yosys/passes/equiv/equiv_make.cc

475 lines
15 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct EquivMakeWorker
{
Module *gold_mod, *gate_mod, *equiv_mod;
pool<IdString> wire_names, cell_names;
CellTypes ct;
bool inames;
vector<string> blacklists;
vector<string> encfiles;
pool<IdString> blacklist_names;
dict<IdString, dict<Const, Const>> encdata;
pool<SigBit> undriven_bits;
SigMap assign_map;
void read_blacklists()
{
for (auto fn : blacklists)
{
std::ifstream f(fn);
if (f.fail())
log_cmd_error("Can't open blacklist file '%s'!\n", fn.c_str());
string line, token;
while (std::getline(f, line)) {
while (1) {
token = next_token(line);
if (token.empty())
break;
blacklist_names.insert(RTLIL::escape_id(token));
}
}
}
}
void read_encfiles()
{
for (auto fn : encfiles)
{
std::ifstream f(fn);
if (f.fail())
log_cmd_error("Can't open encfile '%s'!\n", fn.c_str());
dict<Const, Const> *ed = nullptr;
string line, token;
while (std::getline(f, line))
{
token = next_token(line);
if (token.empty() || token[0] == '#')
continue;
if (token == ".fsm") {
IdString modname = RTLIL::escape_id(next_token(line));
IdString signame = RTLIL::escape_id(next_token(line));
if (encdata.count(signame))
log_cmd_error("Re-definition of signal '%s' in encfile '%s'!\n", signame.c_str(), fn.c_str());
encdata[signame] = dict<Const, Const>();
ed = &encdata[signame];
continue;
}
if (token == ".map") {
Const gold_bits = Const::from_string(next_token(line));
Const gate_bits = Const::from_string(next_token(line));
(*ed)[gold_bits] = gate_bits;
continue;
}
log_cmd_error("Syntax error in encfile '%s'!\n", fn.c_str());
}
}
}
void copy_to_equiv()
{
Module *gold_clone = gold_mod->clone();
Module *gate_clone = gate_mod->clone();
for (auto it : gold_clone->wires().to_vector()) {
if ((it->name[0] == '\\' || inames) && blacklist_names.count(it->name) == 0)
wire_names.insert(it->name);
gold_clone->rename(it, it->name.str() + "_gold");
}
for (auto it : gold_clone->cells().to_vector()) {
if ((it->name[0] == '\\' || inames) && blacklist_names.count(it->name) == 0)
cell_names.insert(it->name);
gold_clone->rename(it, it->name.str() + "_gold");
}
for (auto it : gate_clone->wires().to_vector()) {
if ((it->name[0] == '\\' || inames) && blacklist_names.count(it->name) == 0)
wire_names.insert(it->name);
gate_clone->rename(it, it->name.str() + "_gate");
}
for (auto it : gate_clone->cells().to_vector()) {
if ((it->name[0] == '\\' || inames) && blacklist_names.count(it->name) == 0)
cell_names.insert(it->name);
gate_clone->rename(it, it->name.str() + "_gate");
}
gold_clone->cloneInto(equiv_mod);
gate_clone->cloneInto(equiv_mod);
delete gold_clone;
delete gate_clone;
}
void find_same_wires()
{
SigMap assign_map(equiv_mod);
SigMap rd_signal_map;
// list of cells without added $equiv cells
auto cells_list = equiv_mod->cells().to_vector();
for (auto id : wire_names)
{
IdString gold_id = id.str() + "_gold";
IdString gate_id = id.str() + "_gate";
Wire *gold_wire = equiv_mod->wire(gold_id);
Wire *gate_wire = equiv_mod->wire(gate_id);
if (encdata.count(id))
{
log("Creating encoder/decoder for signal %s.\n", log_id(id));
Wire *dec_wire = equiv_mod->addWire(id.str() + "_decoded", gold_wire->width);
