yosys/passes/sat/sim.cc

2800 lines
81 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "kernel/mem.h"
#include "kernel/fstdata.h"
#include "kernel/ff.h"
#include "kernel/yw.h"
#include "kernel/json.h"
#include <ctime>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
enum class SimulationMode {
sim,
cmp,
gold,
gate,
};
static const std::map<std::string, int> g_units =
{
{ "", -9 }, // default is ns
{ "s", 0 },
{ "ms", -3 },
{ "us", -6 },
{ "ns", -9 },
{ "ps", -12 },
{ "fs", -15 },
{ "as", -18 },
{ "zs", -21 },
};
static double stringToTime(std::string str)
{
if (str=="END") return -1;
char *endptr;
long value = strtol(str.c_str(), &endptr, 10);
if (g_units.find(endptr)==g_units.end())
log_error("Cannot parse '%s', bad unit '%s'\n", str.c_str(), endptr);
if (value < 0)
log_error("Time value '%s' must be positive\n", str.c_str());
return value * pow(10.0, g_units.at(endptr));
}
struct SimWorker;
struct OutputWriter
{
OutputWriter(SimWorker *w) { worker = w;};
virtual ~OutputWriter() {};
virtual void write(std::map<int, bool> &use_signal) = 0;
SimWorker *worker;
};
struct SimInstance;
struct TriggeredAssertion {
int step;
SimInstance *instance;
Cell *cell;
TriggeredAssertion(int step, SimInstance *instance, Cell *cell) :
step(step), instance(instance), cell(cell)
{ }
};
struct SimShared
{
bool debug = false;
bool verbose = true;
bool hide_internal = true;
bool writeback = false;
bool zinit = false;
bool hdlname = false;
int rstlen = 1;
FstData *fst = nullptr;
double start_time = 0;
double stop_time = -1;
SimulationMode sim_mode = SimulationMode::sim;
bool cycles_set = false;
std::vector<std::unique_ptr<OutputWriter>> outputfiles;
std::vector<std::pair<int,std::map<int,Const>>> output_data;
bool ignore_x = false;
bool date = false;
bool multiclock = false;
int next_output_id = 0;
int step = 0;
std::vector<TriggeredAssertion> triggered_assertions;
};
void zinit(State &v)
{
if (v != State::S1)
v = State::S0;
}
void zinit(Const &v)
{
for (auto &bit : v.bits)
zinit(bit);
}
struct SimInstance
{
SimShared *shared;
std::string scope;
Module *module;
Cell *instance;
SimInstance *parent;
dict<Cell*, SimInstance*> children;
SigMap sigmap;
dict<SigBit, State> state_nets;
dict<SigBit, pool<Cell*>> upd_cells;
dict<SigBit, pool<Wire*>> upd_outports;
dict<SigBit, SigBit> in_parent_drivers;
pool<SigBit> dirty_bits;
pool<Cell*> dirty_cells;
pool<IdString> dirty_memories;
pool<SimInstance*, hash_ptr_ops> dirty_children;
struct ff_state_t
{
Const past_d;
Const past_ad;
State past_clk;
State past_ce;
State past_srst;
FfData data;
};
struct mem_state_t
{
Mem *mem;
std::vector<Const> past_wr_clk;
std::vector<Const> past_wr_en;
std::vector<Const> past_wr_addr;
std::vector<Const> past_wr_data;
Const data;
};
dict<Cell*, ff_state_t> ff_database;
dict<IdString, mem_state_t> mem_database;
pool<Cell*> formal_database;
pool<Cell*> initstate_database;
dict<Cell*, IdString> mem_cells;
std::vector<Mem> memories;
dict<Wire*, pair<int, Const>> signal_database;
dict<IdString, std::map<int, pair<int, Const>>> trace_mem_database;
dict<std::pair<IdString, int>, Const> trace_mem_init_database;
dict<Wire*, fstHandle> fst_handles;
dict<Wire*, fstHandle> fst_inputs;
dict<IdString, dict<int,fstHandle>> fst_memories;
SimInstance(SimShared *shared, std::string scope, Module *module, Cell *instance = nullptr, SimInstance *parent = nullptr) :
shared(shared), scope(scope), module(module), instance(instance), parent(parent), sigmap(module)
{
log_assert(module);
if (parent) {
log_assert(parent->children.count(instance) == 0);
parent->children[instance] = this;
}
for (auto wire : module->wires())
{
SigSpec sig = sigmap(wire);
for (int i = 0; i < GetSize(sig); i++) {
if (state_nets.count(sig[i]) == 0)
state_nets[sig[i]] = State::Sx;
if (wire->port_output) {
