yosys/backends/cxxrtl/cxxrtl.h

1875 lines
59 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2019-2020 whitequark <whitequark@whitequark.org>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// This file is included by the designs generated with `write_cxxrtl`. It is not used in Yosys itself.
//
// The CXXRTL support library implements compile time specialized arbitrary width arithmetics, as well as provides
// composite lvalues made out of bit slices and concatenations of lvalues. This allows the `write_cxxrtl` pass
// to perform a straightforward translation of RTLIL structures to readable C++, relying on the C++ compiler
// to unwrap the abstraction and generate efficient code.
#ifndef CXXRTL_H
#define CXXRTL_H
#include <cstddef>
#include <cstdint>
#include <cassert>
#include <limits>
#include <type_traits>
#include <tuple>
#include <vector>
#include <map>
#include <algorithm>
#include <memory>
#include <functional>
#include <sstream>
#include <backends/cxxrtl/cxxrtl_capi.h>
#ifndef __has_attribute
# define __has_attribute(x) 0
#endif
// CXXRTL essentially uses the C++ compiler as a hygienic macro engine that feeds an instruction selector.
// It generates a lot of specialized template functions with relatively large bodies that, when inlined
// into the caller and (for those with loops) unrolled, often expose many new optimization opportunities.
// Because of this, most of the CXXRTL runtime must be always inlined for best performance.
#if __has_attribute(always_inline)
#define CXXRTL_ALWAYS_INLINE inline __attribute__((__always_inline__))
#else
#define CXXRTL_ALWAYS_INLINE inline
#endif
// Conversely, some functions in the generated code are extremely large yet very cold, with both of these
// properties being extreme enough to confuse C++ compilers into spending pathological amounts of time
// on a futile (the code becomes worse) attempt to optimize the least important parts of code.
#if __has_attribute(optnone)
#define CXXRTL_EXTREMELY_COLD __attribute__((__optnone__))
#elif __has_attribute(optimize)
#define CXXRTL_EXTREMELY_COLD __attribute__((__optimize__(0)))
#else
#define CXXRTL_EXTREMELY_COLD
#endif
// CXXRTL uses assert() to check for C++ contract violations (which may result in e.g. undefined behavior
// of the simulation code itself), and CXXRTL_ASSERT to check for RTL contract violations (which may at
// most result in undefined simulation results).
//
// Though by default, CXXRTL_ASSERT() expands to assert(), it may be overridden e.g. when integrating
// the simulation into another process that should survive violating RTL contracts.
#ifndef CXXRTL_ASSERT
#ifndef CXXRTL_NDEBUG
#define CXXRTL_ASSERT(x) assert(x)
#else
#define CXXRTL_ASSERT(x)
#endif
#endif
namespace cxxrtl {
// All arbitrary-width values in CXXRTL are backed by arrays of unsigned integers called chunks. The chunk size
// is the same regardless of the value width to simplify manipulating values via FFI interfaces, e.g. driving
// and introspecting the simulation in Python.
//
// It is practical to use chunk sizes between 32 bits and platform register size because when arithmetics on
// narrower integer types is legalized by the C++ compiler, it inserts code to clear the high bits of the register.
// However, (a) most of our operations do not change those bits in the first place because of invariants that are
// invisible to the compiler, (b) we often operate on non-power-of-2 values and have to clear the high bits anyway.
// Therefore, using relatively wide chunks and clearing the high bits explicitly and only when we know they may be
// clobbered results in simpler generated code.
typedef uint32_t chunk_t;
typedef uint64_t wide_chunk_t;
template<typename T>
struct chunk_traits {
static_assert(std::is_integral<T>::value && std::is_unsigned<T>::value,
"chunk type must be an unsigned integral type");
using type = T;
static constexpr size_t bits = std::numeric_limits<T>::digits;
static constexpr T mask = std::numeric_limits<T>::max();
};
template<class T>
struct expr_base;
template<size_t Bits>
struct value : public expr_base<value<Bits>> {
static constexpr size_t bits = Bits;
using chunk = chunk_traits<chunk_t>;
static constexpr chunk::type msb_mask = (Bits % chunk::bits == 0) ? chunk::mask
: chunk::mask >> (chunk::bits - (Bits % chunk::bits));
static constexpr size_t chunks = (Bits + chunk::bits - 1) / chunk::bits;
chunk::type data[chunks] = {};
value() = default;
template<typename... Init>
explicit constexpr value(Init ...init) : data{init...} {}
value(const value<Bits> &) = default;
value<Bits> &operator=(const value<Bits> &) = default;
value(value<Bits> &&) = default;
value<Bits> &operator=(value<Bits> &&) = default;
// A (no-op) helper that forces the cast to value<>.
CXXRTL_ALWAYS_INLINE
const value<Bits> &val() const {
return *this;
}
std::string str() const {
std::stringstream ss;
ss << *this;
return ss.str();
}
// Conversion operations.
//
// These functions ensure that a conversion is never out of range, and should be always used, if at all
// possible, instead of direct manipulation of the `data` member. For very large types, .slice() and
// .concat() can be used to split them into more manageable parts.
template<class IntegerT>
CXXRTL_ALWAYS_INLINE
IntegerT get() const {
static_assert(std::numeric_limits<IntegerT>::is_integer && !std::numeric_limits<IntegerT>::is_signed,
"get<T>() requires T to be an unsigned integral type");
static_assert(std::numeric_limits<IntegerT>::digits >= Bits,
"get<T>() requires T to be at least as wide as the value is");
IntegerT result = 0;
for (size_t n = 0; n < chunks; n++)
result |= IntegerT(data[n]) << (n * chunk::bits);
return result;
}
template<class IntegerT>
CXXRTL_ALWAYS_INLINE
void set(IntegerT other) {
static_assert(std::numeric_limits<IntegerT>::is_integer && !std::numeric_limits<IntegerT>::is_signed,
"set<T>() requires T to be an unsigned integral type");
static_assert(std::numeric_limits<IntegerT>::digits >= Bits,
"set<T>() requires the value to be at least as wide as T is");
for (size_t n = 0; n < chunks; n++)
data[n] = (other >> (n * chunk::bits)) & chunk::mask;
}
// Operations with compile-time parameters.
//
// These operations are used to implement slicing, concatenation, and blitting.
