yosys/passes/pmgen/xilinx_dsp_cascade.pmg

410 lines
15 KiB
Plaintext

// This file describes the third of three pattern matcher setups that
// forms the `xilinx_dsp` pass described in xilinx_dsp.cc
// At a high level, it works as follows:
// (1) Starting from a DSP48E1 cell that (a) has the Z multiplexer
// (controlled by OPMODE[6:4]) set to zero and (b) doesn't already
// use the 'PCOUT' port
// (2.1) Match another DSP48E1 cell that (a) does not have the CREG enabled,
// (b) has its Z multiplexer output set to the 'C' port, which is
// driven by the 'P' output of the previous DSP cell, and (c) has its
// 'PCIN' port unused
// (2.2) Same as (2.1) but with the 'C' port driven by the 'P' output of the
// previous DSP cell right-shifted by 17 bits
// (3) For this subequent DSP48E1 match (i.e. PCOUT -> PCIN cascade exists)
// if (a) the previous DSP48E1 uses either the A2REG or A1REG, (b) this
// DSP48 does not use A2REG nor A1REG, (c) this DSP48E1 does not already
// have an ACOUT -> ACIN cascade, (d) the previous DSP does not already
// use its ACOUT port, then examine if an ACOUT -> ACIN cascade
// opportunity exists by matching for a $dff-with-optional-clock-enable-
// or-reset and checking that the 'D' input of this register is the same
// as the 'A' input of the previous DSP
// (4) Same as (3) but for BCOUT -> BCIN cascade
// (5) Recursively go to (2.1) until no more matches possible, keeping track
// of the longest possible chain found
// (6) The longest chain is then divided into chunks of no more than
// MAX_DSP_CASCADE in length (to prevent long cascades that exceed the
// height of a DSP column) with each DSP in each chunk being rewritten
// to use [ABP]COUT -> [ABP]CIN cascading as appropriate
// Notes:
// - Currently, [AB]COUT -> [AB]COUT cascades (3 or 4) are only considered
// if a PCOUT -> PCIN cascade is (2.1 or 2.2) first identified; this need
// not be the case --- [AB] cascades can exist independently of a P cascade
// (though all three cascades must come from the same DSP). This situation
// is not handled currently.
// - In addition, [AB]COUT -> [AB]COUT cascades (3 or 4) are currently
// conservative in that they examine the situation where (a) the previous
// DSP has [AB]2REG or [AB]1REG enabled, (b) that the downstream DSP has no
// registers enabled, and (c) that there exists only one additional register
// between the upstream and downstream DSPs. This can certainly be relaxed
// to identify situations ranging from (i) neither DSP uses any registers,
// to (ii) upstream DSP has 2 registers, downstream DSP has 2 registers, and
// there exists a further 2 registers between them. This remains a TODO
// item.
pattern xilinx_dsp_cascade
udata <std::function<SigSpec(const SigSpec&)>> unextend
udata <vector<std::tuple<Cell*,int,int,int>>> chain longest_chain
state <Cell*> next
state <SigSpec> clock
state <int> AREG BREG
// Variables used for subpatterns
state <SigSpec> argQ argD
state <int> ffoffset
udata <SigSpec> dffD dffQ
udata <SigBit> dffclock
udata <Cell*> dff
code
#define MAX_DSP_CASCADE 20
endcode
// (1) Starting from a DSP48* cell that (a) has the Z multiplexer
// (controlled by OPMODE[3:2] for DSP48A*, by OPMODE[6:4] for DSP48E1)
// set to zero and (b) doesn't already use the 'PCOUT' port