upd_outports[sig[i]].insert(wire);
dirty_bits.insert(sig[i]);
}
}
if ((shared->fst) && !(shared->hide_internal && wire->name[0] == '$')) {
fstHandle id = shared->fst->getHandle(scope + "." + RTLIL::unescape_id(wire->name));
if (id==0 && wire->name.isPublic())
log_warning("Unable to find wire %s in input file.\n", (scope + "." + RTLIL::unescape_id(wire->name)).c_str());
fst_handles[wire] = id;
}
if (wire->attributes.count(ID::init)) {
Const initval = wire->attributes.at(ID::init);
for (int i = 0; i < GetSize(sig) && i < GetSize(initval); i++)
if (initval[i] == State::S0 || initval[i] == State::S1) {
state_nets[sig[i]] = initval[i];
dirty_bits.insert(sig[i]);
}
}
if (wire->port_input && instance != nullptr && parent != nullptr) {
for (int i = 0; i < GetSize(sig); i++) {
if (instance->hasPort(wire->name))
in_parent_drivers.emplace(sig[i], parent->sigmap(instance->getPort(wire->name)[i]));
}
}
}
memories = Mem::get_all_memories(module);
for (auto &mem : memories) {
auto &mdb = mem_database[mem.memid];
mdb.mem = &mem;
for (auto &port : mem.wr_ports) {
mdb.past_wr_clk.push_back(Const(State::Sx));
mdb.past_wr_en.push_back(Const(State::Sx, GetSize(port.en)));
mdb.past_wr_addr.push_back(Const(State::Sx, GetSize(port.addr)));
mdb.past_wr_data.push_back(Const(State::Sx, GetSize(port.data)));
}
mdb.data = mem.get_init_data();
}
for (auto cell : module->cells())
{
Module *mod = module->design->module(cell->type);
if (mod != nullptr) {
dirty_children.insert(new SimInstance(shared, scope + "." + RTLIL::unescape_id(cell->name), mod, cell, this));
}
for (auto &port : cell->connections()) {
if (cell->input(port.first))
for (auto bit : sigmap(port.second)) {
upd_cells[bit].insert(cell);
// Make sure cell inputs connected to constants are updated in the first cycle
if (bit.wire == nullptr)
dirty_bits.insert(bit);
}
}
if (RTLIL::builtin_ff_cell_types().count(cell->type) || cell->type == ID($anyinit)) {
FfData ff_data(nullptr, cell);
ff_state_t ff;
ff.past_d = Const(State::Sx, ff_data.width);
ff.past_ad = Const(State::Sx, ff_data.width);
ff.past_clk = State::Sx;
ff.past_ce = State::Sx;
ff.past_srst = State::Sx;
ff.data = ff_data;
ff_database[cell] = ff;
}
if (cell->is_mem_cell())
{
std::string name = cell->parameters.at(ID::MEMID).decode_string();
mem_cells[cell] = name;
if (shared->fst)
fst_memories[name] = shared->fst->getMemoryHandles(scope + "." + RTLIL::unescape_id(name));
}
if (cell->type.in(ID($assert), ID($cover), ID($assume))) {
formal_database.insert(cell);
}
if (cell->type == ID($initstate))
initstate_database.insert(cell);
}
if (shared->zinit)
{
for (auto &it : ff_database)
{
ff_state_t &ff = it.second;
zinit(ff.past_d);
zinit(ff.past_ad);
SigSpec qsig = it.second.data.sig_q;
Const qdata = get_state(qsig);
zinit(qdata);
set_state(qsig, qdata);
}
for (auto &it : mem_database) {
mem_state_t &mem = it.second;
for (auto &val : mem.past_wr_en)
zinit(val);
zinit(mem.data);
}
}
}
~SimInstance()
{
for (auto child : children)
delete child.second;
}
IdString name() const
{
if (instance != nullptr)
return instance->name;
return module->name;
}
std::string hiername() const
{
if (instance != nullptr)
return parent->hiername() + "." + log_id(instance->name);
return log_id(module->name);
}
vector<std::string> witness_full_path() const
{
if (instance != nullptr)
return parent->witness_full_path(instance);
return vector<std::string>();
}
vector<std::string> witness_full_path(Cell *cell) const
{
auto result = witness_full_path();
auto cell_path = witness_path(cell);
result.insert(result.end(), cell_path.begin(), cell_path.end());
return result;
}
Const get_state(SigSpec sig)
{
Const value;
for (auto bit : sigmap(sig))
if (bit.wire == nullptr)
value.bits.push_back(bit.data);
else if (state_nets.count(bit))