// The trunc, zext and sext operations add or remove most significant bits (i.e. on the left);
// the rtrunc and rzext operations add or remove least significant bits (i.e. on the right).
template<size_t NewBits>
CXXRTL_ALWAYS_INLINE
value<NewBits> trunc() const {
static_assert(NewBits <= Bits, "trunc() may not increase width");
value<NewBits> result;
for (size_t n = 0; n < result.chunks; n++)
result.data[n] = data[n];
result.data[result.chunks - 1] &= result.msb_mask;
return result;
}
template<size_t NewBits>
CXXRTL_ALWAYS_INLINE
value<NewBits> zext() const {
static_assert(NewBits >= Bits, "zext() may not decrease width");
value<NewBits> result;
for (size_t n = 0; n < chunks; n++)
result.data[n] = data[n];
return result;
}
template<size_t NewBits>
CXXRTL_ALWAYS_INLINE
value<NewBits> sext() const {
static_assert(NewBits >= Bits, "sext() may not decrease width");
value<NewBits> result;
for (size_t n = 0; n < chunks; n++)
result.data[n] = data[n];
if (is_neg()) {
result.data[chunks - 1] |= ~msb_mask;
for (size_t n = chunks; n < result.chunks; n++)
result.data[n] = chunk::mask;
result.data[result.chunks - 1] &= result.msb_mask;
}
return result;
}
template<size_t NewBits>
CXXRTL_ALWAYS_INLINE
value<NewBits> rtrunc() const {
static_assert(NewBits <= Bits, "rtrunc() may not increase width");
value<NewBits> result;
constexpr size_t shift_chunks = (Bits - NewBits) / chunk::bits;
constexpr size_t shift_bits = (Bits - NewBits) % chunk::bits;
chunk::type carry = 0;
if (shift_chunks + result.chunks < chunks) {
carry = (shift_bits == 0) ? 0
: data[shift_chunks + result.chunks] << (chunk::bits - shift_bits);
}
for (size_t n = result.chunks; n > 0; n--) {
result.data[n - 1] = carry | (data[shift_chunks + n - 1] >> shift_bits);
carry = (shift_bits == 0) ? 0
: data[shift_chunks + n - 1] << (chunk::bits - shift_bits);
}
return result;
}
template<size_t NewBits>
CXXRTL_ALWAYS_INLINE
value<NewBits> rzext() const {
static_assert(NewBits >= Bits, "rzext() may not decrease width");
value<NewBits> result;
constexpr size_t shift_chunks = (NewBits - Bits) / chunk::bits;
constexpr size_t shift_bits = (NewBits - Bits) % chunk::bits;
chunk::type carry = 0;
for (size_t n = 0; n < chunks; n++) {
result.data[shift_chunks + n] = (data[n] << shift_bits) | carry;
carry = (shift_bits == 0) ? 0
: data[n] >> (chunk::bits - shift_bits);
}
if (shift_chunks + chunks < result.chunks)
result.data[shift_chunks + chunks] = carry;
return result;
}
// Bit blit operation, i.e. a partial read-modify-write.
template<size_t Stop, size_t Start>
CXXRTL_ALWAYS_INLINE
value<Bits> blit(const value<Stop - Start + 1> &source) const {
static_assert(Stop >= Start, "blit() may not reverse bit order");
constexpr chunk::type start_mask = ~(chunk::mask << (Start % chunk::bits));
constexpr chunk::type stop_mask = (Stop % chunk::bits + 1 == chunk::bits) ? 0
: (chunk::mask << (Stop % chunk::bits + 1));
value<Bits> masked = *this;
if (Start / chunk::bits == Stop / chunk::bits) {
masked.data[Start / chunk::bits] &= stop_mask | start_mask;
} else {
masked.data[Start / chunk::bits] &= start_mask;
for (size_t n = Start / chunk::bits + 1; n < Stop / chunk::bits; n++)
masked.data[n] = 0;
masked.data[Stop / chunk::bits] &= stop_mask;
}
value<Bits> shifted = source
.template rzext<Stop + 1>()
.template zext<Bits>();
return masked.bit_or(shifted);
}
// Helpers for selecting extending or truncating operation depending on whether the result is wider or narrower
// than the operand. In C++17 these can be replaced with `if constexpr`.
template<size_t NewBits, typename = void>
struct zext_cast {
CXXRTL_ALWAYS_INLINE
value<NewBits> operator()(const value<Bits> &val) {
return val.template zext<NewBits>();
}
};
template<size_t NewBits>
struct zext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
CXXRTL_ALWAYS_INLINE
value<NewBits> operator()(const value<Bits> &val) {
return val.template trunc<NewBits>();
}
};
template<size_t NewBits, typename = void>
struct sext_cast {
CXXRTL_ALWAYS_INLINE
value<NewBits> operator()(const value<Bits> &val) {
return val.template sext<NewBits>();
}
};
template<size_t NewBits>
struct sext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
CXXRTL_ALWAYS_INLINE
value<NewBits> operator()(const value<Bits> &val) {
return val.template trunc<NewBits>();
}
};
template<size_t NewBits>
CXXRTL_ALWAYS_INLINE
value<NewBits> zcast() const {
return zext_cast<NewBits>()(*this);
}
template<size_t NewBits>
CXXRTL_ALWAYS_INLINE
value<NewBits> scast() const {
return sext_cast<NewBits>()(*this);
}
// Bit replication is far more efficient than the equivalent concatenation.
template<size_t Count>
CXXRTL_ALWAYS_INLINE
value<Bits * Count> repeat() const {
static_assert(Bits == 1, "repeat() is implemented only for 1-bit values");
return *this ? value<Bits * Count>().bit_not() : value<Bits * Count>();
}
// Operations with run-time parameters (offsets, amounts, etc).
//
// These operations are used for computations.
bool bit(size_t offset) const {
return data[offset / chunk::bits] & (1 << (offset % chunk::bits));
}
void set_bit(size_t offset, bool value = true) {
size_t offset_chunks = offset / chunk::bits;
size_t offset_bits = offset % chunk::bits;
data[offset_chunks] &= ~(1 << offset_bits);
data[offset_chunks] |= value ? 1 << offset_bits : 0;
}
explicit operator bool() const {
return !is_zero();
}
bool is_zero() const {
for (size_t n = 0; n < chunks; n++)
if (data[n] != 0)
return false;
return true;
}
bool is_neg() const {
return data[chunks - 1] & (1 << ((Bits - 1) % chunk::bits));
}
bool operator ==(const value<Bits> &other) const {
for (size_t n = 0; n < chunks; n++)
if (data[n] != other.data[n])
return false;
return true;
}
bool operator !=(const value<Bits> &other) const {
return !(*this == other);
}
value<Bits> bit_not() const {
value<Bits> result;
for (size_t n = 0; n < chunks; n++)
result.data[n] = ~data[n];
result.data[chunks - 1] &= msb_mask;
return result;
}
value<Bits> bit_and(const value<Bits> &other) const {
value<Bits> result;
for (size_t n = 0; n < chunks; n++)
result.data[n] = data[n] & other.data[n];
return result;
}
value<Bits> bit_or(const value<Bits> &other) const {
value<Bits> result;
for (size_t n = 0; n < chunks; n++)
result.data[n] = data[n] | other.data[n];
return result;
}
value<Bits> bit_xor(const value<Bits> &other) const {
value<Bits> result;
for (size_t n = 0; n < chunks; n++)
result.data[n] = data[n] ^ other.data[n];
return result;
}
value<Bits> update(const value<Bits> &val, const value<Bits> &mask) const {
return bit_and(mask.bit_not()).bit_or(val.bit_and(mask));
}
template<size_t AmountBits>
value<Bits> shl(const value<AmountBits> &amount) const {
// Ensure our early return is correct by prohibiting values larger than 4 Gbit.
