parameter CLKPOL2 = 1;
parameter CLKPOL3 = 1;
// 512 x 40 bit
parameter [20479:0] INIT = 20480'b0;
input CLK2;
input CLK3;
// write side of the memory
input [15:0] A1ADDR;
input [19:0] A1DATA;
input [19:0] A1EN;
// read side of the memory
input [15:0] B1ADDR;
output [19:0] B1DATA;
input [0:0] B1EN;
// unconnected signals
wire [19:0] A_DO;
wire ECC_1B_ERR, ECC_2B_ERR;
localparam INIT_CHUNK_SIZE = (CFG_DBITS <= 2) ? 256 : 320;
function [319:0] permute_init;
input [INIT_CHUNK_SIZE-1:0] chunk;
integer i;
begin
if (CFG_DBITS <= 2) begin
for (i = 0; i < 64; i = i + 1) begin
permute_init[i * 5 +: 5] = {1'b0, chunk[i * 4 +: 4]};
end
end else begin
permute_init = chunk;
end
end
endfunction
// internal signals
generate
wire [15:0] ADDRA;
wire [15:0] ADDRB;
if (CFG_DBITS == 1) begin: blk
assign ADDRA = {A1ADDR[13:5], 1'b0, A1ADDR[4:0], 1'b0};
assign ADDRB = {B1ADDR[13:5], 1'b0, B1ADDR[4:0], 1'b0};
end
else if (CFG_DBITS == 2) begin: blk
assign ADDRA = {A1ADDR[12:4], 1'b0, A1ADDR[3:0], 2'b0};
assign ADDRB = {B1ADDR[12:4], 1'b0, B1ADDR[3:0], 2'b0};
end
else if (CFG_DBITS == 5) begin: blk
assign ADDRA = {A1ADDR[11:3], 1'b0, A1ADDR[2:0], 3'b0};
assign ADDRB = {B1ADDR[11:3], 1'b0, B1ADDR[2:0], 3'b0};
end
else if (CFG_DBITS == 10) begin: blk
assign ADDRA = {A1ADDR[10:2], 1'b0, A1ADDR[1:0], 4'b0};
assign ADDRB = {B1ADDR[10:2], 1'b0, B1ADDR[1:0], 4'b0};
end
else if (CFG_DBITS == 20) begin: blk
assign ADDRA = {A1ADDR[9:1], 1'b0, A1ADDR[0], 5'b0};
assign ADDRB = {B1ADDR[9:1], 1'b0, B1ADDR[0], 5'b0};
end
CC_BRAM_20K #(
`include "brams_init_20.vh"
.LOC("UNPLACED"),
.A_RD_WIDTH(0), .B_RD_WIDTH(CFG_DBITS),
.A_WR_WIDTH(CFG_DBITS), .B_WR_WIDTH(0),
.RAM_MODE("TDP"),
.A_WR_MODE("NO_CHANGE"), .B_WR_MODE("NO_CHANGE"),
.A_CLK_INV(!CLKPOL2), .B_CLK_INV(!CLKPOL3),
.A_EN_INV(1'b0), .B_EN_INV(1'b0),
.A_WE_INV(1'b0), .B_WE_INV(1'b0),
.A_DO_REG(1'b0), .B_DO_REG(1'b0),
.ECC_EN(1'b0)
) _TECHMAP_REPLACE_ (
.A_DO(A_DO),
.B_DO(B1DATA),
.ECC_1B_ERR(ECC_1B_ERR),
.ECC_2B_ERR(ECC_2B_ERR),
.A_CLK(CLK2),
.B_CLK(CLK3),
.A_EN(1'b1),
.B_EN(B1EN),
.A_WE(|A1EN),
.B_WE(1'b0),
.A_ADDR(ADDRA),
.B_ADDR(ADDRB),
.A_DI(A1DATA),
.B_DI(20'b0),
.A_BM(A1EN),
.B_BM(20'b0)
);
endgenerate
endmodule
module \$__CC_BRAM_40K_TDP (CLK2, CLK3, A1ADDR, A1DATA, A1EN, B1ADDR, B1DATA, B1EN);
parameter CFG_ABITS = 15;
parameter CFG_DBITS = 40;