Wire *enc_wire = equiv_mod->addWire(id.str() + "_encoded", gate_wire->width);
SigSpec dec_a, dec_b, dec_s;
SigSpec enc_a, enc_b, enc_s;
dec_a = SigSpec(State::Sx, dec_wire->width);
enc_a = SigSpec(State::Sx, enc_wire->width);
for (auto &it : encdata.at(id))
{
SigSpec dec_sig = gate_wire, dec_pat = it.second;
SigSpec enc_sig = dec_wire, enc_pat = it.first;
if (GetSize(dec_sig) != GetSize(dec_pat))
log_error("Invalid pattern %s for signal %s of size %d!\n",
log_signal(dec_pat), log_signal(dec_sig), GetSize(dec_sig));
if (GetSize(enc_sig) != GetSize(enc_pat))
log_error("Invalid pattern %s for signal %s of size %d!\n",
log_signal(enc_pat), log_signal(enc_sig), GetSize(enc_sig));
SigSpec reduced_dec_sig, reduced_dec_pat;
for (int i = 0; i < GetSize(dec_sig); i++)
if (dec_pat[i] == State::S0 || dec_pat[i] == State::S1) {
reduced_dec_sig.append(dec_sig[i]);
reduced_dec_pat.append(dec_pat[i]);
}
SigSpec reduced_enc_sig, reduced_enc_pat;
for (int i = 0; i < GetSize(enc_sig); i++)
if (enc_pat[i] == State::S0 || enc_pat[i] == State::S1) {
reduced_enc_sig.append(enc_sig[i]);
reduced_enc_pat.append(enc_pat[i]);
}
SigSpec dec_result = it.first;
for (auto &bit : dec_result)
if (bit != State::S1) bit = State::S0;
SigSpec enc_result = it.second;
for (auto &bit : enc_result)
if (bit != State::S1) bit = State::S0;
SigSpec dec_eq = equiv_mod->addWire(NEW_ID);
SigSpec enc_eq = equiv_mod->addWire(NEW_ID);
equiv_mod->addEq(NEW_ID, reduced_dec_sig, reduced_dec_pat, dec_eq);
cells_list.push_back(equiv_mod->addEq(NEW_ID, reduced_enc_sig, reduced_enc_pat, enc_eq));
dec_s.append(dec_eq);
enc_s.append(enc_eq);
dec_b.append(dec_result);
enc_b.append(enc_result);
}
equiv_mod->addPmux(NEW_ID, dec_a, dec_b, dec_s, dec_wire);
equiv_mod->addPmux(NEW_ID, enc_a, enc_b, enc_s, enc_wire);
rd_signal_map.add(assign_map(gate_wire), enc_wire);
gate_wire = dec_wire;
}
if (gold_wire == nullptr || gate_wire == nullptr || gold_wire->width != gate_wire->width) {
if (gold_wire && gold_wire->port_id)
log_error("Can't match gold port `%s' to a gate port.\n", log_id(gold_wire));
if (gate_wire && gate_wire->port_id)
log_error("Can't match gate port `%s' to a gold port.\n", log_id(gate_wire));
continue;
}
log("Presumably equivalent wires: %s (%s), %s (%s) -> %s\n",
log_id(gold_wire), log_signal(assign_map(gold_wire)),
log_id(gate_wire), log_signal(assign_map(gate_wire)), log_id(id));
if (gold_wire->port_output || gate_wire->port_output)
{
Wire *wire = equiv_mod->addWire(id, gold_wire->width);
wire->port_output = true;
gold_wire->port_input = false;
gate_wire->port_input = false;
gold_wire->port_output = false;
gate_wire->port_output = false;
for (int i = 0; i < wire->width; i++)
equiv_mod->addEquiv(NEW_ID, SigSpec(gold_wire, i), SigSpec(gate_wire, i), SigSpec(wire, i));
rd_signal_map.add(assign_map(gold_wire), wire);
rd_signal_map.add(assign_map(gate_wire), wire);
}
else
if (gold_wire->port_input || gate_wire->port_input)
{
Wire *wire = equiv_mod->addWire(id, gold_wire->width);
wire->port_input = true;
gold_wire->port_input = false;
gate_wire->port_input = false;
equiv_mod->connect(gold_wire, wire);