value.bits.push_back(state_nets.at(bit));
else
value.bits.push_back(State::Sz);
if (shared->debug)
log("[%s] get %s: %s\n", hiername().c_str(), log_signal(sig), log_signal(value));
return value;
}
bool set_state(SigSpec sig, Const value)
{
bool did_something = false;
sig = sigmap(sig);
log_assert(GetSize(sig) <= GetSize(value));
for (int i = 0; i < GetSize(sig); i++)
if (value[i] != State::Sa && state_nets.at(sig[i]) != value[i]) {
state_nets.at(sig[i]) = value[i];
dirty_bits.insert(sig[i]);
did_something = true;
}
if (shared->debug)
log("[%s] set %s: %s\n", hiername().c_str(), log_signal(sig), log_signal(value));
return did_something;
}
void set_state_parent_drivers(SigSpec sig, Const value)
{
sigmap.apply(sig);
for (int i = 0; i < GetSize(sig); i++) {
auto sigbit = sig[i];
auto sigval = value[i];
auto in_parent_driver = in_parent_drivers.find(sigbit);
if (in_parent_driver == in_parent_drivers.end())
set_state(sigbit, sigval);
else
parent->set_state_parent_drivers(in_parent_driver->second, sigval);
}
}
void set_memory_state(IdString memid, Const addr, Const data)
{
set_memory_state(memid, addr.as_int(), data);
}
void set_memory_state(IdString memid, int addr, Const data)
{
auto &state = mem_database[memid];
bool dirty = false;
int offset = (addr - state.mem->start_offset) * state.mem->width;
for (int i = 0; i < GetSize(data); i++)
if (0 <= i+offset && i+offset < state.mem->size * state.mem->width && data.bits[i] != State::Sa)
if (state.data.bits[i+offset] != data.bits[i])
dirty = true, state.data.bits[i+offset] = data.bits[i];
if (dirty)
dirty_memories.insert(memid);
}
void set_memory_state_bit(IdString memid, int offset, State data)
{
auto &state = mem_database[memid];
if (offset >= state.mem->size * state.mem->width)
log_error("Addressing out of bounds bit %d/%d of memory %s\n", offset, state.mem->size * state.mem->width, log_id(memid));
if (state.data.bits[offset] != data) {
state.data.bits[offset] = data;
dirty_memories.insert(memid);
}
}
void update_cell(Cell *cell)
{
if (ff_database.count(cell))
return;
if (formal_database.count(cell))
return;
if (mem_cells.count(cell))
{
dirty_memories.insert(mem_cells[cell]);
return;
}
if (children.count(cell))
{
auto child = children.at(cell);
for (auto &conn: cell->connections())
if (cell->input(conn.first) && GetSize(conn.second)) {
Const value = get_state(conn.second);
child->set_state(child->module->wire(conn.first), value);
}
dirty_children.insert(child);
return;
}
if (yosys_celltypes.cell_evaluable(cell->type))
{
RTLIL::SigSpec sig_a, sig_b, sig_c, sig_d, sig_s, sig_y;
bool has_a, has_b, has_c, has_d, has_s, has_y;
has_a = cell->hasPort(ID::A);
has_b = cell->hasPort(ID::B);
has_c = cell->hasPort(ID::C);
has_d = cell->hasPort(ID::D);
has_s = cell->hasPort(ID::S);
has_y = cell->hasPort(ID::Y);
if (has_a) sig_a = cell->getPort(ID::A);
if (has_b) sig_b = cell->getPort(ID::B);
if (has_c) sig_c = cell->getPort(ID::C);
if (has_d) sig_d = cell->getPort(ID::D);
if (has_s) sig_s = cell->getPort(ID::S);
if (has_y) sig_y = cell->getPort(ID::Y);
if (shared->debug)
log("[%s] eval %s (%s)\n", hiername().c_str(), log_id(cell), log_id(cell->type));
// Simple (A -> Y) and (A,B -> Y) cells
if (has_a && !has_c && !has_d && !has_s && has_y) {
set_state(sig_y, CellTypes::eval(cell, get_state(sig_a), get_state(sig_b)));
return;
}
// (A,B,C -> Y) cells
if (has_a && has_b && has_c && !has_d && !has_s && has_y) {
set_state(sig_y, CellTypes::eval(cell, get_state(sig_a), get_state(sig_b), get_state(sig_c)));
return;
}
// (A,S -> Y) cells
if (has_a && !has_b && !has_c && !has_d && has_s && has_y) {
set_state(sig_y, CellTypes::eval(cell, get_state(sig_a), get_state(sig_s)));
return;
}
// (A,B,S -> Y) cells
if (has_a && has_b && !has_c && !has_d && has_s && has_y) {