parameter CFG_ENABLE_A = 1;
parameter CFG_ENABLE_B = 1;
parameter CLKPOL2 = 1;
parameter CLKPOL3 = 1;
// 512 x 80 bit
parameter [40959:0] INIT = 40960'b0;
input CLK2;
input CLK3;
// write side of the memory
input [15:0] A1ADDR;
input [39:0] A1DATA;
input [39:0] A1EN;
// read side of the memory
input [15:0] B1ADDR;
output [39:0] B1DATA;
input [0:0] B1EN;
// unconnected signals
wire [39:0] A_DO;
wire A_ECC_1B_ERR, B_ECC_1B_ERR, A_ECC_2B_ERR, B_ECC_2B_ERR;
localparam INIT_CHUNK_SIZE = (CFG_DBITS <= 2) ? 256 : 320;
function [319:0] permute_init;
input [INIT_CHUNK_SIZE-1:0] chunk;
integer i;
begin
if (CFG_DBITS <= 2) begin
for (i = 0; i < 64; i = i + 1) begin
permute_init[i * 5 +: 5] = {1'b0, chunk[i * 4 +: 4]};
end
end else begin
permute_init = chunk;
end
end
endfunction
generate
wire [15:0] ADDRA;
wire [15:0] ADDRB;
if (CFG_DBITS == 1) begin
assign ADDRA = {A1ADDR, 1'b0};
assign ADDRB = {B1ADDR, 1'b0};
end
else if (CFG_DBITS == 2) begin
assign ADDRA = {A1ADDR, 2'b0};
assign ADDRB = {B1ADDR, 2'b0};
end
else if (CFG_DBITS == 5) begin
assign ADDRA = {A1ADDR, 3'b0};
assign ADDRB = {B1ADDR, 3'b0};
end
else if (CFG_DBITS == 10) begin
assign ADDRA = {A1ADDR, 4'b0};
assign ADDRB = {B1ADDR, 4'b0};
end
else if (CFG_DBITS == 20) begin
assign ADDRA = {A1ADDR, 5'b0};
assign ADDRB = {B1ADDR, 5'b0};
end
else if (CFG_DBITS == 40) begin
assign ADDRA = {A1ADDR, 6'b0};
assign ADDRB = {B1ADDR, 6'b0};
end
CC_BRAM_40K #(
`define INIT_LOWER
`include "brams_init_40.vh"
`undef INIT_LOWER
.LOC("UNPLACED"),
.CAS("NONE"),
.A_RD_WIDTH(0), .B_RD_WIDTH(CFG_DBITS),
.A_WR_WIDTH(CFG_DBITS), .B_WR_WIDTH(0),
.RAM_MODE("TDP"),
.A_WR_MODE("NO_CHANGE"), .B_WR_MODE("NO_CHANGE"),
.A_CLK_INV(!CLKPOL2), .B_CLK_INV(!CLKPOL3),
.A_EN_INV(1'b0), .B_EN_INV(1'b0),
.A_WE_INV(1'b0), .B_WE_INV(1'b0),
.A_DO_REG(1'b0), .B_DO_REG(1'b0),
.A_ECC_EN(1'b0), .B_ECC_EN(1'b0)
) _TECHMAP_REPLACE_ (
.A_DO(A_DO),
.B_DO(B1DATA),
.A_ECC_1B_ERR(A_ECC_1B_ERR),
.B_ECC_1B_ERR(B_ECC_1B_ERR),
.A_ECC_2B_ERR(A_ECC_2B_ERR),
.B_ECC_2B_ERR(B_ECC_2B_ERR),
.A_CLK(CLK2),
.B_CLK(CLK3),
.A_EN(1'b1),
.B_EN(B1EN),
.A_WE(|A1EN),
.B_WE(1'b0),
.A_ADDR(ADDRA),
.B_ADDR(ADDRB),
.A_DI(A1DATA),
.B_DI(40'b0),
.A_BM(A1EN),
.B_BM(40'b0)
);
endgenerate
endmodule
module \$__CC_BRAM_CASCADE (CLK2, CLK3, A1ADDR, A1DATA, A1EN, B1ADDR, B1DATA, B1EN);
parameter CFG_ABITS = 16;