match first
select (first->type.in(\DSP48A, \DSP48A1) && port(first, \OPMODE, Const(0, 8)).extract(2,2) == Const::from_string("00")) || (first->type.in(\DSP48E1) && port(first, \OPMODE, Const(0, 7)).extract(4,3) == Const::from_string("000"))
select nusers(port(first, \PCOUT, SigSpec())) <= 1
endmatch
// (6) The longest chain is then divided into chunks of no more than
// MAX_DSP_CASCADE in length (to prevent long cascades that exceed the
// height of a DSP column) with each DSP in each chunk being rewritten
// to use [ABP]COUT -> [ABP]CIN cascading as appropriate
code
longest_chain.clear();
chain.emplace_back(first, -1, -1, -1);
subpattern(tail);
finally
chain.pop_back();
log_assert(chain.empty());
if (GetSize(longest_chain) > 1) {
Cell *dsp = std::get<0>(longest_chain.front());
Cell *dsp_pcin;
int P, AREG, BREG;
for (int i = 1; i < GetSize(longest_chain); i++) {
std::tie(dsp_pcin,P,AREG,BREG) = longest_chain[i];
if (i % MAX_DSP_CASCADE > 0) {
if (P >= 0) {
Wire *cascade = module->addWire(NEW_ID, 48);
dsp_pcin->setPort(ID(C), Const(0, 48));
dsp_pcin->setPort(ID(PCIN), cascade);
dsp->setPort(ID(PCOUT), cascade);
add_siguser(cascade, dsp_pcin);
add_siguser(cascade, dsp);
SigSpec opmode = port(dsp_pcin, \OPMODE, Const(0, 7));
if (dsp->type.in(\DSP48A, \DSP48A1)) {
log_assert(P == 0);
opmode[3] = State::S0;
opmode[2] = State::S1;
}
else if (dsp->type.in(\DSP48E1)) {
if (P == 17)
opmode[6] = State::S1;
else if (P == 0)
opmode[6] = State::S0;
else log_abort();
opmode[5] = State::S0;
opmode[4] = State::S1;
}
dsp_pcin->setPort(\OPMODE, opmode);
log_debug("PCOUT -> PCIN cascade for %s -> %s\n", log_id(dsp), log_id(dsp_pcin));
}
if (AREG >= 0) {
Wire *cascade = module->addWire(NEW_ID, 30);
dsp_pcin->setPort(ID(A), Const(0, 30));
dsp_pcin->setPort(ID(ACIN), cascade);
dsp->setPort(ID(ACOUT), cascade);
add_siguser(cascade, dsp_pcin);
add_siguser(cascade, dsp);
if (dsp->type.in(\DSP48E1))
dsp->setParam(ID(ACASCREG), AREG);
dsp_pcin->setParam(ID(A_INPUT), Const("CASCADE"));
log_debug("ACOUT -> ACIN cascade for %s -> %s\n", log_id(dsp), log_id(dsp_pcin));
}
if (BREG >= 0) {
Wire *cascade = module->addWire(NEW_ID, 18);
if (dsp->type.in(\DSP48A, \DSP48A1)) {
// According to UG389 p9 [https://www.xilinx.com/support/documentation/user_guides/ug389.pdf]
// "The DSP48A1 component uses this input when cascading
// BCOUT from an adjacent DSP48A1 slice. The tools then
// translate BCOUT cascading to the dedicated BCIN input
// and set the B_INPUT attribute for implementation."
dsp_pcin->setPort(ID(B), cascade);
}
else {
dsp_pcin->setPort(ID(B), Const(0, 18));
dsp_pcin->setPort(ID(BCIN), cascade);
}
dsp->setPort(ID(BCOUT), cascade);
add_siguser(cascade, dsp_pcin);
add_siguser(cascade, dsp);
if (dsp->type.in(\DSP48E1)) {
dsp->setParam(ID(BCASCREG), BREG);
// According to UG389 p13 [https://www.xilinx.com/support/documentation/user_guides/ug389.pdf]
// "The attribute is only used by place and route tools and
// is not necessary for the users to set for synthesis. The
// attribute is determined by the connection to the B port
// of the DSP48A1 slice. If the B port is connected to the
// BCOUT of another DSP48A1 slice, then the tools automatically
// set the attribute to 'CASCADE', otherwise it is set to
// 'DIRECT'".