static_assert(Bits <= chunk::mask, "shl() of unreasonably large values is not supported");
// Detect shifts definitely large than Bits early.
for (size_t n = 1; n < amount.chunks; n++)
if (amount.data[n] != 0)
return {};
// Past this point we can use the least significant chunk as the shift size.
size_t shift_chunks = amount.data[0] / chunk::bits;
size_t shift_bits = amount.data[0] % chunk::bits;
if (shift_chunks >= chunks)
return {};
value<Bits> result;
chunk::type carry = 0;
for (size_t n = 0; n < chunks - shift_chunks; n++) {
result.data[shift_chunks + n] = (data[n] << shift_bits) | carry;
carry = (shift_bits == 0) ? 0
: data[n] >> (chunk::bits - shift_bits);
}
return result;
}
template<size_t AmountBits, bool Signed = false>
value<Bits> shr(const value<AmountBits> &amount) const {
// Ensure our early return is correct by prohibiting values larger than 4 Gbit.
static_assert(Bits <= chunk::mask, "shr() of unreasonably large values is not supported");
// Detect shifts definitely large than Bits early.
for (size_t n = 1; n < amount.chunks; n++)
if (amount.data[n] != 0)
return {};
// Past this point we can use the least significant chunk as the shift size.
size_t shift_chunks = amount.data[0] / chunk::bits;
size_t shift_bits = amount.data[0] % chunk::bits;
if (shift_chunks >= chunks)
return {};
value<Bits> result;
chunk::type carry = 0;
for (size_t n = 0; n < chunks - shift_chunks; n++) {
result.data[chunks - shift_chunks - 1 - n] = carry | (data[chunks - 1 - n] >> shift_bits);
carry = (shift_bits == 0) ? 0
: data[chunks - 1 - n] << (chunk::bits - shift_bits);
}
if (Signed && is_neg()) {
size_t top_chunk_idx = (Bits - shift_bits) / chunk::bits;
size_t top_chunk_bits = (Bits - shift_bits) % chunk::bits;
for (size_t n = top_chunk_idx + 1; n < chunks; n++)
result.data[n] = chunk::mask;
if (shift_bits != 0)
result.data[top_chunk_idx] |= chunk::mask << top_chunk_bits;
}
return result;
}
template<size_t AmountBits>
value<Bits> sshr(const value<AmountBits> &amount) const {
return shr<AmountBits, /*Signed=*/true>(amount);
}
template<size_t ResultBits, size_t SelBits>
value<ResultBits> bmux(const value<SelBits> &sel) const {
static_assert(ResultBits << SelBits == Bits, "invalid sizes used in bmux()");
size_t amount = sel.data[0] * ResultBits;
size_t shift_chunks = amount / chunk::bits;
size_t shift_bits = amount % chunk::bits;
value<ResultBits> result;
chunk::type carry = 0;
if (ResultBits % chunk::bits + shift_bits > chunk::bits)
carry = data[result.chunks + shift_chunks] << (chunk::bits - shift_bits);
for (size_t n = 0; n < result.chunks; n++) {
result.data[result.chunks - 1 - n] = carry | (data[result.chunks + shift_chunks - 1 - n] >> shift_bits);
carry = (shift_bits == 0) ? 0
: data[result.chunks + shift_chunks - 1 - n] << (chunk::bits - shift_bits);
}
return result;
}
template<size_t ResultBits, size_t SelBits>
value<ResultBits> demux(const value<SelBits> &sel) const {
static_assert(Bits << SelBits == ResultBits, "invalid sizes used in demux()");
size_t amount = sel.data[0] * Bits;
size_t shift_chunks = amount / chunk::bits;
size_t shift_bits = amount % chunk::bits;
value<ResultBits> result;
chunk::type carry = 0;
for (size_t n = 0; n < chunks; n++) {
result.data[shift_chunks + n] = (data[n] << shift_bits) | carry;
carry = (shift_bits == 0) ? 0
: data[n] >> (chunk::bits - shift_bits);
}
if (Bits % chunk::bits + shift_bits > chunk::bits)
result.data[shift_chunks + chunks] = carry;
return result;
}
size_t ctpop() const {
size_t count = 0;
for (size_t n = 0; n < chunks; n++) {
// This loop implements the population count idiom as recognized by LLVM and GCC.
for (chunk::type x = data[n]; x != 0; count++)
x = x & (x - 1);
}
return count;
}
size_t ctlz() const {
size_t count = 0;
for (size_t n = 0; n < chunks; n++) {
chunk::type x = data[chunks - 1 - n];
if (x == 0) {
count += (n == 0 ? Bits % chunk::bits : chunk::bits);
} else {
// This loop implements the find first set idiom as recognized by LLVM.
for (; x != 0; count++)
x >>= 1;
}
}
return count;
}
size_t chunks_used() const {
for (size_t n = chunks; n > 0; n--) {
if (data[n - 1] != 0)
return n;
}
return 0;
}
template<bool Invert, bool CarryIn>
std::pair<value<Bits>, bool /*CarryOut*/> alu(const value<Bits> &other) const {
value<Bits> result;
bool carry = CarryIn;
for (size_t n = 0; n < result.chunks; n++) {
result.data[n] = data[n] + (Invert ? ~other.data[n] : other.data[n]) + carry;
if (result.chunks - 1 == n)
result.data[result.chunks - 1] &= result.msb_mask;
carry = (result.data[n] < data[n]) ||
(result.data[n] == data[n] && carry);
}
return {result, carry};
}
value<Bits> add(const value<Bits> &other) const {
return alu</*Invert=*/false, /*CarryIn=*/false>(other).first;
}
value<Bits> sub(const value<Bits> &other) const {
return alu</*Invert=*/true, /*CarryIn=*/true>(other).first;
}
value<Bits> neg() const {
return value<Bits> { 0u }.sub(*this);
}
bool ucmp(const value<Bits> &other) const {
bool carry;
std::tie(std::ignore, carry) = alu</*Invert=*/true, /*CarryIn=*/true>(other);
return !carry; // a.ucmp(b) ≡ a u< b
}
bool scmp(const value<Bits> &other) const {
value<Bits> result;
bool carry;
std::tie(result, carry) = alu</*Invert=*/true, /*CarryIn=*/true>(other);
bool overflow = (is_neg() == !other.is_neg()) && (is_neg() != result.is_neg());
return result.is_neg() ^ overflow; // a.scmp(b) ≡ a s< b
}
template<size_t ResultBits>
value<ResultBits> mul(const value<Bits> &other) const {
value<ResultBits> result;
wide_chunk_t wide_result[result.chunks + 1] = {};
for (size_t n = 0; n < chunks; n++) {
for (size_t m = 0; m < chunks && n + m < result.chunks; m++) {
wide_result[n + m] += wide_chunk_t(data[n]) * wide_chunk_t(other.data[m]);
wide_result[n + m + 1] += wide_result[n + m] >> chunk::bits;
wide_result[n + m] &= chunk::mask;
}
}
for (size_t n = 0; n < result.chunks; n++) {
result.data[n] = wide_result[n];
}
result.data[result.chunks - 1] &= result.msb_mask;
return result;
}
// parallel to BigUnsigned::divideWithRemainder; quotient is stored in q,
// *this is left with the remainder. See that function for commentary describing
// how/why this works.