equiv_mod->connect(gate_wire, wire);
}
else
{
Wire *wire = equiv_mod->addWire(id, gold_wire->width);
SigSpec rdmap_gold, rdmap_gate, rdmap_equiv;
for (int i = 0; i < wire->width; i++) {
if (undriven_bits.count(assign_map(SigBit(gold_wire, i)))) {
log(" Skipping signal bit %s [%d]: undriven on gold side.\n", id2cstr(gold_wire->name), i);
continue;
}
if (undriven_bits.count(assign_map(SigBit(gate_wire, i)))) {
log(" Skipping signal bit %s [%d]: undriven on gate side.\n", id2cstr(gate_wire->name), i);
continue;
}
equiv_mod->addEquiv(NEW_ID, SigSpec(gold_wire, i), SigSpec(gate_wire, i), SigSpec(wire, i));
rdmap_gold.append(SigBit(gold_wire, i));
rdmap_gate.append(SigBit(gate_wire, i));
rdmap_equiv.append(SigBit(wire, i));
}
rd_signal_map.add(rdmap_gold, rdmap_equiv);
rd_signal_map.add(rdmap_gate, rdmap_equiv);
}
}
for (auto c : cells_list)
for (auto &conn : c->connections())
if (!ct.cell_output(c->type, conn.first)) {
SigSpec old_sig = assign_map(conn.second);
SigSpec new_sig = rd_signal_map(old_sig);
if (old_sig != new_sig) {
log("Changing input %s of cell %s (%s): %s -> %s\n",
log_id(conn.first), log_id(c), log_id(c->type),
log_signal(old_sig), log_signal(new_sig));
c->setPort(conn.first, new_sig);
}
}
equiv_mod->fixup_ports();
}
void find_same_cells()
{
SigMap assign_map(equiv_mod);
for (auto id : cell_names)
{
IdString gold_id = id.str() + "_gold";
IdString gate_id = id.str() + "_gate";
Cell *gold_cell = equiv_mod->cell(gold_id);
Cell *gate_cell = equiv_mod->cell(gate_id);
if (gold_cell == nullptr || gate_cell == nullptr || gold_cell->type != gate_cell->type || !ct.cell_known(gold_cell->type) ||
gold_cell->parameters != gate_cell->parameters || GetSize(gold_cell->connections()) != GetSize(gate_cell->connections()))
try_next_cell_name:
continue;
for (auto gold_conn : gold_cell->connections())
if (!gate_cell->connections().count(gold_conn.first))
goto try_next_cell_name;
log("Presumably equivalent cells: %s %s (%s) -> %s\n",
log_id(gold_cell), log_id(gate_cell), log_id(gold_cell->type), log_id(id));
for (auto gold_conn : gold_cell->connections())
{
SigSpec gold_sig = assign_map(gold_conn.second);
SigSpec gate_sig = assign_map(gate_cell->getPort(gold_conn.first));
if (ct.cell_output(gold_cell->type, gold_conn.first)) {
equiv_mod->connect(gate_sig, gold_sig);
continue;
}
for (int i = 0; i < GetSize(gold_sig); i++)
if (gold_sig[i] != gate_sig[i]) {
Wire *w = equiv_mod->addWire(NEW_ID);
equiv_mod->addEquiv(NEW_ID, gold_sig[i], gate_sig[i], w);
gold_sig[i] = w;
}
gold_cell->setPort(gold_conn.first, gold_sig);
}
equiv_mod->remove(gate_cell);
equiv_mod->rename(gold_cell, id);
}
}
void find_undriven_nets(bool mark)
{
undriven_bits.clear();
assign_map.set(equiv_mod);
for (auto wire : equiv_mod->wires()) {
for (auto bit : assign_map(wire))
if (bit.wire)
undriven_bits.insert(bit);
}
for (auto wire : equiv_mod->wires()) {
if (wire->port_input)
for (auto bit : assign_map(wire))
undriven_bits.erase(bit);
}
for (auto cell : equiv_mod->cells()) {
for (auto &conn : cell->connections())
if (!ct.cell_known(cell->type) || ct.cell_output(cell->type, conn.first))
for (auto bit : assign_map(conn.second))
undriven_bits.erase(bit);