parameter CFG_DBITS = 1;
parameter CFG_ENABLE_A = 1;
parameter CFG_ENABLE_B = 1;
parameter CLKPOL2 = 1;
parameter CLKPOL3 = 1;
// 64K x 1
parameter [65535:0] INIT = 65535'b0;
input CLK2;
input CLK3;
// write side of the memory
input [15:0] A1ADDR;
input [39:0] A1DATA;
input [39:0] A1EN;
// read side of the memory
input [15:0] B1ADDR;
output [39:0] B1DATA;
input [0:0] B1EN;
// cascade signals
wire A_CAS, B_CAS;
// unconnected signals
wire [39:0] A_UP_DO;
wire A_ECC_1B_ERR, B_ECC_1B_ERR, A_ECC_2B_ERR, B_ECC_2B_ERR;
localparam INIT_CHUNK_SIZE = 256;
function [319:0] permute_init;
input [INIT_CHUNK_SIZE-1:0] chunk;
integer i;
begin
for (i = 0; i < 64; i = i + 1) begin
permute_init[i * 5 +: 5] = {1'b0, chunk[i * 4 +: 4]};
end
end
endfunction
generate
CC_BRAM_40K #(
`define INIT_UPPER
`include "brams_init_40.vh" // INIT_80 .. INIT_FF
`undef INIT_UPPER
.LOC("UNPLACED"),
.CAS("UPPER"),
.A_RD_WIDTH(0), .B_RD_WIDTH(CFG_DBITS),
.A_WR_WIDTH(CFG_DBITS), .B_WR_WIDTH(0),
.RAM_MODE("TDP"),
.A_WR_MODE("NO_CHANGE"), .B_WR_MODE("NO_CHANGE"),
.A_CLK_INV(!CLKPOL2), .B_CLK_INV(!CLKPOL3),
.A_EN_INV(1'b0), .B_EN_INV(1'b0),
.A_WE_INV(1'b0), .B_WE_INV(1'b0),
.A_DO_REG(1'b0), .B_DO_REG(1'b0),
.A_ECC_EN(1'b0), .B_ECC_EN(1'b0)
) upper_cell (
.A_CI(A_CAS),
.B_CI(B_CAS),
.A_DO(A_UP_DO),
.B_DO(B1DATA),
.A_ECC_1B_ERR(A_ECC_1B_ERR),
.B_ECC_1B_ERR(B_ECC_1B_ERR),
.A_ECC_2B_ERR(A_ECC_2B_ERR),
.B_ECC_2B_ERR(B_ECC_2B_ERR),
.A_CLK(CLK2),
.B_CLK(CLK3),
.A_EN(1'b1),
.B_EN(B1EN),
.A_WE(|A1EN),
.B_WE(1'b0),
.A_ADDR(A1ADDR),
.B_ADDR(B1ADDR),
.A_DI(A1DATA),
.B_DI(40'b0),
.A_BM(A1EN),
.B_BM(40'b0)
);
CC_BRAM_40K #(
`define INIT_LOWER
`include "brams_init_40.vh" // INIT_00 .. INIT_7F
`undef INIT_LOWER
.LOC("UNPLACED"),
.CAS("LOWER"),
.A_RD_WIDTH(0), .B_RD_WIDTH(CFG_DBITS),
.A_WR_WIDTH(CFG_DBITS), .B_WR_WIDTH(0),
.RAM_MODE("TDP"),
.A_WR_MODE("NO_CHANGE"), .B_WR_MODE("NO_CHANGE"),
.A_CLK_INV(!CLKPOL2), .B_CLK_INV(!CLKPOL3),
.A_EN_INV(1'b0), .B_EN_INV(1'b0),
.A_WE_INV(1'b0), .B_WE_INV(1'b0),
.A_DO_REG(1'b0), .B_DO_REG(1'b0),
.A_ECC_EN(1'b0), .B_ECC_EN(1'b0)
) lower_cell (
.A_CI(),
.B_CI(),
.A_CO(A_CAS),
.B_CO(B_CAS),
.A_CLK(CLK2),
.B_CLK(CLK3),
.A_EN(1'b1),
.B_EN(B1EN),
.A_WE(|A1EN),
.B_WE(1'b0),
.A_ADDR(A1ADDR),
.B_ADDR(B1ADDR),
.A_DI(A1DATA),
.B_DI(40'b0),
.A_BM(A1EN),
.B_BM(40'b0)
);
endgenerate
endmodule