void divideWithRemainder(const value<Bits> &b, value<Bits> &q) {
assert(this != &q);
if (this == &b || &q == &b) {
value<Bits> tmpB(b);
divideWithRemainder(tmpB, q);
return;
}
q = value<Bits> {0u};
size_t blen = b.chunks_used();
if (blen == 0) {
return;
}
size_t len = chunks_used();
if (len < blen) {
return;
}
size_t i, j, k;
size_t i2;
chunk_t temp;
bool borrowIn, borrowOut;
size_t origLen = len;
len++;
chunk::type blk[len];
std::copy(data, data + origLen, blk);
blk[origLen] = 0;
chunk::type subtractBuf[len];
std::fill(subtractBuf, subtractBuf + len, 0);
size_t qlen = origLen - blen + 1;
i = qlen;
while (i > 0) {
i--;
i2 = chunk::bits;
while (i2 > 0) {
i2--;
for (j = 0, k = i, borrowIn = false; j <= blen; j++, k++) {
temp = blk[k] - getShiftedBlock(b, j, i2);
borrowOut = (temp > blk[k]);
if (borrowIn) {
borrowOut |= (temp == 0);
temp--;
}
subtractBuf[k] = temp;
borrowIn = borrowOut;
}
for (; k < origLen && borrowIn; k++) {
borrowIn = (blk[k] == 0);
subtractBuf[k] = blk[k] - 1;
}
if (!borrowIn) {
q.data[i] |= (chunk::type(1) << i2);
while (k > i) {
k--;
blk[k] = subtractBuf[k];
}
}
}
}
std::copy(blk, blk + origLen, data);
std::fill(blk + origLen, blk + chunks, 0);
}
static chunk::type getShiftedBlock(const value<Bits> &num, size_t x, size_t y) {
chunk::type part1 = (x == 0 || y == 0) ? 0 : (num.data[x - 1] >> (chunk::bits - y));
chunk::type part2 = (x == num.chunks) ? 0 : (num.data[x] << y);
return part1 | part2;
}
// parallel to BigInteger::divideWithRemainder; quotient is stored in q,
// *this is left with the remainder. See that function for commentary describing
// how/why this works.
void signedDivideWithRemainder(const value<Bits> &b, value<Bits> &q) {
assert(this != &q);
if (this == &b || &q == &b) {
value<Bits> tmpB(b);
signedDivideWithRemainder(tmpB, q);
return;
}
if (b.is_zero()) {
q = value<Bits>{0u};
return;
}
if (is_zero()) {
q = value<Bits>{0u};
return;
}
// BigInteger has a separate 'mag' to its sign. We don't, so the lazy
// approach is to improvise said.
auto mag = *this;
bool neg = mag.is_neg();
if (neg)
mag = mag.neg();
auto bmag = b;
bool bneg = bmag.is_neg();
if (bneg)
bmag = bmag.neg();
bool qneg = false;
if (neg != b.is_neg()) {
qneg = true;
mag = mag.sub(value<Bits>{1u});
}
mag.divideWithRemainder(bmag, q);
if (neg != bneg) {
q = q.add(value<Bits>{1u});
mag = bmag.sub(mag);
mag = mag.sub(value<Bits>{1u});
}
neg = bneg;
*this = neg ? mag.neg() : mag;
if (qneg)
q = q.neg();
}
};
// Expression template for a slice, usable as lvalue or rvalue, and composable with other expression templates here.
template<class T, size_t Stop, size_t Start>
struct slice_expr : public expr_base<slice_expr<T, Stop, Start>> {
static_assert(Stop >= Start, "slice_expr() may not reverse bit order");
static_assert(Start < T::bits && Stop < T::bits, "slice_expr() must be within bounds");
static constexpr size_t bits = Stop - Start + 1;
T &expr;
slice_expr(T &expr) : expr(expr) {}
slice_expr(const slice_expr<T, Stop, Start> &) = delete;
CXXRTL_ALWAYS_INLINE
operator value<bits>() const {
return static_cast<const value<T::bits> &>(expr)
.template rtrunc<T::bits - Start>()
.template trunc<bits>();
}
CXXRTL_ALWAYS_INLINE
slice_expr<T, Stop, Start> &operator=(const value<bits> &rhs) {
// Generic partial assignment implemented using a read-modify-write operation on the sliced expression.
expr = static_cast<const value<T::bits> &>(expr)
.template blit<Stop, Start>(rhs);
return *this;
}
// A helper that forces the cast to value<>, which allows deduction to work.
CXXRTL_ALWAYS_INLINE
value<bits> val() const {
return static_cast<const value<bits> &>(*this);
}
};
// Expression template for a concatenation, usable as lvalue or rvalue, and composable with other expression templates here.
template<class T, class U>
struct concat_expr : public expr_base<concat_expr<T, U>> {
static constexpr size_t bits = T::bits + U::bits;
T &ms_expr;
U &ls_expr;
concat_expr(T &ms_expr, U &ls_expr) : ms_expr(ms_expr), ls_expr(ls_expr) {}
concat_expr(const concat_expr<T, U> &) = delete;
CXXRTL_ALWAYS_INLINE
operator value<bits>() const {
value<bits> ms_shifted = static_cast<const value<T::bits> &>(ms_expr)
.template rzext<bits>();
value<bits> ls_extended = static_cast<const value<U::bits> &>(ls_expr)
.template zext<bits>();
return ms_shifted.bit_or(ls_extended);
}
CXXRTL_ALWAYS_INLINE
concat_expr<T, U> &operator=(const value<bits> &rhs) {
ms_expr = rhs.template rtrunc<T::bits>();
ls_expr = rhs.template trunc<U::bits>();
return *this;
}
// A helper that forces the cast to value<>, which allows deduction to work.