dsp_pcin->setParam(ID(B_INPUT), Const("CASCADE"));
}
log_debug("BCOUT -> BCIN cascade for %s -> %s\n", log_id(dsp), log_id(dsp_pcin));
}
}
else {
log_debug(" Blocking %s -> %s cascade (exceeds max: %d)\n", log_id(dsp), log_id(dsp_pcin), MAX_DSP_CASCADE);
}
dsp = dsp_pcin;
}
accept;
}
endcode
// ------------------------------------------------------------------
subpattern tail
arg first
arg next
// (2.1) Match another DSP48* cell that (a) does not have the CREG enabled,
// (b) has its Z multiplexer output set to the 'C' port, which is
// driven by the 'P' output of the previous DSP cell, and (c) has its
// 'PCIN' port unused
match nextP
select !nextP->type.in(\DSP48E1) || !param(nextP, \CREG).as_bool()
select (nextP->type.in(\DSP48A, \DSP48A1) && port(nextP, \OPMODE, Const(0, 8)).extract(2,2) == Const::from_string("11")) || (nextP->type.in(\DSP48E1) && port(nextP, \OPMODE, Const(0, 7)).extract(4,3) == Const::from_string("011"))
select nusers(port(nextP, \C, SigSpec())) > 1
select nusers(port(nextP, \PCIN, SigSpec())) == 0
index <SigBit> port(nextP, \C)[0] === port(std::get<0>(chain.back()), \P)[0]
semioptional
endmatch
// (2.2) For DSP48E1 only, same as (2.1) but with the 'C' port driven
// by the 'P' output of the previous DSP cell right-shifted by 17 bits
match nextP_shift17
if !nextP
select nextP_shift17->type.in(\DSP48E1)
select !param(nextP_shift17, \CREG).as_bool()
select port(nextP_shift17, \OPMODE, Const(0, 7)).extract(4,3) == Const::from_string("011")
select nusers(port(nextP_shift17, \C, SigSpec())) > 1
select nusers(port(nextP_shift17, \PCIN, SigSpec())) == 0
index <SigBit> port(nextP_shift17, \C)[0] === port(std::get<0>(chain.back()), \P)[17]
semioptional
endmatch
code next
next = nextP;
if (!nextP)
next = nextP_shift17;
if (next) {
if (next->type != first->type)
reject;
unextend = [](const SigSpec &sig) {
int i;
for (i = GetSize(sig)-1; i > 0; i--)
if (sig[i] != sig[i-1])
break;
// Do not remove non-const sign bit
if (sig[i].wire)
++i;
return sig.extract(0, i);
};
}
endcode
// (3) For this subequent DSP48E1 match (i.e. PCOUT -> PCIN cascade exists)
// if (a) this DSP48E1 does not already have an ACOUT -> ACIN cascade,
// (b) the previous DSP does not already use its ACOUT port, then
// examine if an ACOUT -> ACIN cascade opportunity exists if
// (i) A ports are identical, or (ii) separated by a
// $dff-with-optional-clock-enable-or-reset and checking that the 'D' input
// of this register is the same as the 'A' input of the previous DSP
// TODO: Check for two levels of flops, instead of just one
code argQ clock AREG
AREG = -1;
if (next && next->type.in(\DSP48E1)) {
Cell *prev = std::get<0>(chain.back());
if (param(next, \A_INPUT).decode_string() == "DIRECT" &&
port(next, \ACIN, SigSpec()).is_fully_zero() &&
nusers(port(prev, \ACOUT, SigSpec())) <= 1) {
if (param(prev, \AREG) == 0) {
if (port(prev, \A) == port(next, \A))
AREG = 0;
}
else {
argQ = unextend(port(next, \A));
clock = port(prev, \CLK);
subpattern(in_dffe);
if (dff) {
if (!dff->type.in($sdff, $sdffe) && port(prev, \RSTA, State::S0) != State::S0)
goto reject_AREG;
if (dff->type.in($sdff, $sdffe) && (port(dff, \SRST) != port(prev, \RSTA, State::S0) || !param(dff, \SRST_POLARITY).as_bool()))
goto reject_AREG;
IdString CEA;
if (param(prev, \AREG) == 1)
CEA = \CEA2;
else if (param(prev, \AREG) == 2)
CEA = \CEA1;
else log_abort();
if (!dff->type.in($dffe, $sdffe) && port(prev, CEA, State::S0) != State::S1)
goto reject_AREG;
if (dff->type.in($dffe, $sdffe) && (port(dff, \EN) != port(prev, CEA, State::S0) || !param(dff, \EN_POLARITY).as_bool()))
goto reject_AREG;
if (dffD == unextend(port(prev, \A)))