}
if (mark) {
SigSpec undriven_sig(undriven_bits);
undriven_sig.sort_and_unify();
for (auto chunk : undriven_sig.chunks()) {
log("Setting undriven nets to undef: %s\n", log_signal(chunk));
equiv_mod->connect(chunk, SigSpec(State::Sx, chunk.width));
}
}
}
void run()
{
copy_to_equiv();
find_undriven_nets(false);
find_same_wires();
find_same_cells();
find_undriven_nets(true);
}
};
struct EquivMakePass : public Pass {
EquivMakePass() : Pass("equiv_make", "prepare a circuit for equivalence checking") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" equiv_make [options] gold_module gate_module equiv_module\n");
log("\n");
log("This creates a module annotated with $equiv cells from two presumably\n");
log("equivalent modules. Use commands such as 'equiv_simple' and 'equiv_status'\n");
log("to work with the created equivalent checking module.\n");
log("\n");
log(" -inames\n");
log(" Also match cells and wires with $... names.\n");
log("\n");
log(" -blacklist <file>\n");
log(" Do not match cells or signals that match the names in the file.\n");
log("\n");
log(" -encfile <file>\n");
log(" Match FSM encodings using the description from the file.\n");
log(" See 'help fsm_recode' for details.\n");
log("\n");
log("Note: The circuit created by this command is not a miter (with something like\n");
log("a trigger output), but instead uses $equiv cells to encode the equivalence\n");
log("checking problem. Use 'miter -equiv' if you want to create a miter circuit.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
EquivMakeWorker worker;
worker.ct.setup(design);
worker.inames = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-inames") {
worker.inames = true;
continue;
}
if (args[argidx] == "-blacklist" && argidx+1 < args.size()) {
worker.blacklists.push_back(args[++argidx]);
continue;
}
if (args[argidx] == "-encfile" && argidx+1 < args.size()) {
worker.encfiles.push_back(args[++argidx]);
continue;
}
break;
}
if (argidx+3 != args.size())
log_cmd_error("Invalid number of arguments.\n");
worker.gold_mod = design->module(RTLIL::escape_id(args[argidx]));
worker.gate_mod = design->module(RTLIL::escape_id(args[argidx+1]));
worker.equiv_mod = design->module(RTLIL::escape_id(args[argidx+2]));
if (worker.gold_mod == nullptr)
log_cmd_error("Can't find gold module %s.\n", args[argidx].c_str());
if (worker.gate_mod == nullptr)
log_cmd_error("Can't find gate module %s.\n", args[argidx+1].c_str());
if (worker.equiv_mod != nullptr)
log_cmd_error("Equiv module %s already exists.\n", args[argidx+2].c_str());
if (worker.gold_mod->has_memories() || worker.gold_mod->has_processes())
log_cmd_error("Gold module contains memories or procresses. Run 'memory' or 'proc' respectively.\n");
if (worker.gate_mod->has_memories() || worker.gate_mod->has_processes())
log_cmd_error("Gate module contains memories or procresses. Run 'memory' or 'proc' respectively.\n");
worker.read_blacklists();
worker.read_encfiles();
log_header(design, "Executing EQUIV_MAKE pass (creating equiv checking module).\n");
worker.equiv_mod = design->addModule(RTLIL::escape_id(args[argidx+2]));
worker.run();
}
} EquivMakePass;
PRIVATE_NAMESPACE_END