CXXRTL_ALWAYS_INLINE
value<bits> val() const {
return static_cast<const value<bits> &>(*this);
}
};
// Base class for expression templates, providing helper methods for operations that are valid on both rvalues and lvalues.
//
// Note that expression objects (slices and concatenations) constructed in this way should NEVER be captured because
// they refer to temporaries that will, in general, only live until the end of the statement. For example, both of
// these snippets perform use-after-free:
//
// const auto &a = val.slice<7,0>().slice<1>();
// value<1> b = a;
//
// auto &&c = val.slice<7,0>().slice<1>();
// c = value<1>{1u};
//
// An easy way to write code using slices and concatenations safely is to follow two simple rules:
// * Never explicitly name any type except `value<W>` or `const value<W> &`.
// * Never use a `const auto &` or `auto &&` in any such expression.
// Then, any code that compiles will be well-defined.
template<class T>
struct expr_base {
template<size_t Stop, size_t Start = Stop>
CXXRTL_ALWAYS_INLINE
slice_expr<const T, Stop, Start> slice() const {
return {*static_cast<const T *>(this)};
}
template<size_t Stop, size_t Start = Stop>
CXXRTL_ALWAYS_INLINE
slice_expr<T, Stop, Start> slice() {
return {*static_cast<T *>(this)};
}
template<class U>
CXXRTL_ALWAYS_INLINE
concat_expr<const T, typename std::remove_reference<const U>::type> concat(const U &other) const {
return {*static_cast<const T *>(this), other};
}
template<class U>
CXXRTL_ALWAYS_INLINE
concat_expr<T, typename std::remove_reference<U>::type> concat(U &&other) {
return {*static_cast<T *>(this), other};
}
};
template<size_t Bits>
std::ostream &operator<<(std::ostream &os, const value<Bits> &val) {
auto old_flags = os.flags(std::ios::right);
auto old_width = os.width(0);
auto old_fill = os.fill('0');
os << val.bits << '\'' << std::hex;
for (size_t n = val.chunks - 1; n != (size_t)-1; n--) {
if (n == val.chunks - 1 && Bits % value<Bits>::chunk::bits != 0)
os.width((Bits % value<Bits>::chunk::bits + 3) / 4);
else
os.width((value<Bits>::chunk::bits + 3) / 4);
os << val.data[n];
}
os.fill(old_fill);
os.width(old_width);
os.flags(old_flags);
return os;
}
template<size_t Bits>
struct value_formatted {
const value<Bits> &val;
bool character;
bool justify_left;
char padding;
int width;
int base;
bool signed_;
bool lzero;
bool plus;
value_formatted(const value<Bits> &val, bool character, bool justify_left, char padding, int width, int base, bool signed_, bool lzero, bool plus) :
val(val), character(character), justify_left(justify_left), padding(padding), width(width), base(base), signed_(signed_), lzero(lzero), plus(plus) {}
value_formatted(const value_formatted<Bits> &) = delete;
value_formatted<Bits> &operator=(const value_formatted<Bits> &rhs) = delete;
};
template<size_t Bits>
std::ostream &operator<<(std::ostream &os, const value_formatted<Bits> &vf)
{
value<Bits> val = vf.val;
std::string buf;
// We might want to replace some of these bit() calls with direct
// chunk access if it turns out to be slow enough to matter.
if (!vf.character) {
size_t width = Bits;
if (!vf.lzero && vf.base != 10) {
width = 0;
for (size_t index = 0; index < Bits; index++)
if (val.bit(index))
width = index + 1;
}
if (vf.base == 2) {
for (size_t i = width; i > 0; i--)
buf += (val.bit(i - 1) ? '1' : '0');
} else if (vf.base == 8 || vf.base == 16) {
size_t step = (vf.base == 16) ? 4 : 3;
for (size_t index = 0; index < width; index += step) {
uint8_t value = val.bit(index) | (val.bit(index + 1) << 1) | (val.bit(index + 2) << 2);
if (step == 4)
value |= val.bit(index + 3) << 3;
buf += "0123456789abcdef"[value];
}
std::reverse(buf.begin(), buf.end());
} else if (vf.base == 10) {
bool negative = vf.signed_ && val.is_neg();
if (negative)
val = val.neg();
if (val.is_zero())
buf += '0';
while (!val.is_zero()) {
value<Bits> quotient;
if (negative)
val.signedDivideWithRemainder(value<Bits>{10u}, quotient);
else
val.divideWithRemainder(value<Bits>{10u}, quotient);
buf += '0' + val.template slice<3, 0>().val().template get<uint8_t>();
val = quotient;
}
if (negative || vf.plus)
buf += negative ? '-' : '+';
std::reverse(buf.begin(), buf.end());
} else assert(false);
} else {
buf.reserve(Bits/8);
for (int i = 0; i < Bits; i += 8) {
char ch = 0;
for (int j = 0; j < 8 && i + j < int(Bits); j++)
if (val.bit(i + j))
ch |= 1 << j;
if (ch != 0)
buf.append({ch});
}
std::reverse(buf.begin(), buf.end());
}
assert(vf.width == 0 || vf.padding != '\0');
if (!vf.justify_left && buf.size() < vf.width) {
size_t pad_width = vf.width - buf.size();
if (vf.padding == '0' && (buf.front() == '+' || buf.front() == '-')) {
os << buf.front();
buf.erase(0, 1);
}
os << std::string(pad_width, vf.padding);
}
os << buf;
if (vf.justify_left && buf.size() < vf.width)
os << std::string(vf.width - buf.size(), vf.padding);
return os;
}
template<size_t Bits>
struct wire {
static constexpr size_t bits = Bits;
value<Bits> curr;
value<Bits> next;
wire() = default;
explicit constexpr wire(const value<Bits> &init) : curr(init), next(init) {}
template<typename... Init>
explicit constexpr wire(Init ...init) : curr{init...}, next{init...} {}
// Copying and copy-assigning values is natural. If, however, a value is replaced with a wire,
// e.g. because a module is built with a different optimization level, then existing code could
// unintentionally copy a wire instead, which would create a subtle but serious bug. To make sure
// this doesn't happen, prohibit copying and copy-assigning wires.