AREG = 1;
}
}
}
reject_AREG: ;
}
endcode
// (4) Same as (3) but for BCOUT -> BCIN cascade
code argQ clock BREG
BREG = -1;
if (next) {
Cell *prev = std::get<0>(chain.back());
if ((next->type != \DSP48E1 || param(next, \B_INPUT).decode_string() == "DIRECT") &&
port(next, \BCIN, SigSpec()).is_fully_zero() &&
nusers(port(prev, \BCOUT, SigSpec())) <= 1) {
if ((next->type.in(\DSP48A, \DSP48A1) && param(prev, \B0REG) == 0 && param(prev, \B1REG) == 0) ||
(next->type.in(\DSP48E1) && param(prev, \BREG) == 0)) {
if (port(prev, \B) == port(next, \B))
BREG = 0;
}
else {
argQ = unextend(port(next, \B));
clock = port(prev, \CLK);
subpattern(in_dffe);
if (dff) {
if (!dff->type.in($sdff, $sdffe) && port(prev, \RSTB, State::S0) != State::S0)
goto reject_BREG;
if (dff->type.in($sdff, $sdffe) && (port(dff, \SRST) != port(prev, \RSTB, State::S0) || !param(dff, \SRST_POLARITY).as_bool()))
goto reject_BREG;
IdString CEB;
if (next->type.in(\DSP48A, \DSP48A1))
CEB = \CEB;
else if (next->type.in(\DSP48E1)) {
if (param(prev, \BREG) == 1)
CEB = \CEB2;
else if (param(prev, \BREG) == 2)
CEB = \CEB1;
else log_abort();
}
else log_abort();
if (!dff->type.in($dffe, $sdffe) && port(prev, CEB, State::S0) != State::S1)
goto reject_BREG;
if (dff->type.in($dffe, $sdffe) && (port(dff, \EN) != port(prev, CEB, State::S0) || !param(dff, \EN_POLARITY).as_bool()))
goto reject_BREG;
if (dffD == unextend(port(prev, \B))) {
if (next->type.in(\DSP48A, \DSP48A1) && param(prev, \B0REG) != 0)
goto reject_BREG;
BREG = 1;
}
}
}
}
reject_BREG: ;
}
endcode
// (5) Recursively go to (2.1) until no more matches possible, recording the
// longest possible chain
code
if (next) {
chain.emplace_back(next, nextP_shift17 ? 17 : nextP ? 0 : -1, AREG, BREG);
SigSpec sigC = unextend(port(next, \C));
if (nextP_shift17) {
if (GetSize(sigC)+17 <= GetSize(port(std::get<0>(chain.back()), \P)) &&
port(std::get<0>(chain.back()), \P).extract(17, GetSize(sigC)) != sigC)
subpattern(tail);
}
else {
if (GetSize(sigC) <= GetSize(port(std::get<0>(chain.back()), \P)) &&
port(std::get<0>(chain.back()), \P).extract(0, GetSize(sigC)) != sigC)
subpattern(tail);
}
} else {
if (GetSize(chain) > GetSize(longest_chain))
longest_chain = chain;
}
finally
if (next)
chain.pop_back();
endcode
// #######################
// Subpattern for matching against input registers, based on knowledge of the
// 'Q' input.
subpattern in_dffe
arg argQ clock
code
dff = nullptr;
if (argQ.empty())
reject;
for (const auto &c : argQ.chunks()) {
// Abandon matches when 'Q' is a constant
if (!c.wire)
reject;
// Abandon matches when 'Q' has the keep attribute set
if (c.wire->get_bool_attribute(\keep))
reject;
// Abandon matches when 'Q' has a non-zero init attribute set
// (not supported by DSP48E1)
Const init = c.wire->attributes.at(\init, Const());
if (!init.empty())
for (auto b : init.extract(c.offset, c.width))
if (b != State::Sx && b != State::S0)
reject;
}
endcode
match ff
select ff->type.in($dff, $dffe, $sdff, $sdffe)
// DSP48E1 does not support clock inversion
select param(ff, \CLK_POLARITY).as_bool()
// Check that reset value, if present, is fully 0.
filter ff->type.in($dff, $dffe) || param(ff, \SRST_VALUE).is_fully_zero()
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \Q)[offset] === argQ[0]
// Check that the rest of argQ is present
filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ)
filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
filter clock == SigBit() || port(ff, \CLK) == clock
endmatch
code argQ
SigSpec Q = port(ff, \Q);
dff = ff;
dffclock = port(ff, \CLK);
dffD = argQ;
SigSpec D = port(ff, \D);
argQ = Q;
dffD.replace(argQ, D);
endcode