wire(const wire<Bits> &) = delete;
wire<Bits> &operator=(const wire<Bits> &) = delete;
wire(wire<Bits> &&) = default;
wire<Bits> &operator=(wire<Bits> &&) = default;
template<class IntegerT>
CXXRTL_ALWAYS_INLINE
IntegerT get() const {
return curr.template get<IntegerT>();
}
template<class IntegerT>
CXXRTL_ALWAYS_INLINE
void set(IntegerT other) {
next.template set<IntegerT>(other);
}
bool commit() {
if (curr != next) {
curr = next;
return true;
}
return false;
}
};
template<size_t Bits>
std::ostream &operator<<(std::ostream &os, const wire<Bits> &val) {
os << val.curr;
return os;
}
template<size_t Width>
struct memory {
const size_t depth;
std::unique_ptr<value<Width>[]> data;
explicit memory(size_t depth) : depth(depth), data(new value<Width>[depth]) {}
memory(const memory<Width> &) = delete;
memory<Width> &operator=(const memory<Width> &) = delete;
memory(memory<Width> &&) = default;
memory<Width> &operator=(memory<Width> &&other) {
assert(depth == other.depth);
data = std::move(other.data);
write_queue = std::move(other.write_queue);
return *this;
}
// An operator for direct memory reads. May be used at any time during the simulation.
const value<Width> &operator [](size_t index) const {
assert(index < depth);
return data[index];
}
// An operator for direct memory writes. May only be used before the simulation is started. If used
// after the simulation is started, the design may malfunction.
value<Width> &operator [](size_t index) {
assert(index < depth);
return data[index];
}
// A simple way to make a writable memory would be to use an array of wires instead of an array of values.
// However, there are two significant downsides to this approach: first, it has large overhead (2× space
// overhead, and O(depth) time overhead during commit); second, it does not simplify handling write port
// priorities. Although in principle write ports could be ordered or conditionally enabled in generated
// code based on their priorities and selected addresses, the feedback arc set problem is computationally
// expensive, and the heuristic based algorithms are not easily modified to guarantee (rather than prefer)
// a particular write port evaluation order.
//
// The approach used here instead is to queue writes into a buffer during the eval phase, then perform
// the writes during the commit phase in the priority order. This approach has low overhead, with both space
// and time proportional to the amount of write ports. Because virtually every memory in a practical design
// has at most two write ports, linear search is used on every write, being the fastest and simplest approach.
struct write {
size_t index;
value<Width> val;
value<Width> mask;
int priority;
};
std::vector<write> write_queue;
void update(size_t index, const value<Width> &val, const value<Width> &mask, int priority = 0) {
assert(index < depth);
// Queue up the write while keeping the queue sorted by priority.
write_queue.insert(
std::upper_bound(write_queue.begin(), write_queue.end(), priority,
[](const int a, const write& b) { return a < b.priority; }),
write { index, val, mask, priority });
}
bool commit() {
bool changed = false;
for (const write &entry : write_queue) {
value<Width> elem = data[entry.index];
elem = elem.update(entry.val, entry.mask);
changed |= (data[entry.index] != elem);
data[entry.index] = elem;
}
write_queue.clear();
return changed;
}
};
struct metadata {
const enum {
MISSING = 0,
UINT = 1,
SINT = 2,
STRING = 3,
DOUBLE = 4,
} value_type;
// In debug mode, using the wrong .as_*() function will assert.
// In release mode, using the wrong .as_*() function will safely return a default value.
const unsigned uint_value = 0;
const signed sint_value = 0;
const std::string string_value = "";
const double double_value = 0.0;
metadata() : value_type(MISSING) {}
metadata(unsigned value) : value_type(UINT), uint_value(value) {}
metadata(signed value) : value_type(SINT), sint_value(value) {}
metadata(const std::string &value) : value_type(STRING), string_value(value) {}
metadata(const char *value) : value_type(STRING), string_value(value) {}
metadata(double value) : value_type(DOUBLE), double_value(value) {}
metadata(const metadata &) = default;
metadata &operator=(const metadata &) = delete;
unsigned as_uint() const {
assert(value_type == UINT);
return uint_value;
}
signed as_sint() const {
assert(value_type == SINT);
return sint_value;
}
const std::string &as_string() const {
assert(value_type == STRING);
return string_value;
}
double as_double() const {
assert(value_type == DOUBLE);
return double_value;
}
};
typedef std::map<std::string, metadata> metadata_map;
// Tag class to disambiguate values/wires and their aliases.
struct debug_alias {};
// Tag declaration to disambiguate values and debug outlines.
using debug_outline = ::_cxxrtl_outline;
// This structure is intended for consumption via foreign function interfaces, like Python's ctypes.
// Because of this it uses a C-style layout that is easy to parse rather than more idiomatic C++.
//
// To avoid violating strict aliasing rules, this structure has to be a subclass of the one used
// in the C API, or it would not be possible to cast between the pointers to these.
struct debug_item : ::cxxrtl_object {
// Object types.
enum : uint32_t {
VALUE = CXXRTL_VALUE,
WIRE = CXXRTL_WIRE,
MEMORY = CXXRTL_MEMORY,
ALIAS = CXXRTL_ALIAS,
OUTLINE = CXXRTL_OUTLINE,
};
// Object flags.
enum : uint32_t {
INPUT = CXXRTL_INPUT,
OUTPUT = CXXRTL_OUTPUT,
INOUT = CXXRTL_INOUT,
DRIVEN_SYNC = CXXRTL_DRIVEN_SYNC,
DRIVEN_COMB = CXXRTL_DRIVEN_COMB,
UNDRIVEN = CXXRTL_UNDRIVEN,
};
debug_item(const ::cxxrtl_object &object) : cxxrtl_object(object) {}
template<size_t Bits>
debug_item(value<Bits> &item, size_t lsb_offset = 0, uint32_t flags_ = 0) {
static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
"value<Bits> is not compatible with C layout");
type = VALUE;
flags = flags_;
width = Bits;
lsb_at = lsb_offset;
depth = 1;
zero_at = 0;
curr = item.data;
next = item.data;
outline = nullptr;
}
template<size_t Bits>
debug_item(const value<Bits> &item, size_t lsb_offset = 0) {
static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
"value<Bits> is not compatible with C layout");
type = VALUE;
flags = DRIVEN_COMB;
width = Bits;
lsb_at = lsb_offset;
depth = 1;
zero_at = 0;
curr = const_cast<chunk_t*>(item.data);
next = nullptr;
outline = nullptr;
}
template<size_t Bits>
debug_item(wire<Bits> &item, size_t lsb_offset = 0, uint32_t flags_ = 0) {
static_assert(sizeof(item.curr) == value<Bits>::chunks * sizeof(chunk_t) &&
sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t),
"wire<Bits> is not compatible with C layout");
type = WIRE;
flags = flags_;
width = Bits;
lsb_at = lsb_offset;
depth = 1;
zero_at = 0;
curr = item.curr.data;
next = item.next.data;
outline = nullptr;
}
template<size_t Width>
debug_item(memory<Width> &item, size_t zero_offset = 0) {
static_assert(sizeof(item.data[0]) == value<Width>::chunks * sizeof(chunk_t),
"memory<Width> is not compatible with C layout");
type = MEMORY;
flags = 0;
width = Width;
lsb_at = 0;
depth = item.depth;
zero_at = zero_offset;
curr = item.data ? item.data[0].data : nullptr;
next = nullptr;
outline = nullptr;
}
template<size_t Bits>
debug_item(debug_alias, const value<Bits> &item, size_t lsb_offset = 0) {
static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
"value<Bits> is not compatible with C layout");
type = ALIAS;
flags = DRIVEN_COMB;
width = Bits;
lsb_at = lsb_offset;
depth = 1;
zero_at = 0;
curr = const_cast<chunk_t*>(item.data);
next = nullptr;
outline = nullptr;
}
template<size_t Bits>
debug_item(debug_alias, const wire<Bits> &item, size_t lsb_offset = 0) {
static_assert(sizeof(item.curr) == value<Bits>::chunks * sizeof(chunk_t) &&
sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t),
"wire<Bits> is not compatible with C layout");
type = ALIAS;
flags = DRIVEN_COMB;
width = Bits;
lsb_at = lsb_offset;
depth = 1;
zero_at = 0;
curr = const_cast<chunk_t*>(item.curr.data);
next = nullptr;
outline = nullptr;
}
template<size_t Bits>
debug_item(debug_outline &group, const value<Bits> &item, size_t lsb_offset = 0) {
static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
"value<Bits> is not compatible with C layout");
type = OUTLINE;
flags = DRIVEN_COMB;
width = Bits;
lsb_at = lsb_offset;
depth = 1;
zero_at = 0;
curr = const_cast<chunk_t*>(item.data);
next = nullptr;
outline = &group;
}
template<size_t Bits, class IntegerT>
IntegerT get() const {
assert(width == Bits && depth == 1);
value<Bits> item;
std::copy(curr, curr + value<Bits>::chunks, item.data);
return item.template get<IntegerT>();
}
template<size_t Bits, class IntegerT>
void set(IntegerT other) const {
assert(width == Bits && depth == 1);
value<Bits> item;
item.template set<IntegerT>(other);
std::copy(item.data, item.data + value<Bits>::chunks, next);
}
};
static_assert(std::is_standard_layout<debug_item>::value, "debug_item is not compatible with C layout");
struct debug_items {
std::map<std::string, std::vector<debug_item>> table;
void add(const std::string &name, debug_item &&item) {
std::vector<debug_item> &parts = table[name];
parts.emplace_back(item);
std::sort(parts.begin(), parts.end(),
[](const debug_item &a, const debug_item &b) {
return a.lsb_at < b.lsb_at;
});
}
size_t count(const std::string &name) const {
if (table.count(name) == 0)
return 0;
return table.at(name).size();
}
const std::vector<debug_item> &parts_at(const std::string &name) const {
return table.at(name);
}
const debug_item &at(const std::string &name) const {
const std::vector<debug_item> &parts = table.at(name);
assert(parts.size() == 1);
return parts.at(0);
}
const debug_item &operator [](const std::string &name) const {
return at(name);
}
};
// Tag class to disambiguate the default constructor used by the toplevel module that calls reset(),
// and the constructor of interior modules that should not call it.
struct interior {};
struct module {
module() {}
virtual ~module() {}
// Modules with black boxes cannot be copied. Although not all designs include black boxes,
// delete the copy constructor and copy assignment operator to make sure that any downstream
// code that manipulates modules doesn't accidentally depend on their availability.
module(const module &) = delete;
module &operator=(const module &) = delete;
module(module &&) = default;
module &operator=(module &&) = default;
virtual void reset() = 0;
virtual bool eval() = 0;
virtual bool commit() = 0;
size_t step() {
size_t deltas = 0;
bool converged = false;
do {
converged = eval();
deltas++;
} while (commit() && !converged);
return deltas;
}
virtual void debug_info(debug_items &items, std::string path = "") {
(void)items, (void)path;
}
};
} // namespace cxxrtl
// Internal structures used to communicate with the implementation of the C interface.
typedef struct _cxxrtl_toplevel {
std::unique_ptr<cxxrtl::module> module;
} *cxxrtl_toplevel;
typedef struct _cxxrtl_outline {
std::function<void()> eval;
} *cxxrtl_outline;
// Definitions of internal Yosys cells. Other than the functions in this namespace, CXXRTL is fully generic
// and indepenent of Yosys implementation details.
//
// The `write_cxxrtl` pass translates internal cells (cells with names that start with `$`) to calls of these
// functions. All of Yosys arithmetic and logical cells perform sign or zero extension on their operands,
// whereas basic operations on arbitrary width values require operands to be of the same width. These functions
// bridge the gap by performing the necessary casts. They are named similar to `cell_A[B]`, where A and B are `u`
// if the corresponding operand is unsigned, and `s` if it is signed.
namespace cxxrtl_yosys {
using namespace cxxrtl;
// std::max isn't constexpr until C++14 for no particular reason (it's an oversight), so we define our own.
template<class T>
CXXRTL_ALWAYS_INLINE
constexpr T max(const T &a, const T &b) {
return a > b ? a : b;
}
// Logic operations
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> logic_not(const value<BitsA> &a) {
return value<BitsY> { a ? 0u : 1u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> logic_and(const value<BitsA> &a, const value<BitsB> &b) {
return value<BitsY> { (bool(a) && bool(b)) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> logic_or(const value<BitsA> &a, const value<BitsB> &b) {
return value<BitsY> { (bool(a) || bool(b)) ? 1u : 0u };
}
// Reduction operations
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> reduce_and(const value<BitsA> &a) {
return value<BitsY> { a.bit_not().is_zero() ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> reduce_or(const value<BitsA> &a) {
return value<BitsY> { a ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> reduce_xor(const value<BitsA> &a) {
return value<BitsY> { (a.ctpop() % 2) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> reduce_xnor(const value<BitsA> &a) {
return value<BitsY> { (a.ctpop() % 2) ? 0u : 1u };
}
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> reduce_bool(const value<BitsA> &a) {
return value<BitsY> { a ? 1u : 0u };
}
// Bitwise operations
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> not_u(const value<BitsA> &a) {
return a.template zcast<BitsY>().bit_not();
}
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> not_s(const value<BitsA> &a) {
return a.template scast<BitsY>().bit_not();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> and_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().bit_and(b.template zcast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> and_ss(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().bit_and(b.template scast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> or_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().bit_or(b.template zcast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> or_ss(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().bit_or(b.template scast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> xor_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> xor_ss(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> xnor_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>()).bit_not();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> xnor_ss(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>()).bit_not();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shl_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().shl(b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shl_su(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().shl(b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> sshl_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().shl(b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> sshl_su(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().shl(b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shr_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.shr(b).template zcast<BitsY>();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shr_su(const value<BitsA> &a, const value<BitsB> &b) {
return a.shr(b).template scast<BitsY>();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> sshr_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.shr(b).template zcast<BitsY>();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> sshr_su(const value<BitsA> &a, const value<BitsB> &b) {
return a.sshr(b).template scast<BitsY>();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shift_uu(const value<BitsA> &a, const value<BitsB> &b) {
return shr_uu<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shift_su(const value<BitsA> &a, const value<BitsB> &b) {
return shr_su<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shift_us(const value<BitsA> &a, const value<BitsB> &b) {
return b.is_neg() ? shl_uu<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_uu<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shift_ss(const value<BitsA> &a, const value<BitsB> &b) {
return b.is_neg() ? shl_su<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_su<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shiftx_uu(const value<BitsA> &a, const value<BitsB> &b) {
return shift_uu<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shiftx_su(const value<BitsA> &a, const value<BitsB> &b) {
return shift_su<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shiftx_us(const value<BitsA> &a, const value<BitsB> &b) {
return shift_us<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shiftx_ss(const value<BitsA> &a, const value<BitsB> &b) {
return shift_ss<BitsY>(a, b);
}
// Comparison operations
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> eq_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY>{ a.template zext<BitsExt>() == b.template zext<BitsExt>() ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> eq_ss(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY>{ a.template sext<BitsExt>() == b.template sext<BitsExt>() ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> ne_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY>{ a.template zext<BitsExt>() != b.template zext<BitsExt>() ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> ne_ss(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY>{ a.template sext<BitsExt>() != b.template sext<BitsExt>() ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> eqx_uu(const value<BitsA> &a, const value<BitsB> &b) {
return eq_uu<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> eqx_ss(const value<BitsA> &a, const value<BitsB> &b) {
return eq_ss<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> nex_uu(const value<BitsA> &a, const value<BitsB> &b) {
return ne_uu<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> nex_ss(const value<BitsA> &a, const value<BitsB> &b) {
return ne_ss<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> gt_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> gt_ss(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> ge_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { !a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> ge_ss(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { !a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> lt_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> lt_ss(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> le_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { !b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> le_ss(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { !b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
}
// Arithmetic operations
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> pos_u(const value<BitsA> &a) {
return a.template zcast<BitsY>();
}
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> pos_s(const value<BitsA> &a) {
return a.template scast<BitsY>();
}
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> neg_u(const value<BitsA> &a) {
return a.template zcast<BitsY>().neg();
}
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> neg_s(const value<BitsA> &a) {
return a.template scast<BitsY>().neg();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> add_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().add(b.template zcast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> add_ss(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().add(b.template scast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> sub_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().sub(b.template zcast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> sub_ss(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().sub(b.template scast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> mul_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsM = BitsA >= BitsB ? BitsA : BitsB;
return a.template zcast<BitsM>().template mul<BitsY>(b.template zcast<BitsM>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> mul_ss(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().template mul<BitsY>(b.template scast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
std::pair<value<BitsY>, value<BitsY>> divmod_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t Bits = max(BitsY, max(BitsA, BitsB));
value<Bits> quotient;
value<Bits> dividend = a.template zext<Bits>();
value<Bits> divisor = b.template zext<Bits>();
if (dividend.ucmp(divisor))
return {/*quotient=*/value<BitsY> { 0u }, /*remainder=*/dividend.template trunc<BitsY>()};
uint32_t divisor_shift = dividend.ctlz() - divisor.ctlz();
divisor = divisor.shl(value<32> { divisor_shift });
for (size_t step = 0; step <= divisor_shift; step++) {
quotient = quotient.shl(value<1> { 1u });
if (!dividend.ucmp(divisor)) {
dividend = dividend.sub(divisor);
quotient.set_bit(0, true);
}
divisor = divisor.shr(value<1> { 1u });
}
return {quotient.template trunc<BitsY>(), /*remainder=*/dividend.template trunc<BitsY>()};
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
std::pair<value<BitsY>, value<BitsY>> divmod_ss(const value<BitsA> &a, const value<BitsB> &b) {
value<BitsA + 1> ua = a.template sext<BitsA + 1>();
value<BitsB + 1> ub = b.template sext<BitsB + 1>();
if (ua.is_neg()) ua = ua.neg();
if (ub.is_neg()) ub = ub.neg();
value<BitsY> y, r;
std::tie(y, r) = divmod_uu<BitsY>(ua, ub);
if (a.is_neg() != b.is_neg()) y = y.neg();
if (a.is_neg()) r = r.neg();
return {y, r};
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> div_uu(const value<BitsA> &a, const value<BitsB> &b) {
return divmod_uu<BitsY>(a, b).first;
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> div_ss(const value<BitsA> &a, const value<BitsB> &b) {
return divmod_ss<BitsY>(a, b).first;
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> mod_uu(const value<BitsA> &a, const value<BitsB> &b) {
return divmod_uu<BitsY>(a, b).second;
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> mod_ss(const value<BitsA> &a, const value<BitsB> &b) {
return divmod_ss<BitsY>(a, b).second;
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> modfloor_uu(const value<BitsA> &a, const value<BitsB> &b) {
return divmod_uu<BitsY>(a, b).second;
}
// GHDL Modfloor operator. Returns r=a mod b, such that r has the same sign as b and
// a=b*N+r where N is some integer
// In practical terms, when a and b have different signs and the remainder returned by divmod_ss is not 0
// then return the remainder + b
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> modfloor_ss(const value<BitsA> &a, const value<BitsB> &b) {
value<BitsY> r;
r = divmod_ss<BitsY>(a, b).second;
if((b.is_neg() != a.is_neg()) && !r.is_zero())
return add_ss<BitsY>(b, r);
return r;
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> divfloor_uu(const value<BitsA> &a, const value<BitsB> &b) {
return divmod_uu<BitsY>(a, b).first;
}
// Divfloor. Similar to above: returns q=a//b, where q has the sign of a*b and a=b*q+N.
// In other words, returns (truncating) a/b, except if a and b have different signs
// and there's non-zero remainder, subtract one more towards floor.
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> divfloor_ss(const value<BitsA> &a, const value<BitsB> &b) {
value<BitsY> q, r;
std::tie(q, r) = divmod_ss<BitsY>(a, b);
if ((b.is_neg() != a.is_neg()) && !r.is_zero())
return sub_uu<BitsY>(q, value<1> { 1u });
return q;
}
// Memory helper
struct memory_index {
bool valid;
size_t index;
template<size_t BitsAddr>
memory_index(const value<BitsAddr> &addr, size_t offset, size_t depth) {
static_assert(value<BitsAddr>::chunks <= 1, "memory address is too wide");
size_t offset_index = addr.data[0];
valid = (offset_index >= offset && offset_index < offset + depth);
index = offset_index - offset;
}
};
} // namespace cxxrtl_yosys
#endif