set_state(sig_y, CellTypes::eval(cell, get_state(sig_a), get_state(sig_b), get_state(sig_s)));
return;
}
log_warning("Unsupported evaluable cell type: %s (%s.%s)\n", log_id(cell->type), log_id(module), log_id(cell));
return;
}
log_error("Unsupported cell type: %s (%s.%s)\n", log_id(cell->type), log_id(module), log_id(cell));
}
void update_memory(IdString id) {
auto &mdb = mem_database[id];
auto &mem = *mdb.mem;
for (int port_idx = 0; port_idx < GetSize(mem.rd_ports); port_idx++)
{
auto &port = mem.rd_ports[port_idx];
Const addr = get_state(port.addr);
Const data = Const(State::Sx, mem.width << port.wide_log2);
if (port.clk_enable)
log_error("Memory %s.%s has clocked read ports. Run 'memory' with -nordff.\n", log_id(module), log_id(mem.memid));
if (addr.is_fully_def()) {
int addr_int = addr.as_int();
int index = addr_int - mem.start_offset;
if (index >= 0 && index < mem.size)
data = mdb.data.extract(index*mem.width, mem.width << port.wide_log2);
for (int offset = 0; offset < 1 << port.wide_log2; offset++) {
register_memory_addr(id, addr_int + offset);
}
}
set_state(port.data, data);
}
}
void update_ph1()
{
pool<Cell*> queue_cells;
pool<Wire*> queue_outports;
queue_cells.swap(dirty_cells);
while (1)
{
for (auto bit : dirty_bits)
{
if (upd_cells.count(bit))
for (auto cell : upd_cells.at(bit))
queue_cells.insert(cell);
if (upd_outports.count(bit) && parent != nullptr)
for (auto wire : upd_outports.at(bit))
queue_outports.insert(wire);
}
dirty_bits.clear();
if (!queue_cells.empty())
{
for (auto cell : queue_cells)
update_cell(cell);
queue_cells.clear();
continue;
}
for (auto &memid : dirty_memories)
update_memory(memid);
dirty_memories.clear();
for (auto wire : queue_outports)
if (instance->hasPort(wire->name)) {
Const value = get_state(wire);
parent->set_state(instance->getPort(wire->name), value);
}
queue_outports.clear();
for (auto child : dirty_children)
child->update_ph1();
dirty_children.clear();
if (dirty_bits.empty())
break;
}
}
bool update_ph2(bool gclk)
{
bool did_something = false;
for (auto &it : ff_database)
{
ff_state_t &ff = it.second;
FfData &ff_data = ff.data;
Const current_q = get_state(ff.data.sig_q);
if (ff_data.has_clk) {
// flip-flops
State current_clk = get_state(ff_data.sig_clk)[0];
if (ff_data.pol_clk ? (ff.past_clk == State::S0 && current_clk != State::S0) :
(ff.past_clk == State::S1 && current_clk != State::S1)) {
bool ce = ff.past_ce == (ff_data.pol_ce ? State::S1 : State::S0);
// set if no ce, or ce is enabled
if (!ff_data.has_ce || (ff_data.has_ce && ce)) {
current_q = ff.past_d;
}
// override if sync reset
if ((ff_data.has_srst) && (ff.past_srst == (ff_data.pol_srst ? State::S1 : State::S0)) &&
((!ff_data.ce_over_srst) || (ff_data.ce_over_srst && ce))) {
current_q = ff_data.val_srst;
}
}
}
// async load
if (ff_data.has_aload) {
State current_aload = get_state(ff_data.sig_aload)[0];
if (current_aload == (ff_data.pol_aload ? State::S1 : State::S0)) {
current_q = ff_data.has_clk ? ff.past_ad : get_state(ff.data.sig_ad);
}
}
// async reset
if (ff_data.has_arst) {
State current_arst = get_state(ff_data.sig_arst)[0];
if (current_arst == (ff_data.pol_arst ? State::S1 : State::S0)) {
current_q = ff_data.val_arst;
}
}
// handle set/reset
if (ff.data.has_sr) {
Const current_clr = get_state(ff.data.sig_clr);
Const current_set = get_state(ff.data.sig_set);
for(int i=0;i<ff.past_d.size();i++) {
if (current_clr[i] == (ff_data.pol_clr ? State::S1 : State::S0)) {
current_q[i] = State::S0;
}
else if (current_set[i] == (ff_data.pol_set ? State::S1 : State::S0)) {
current_q[i] = State::S1;
}
}
}
if (ff_data.has_gclk) {
// $ff
if (gclk)
current_q = ff.past_d;
}
if (set_state(ff_data.sig_q, current_q))
did_something = true;
}
for (auto &it : mem_database)
{
mem_state_t &mdb = it.second;
auto &mem = *mdb.mem;
for (int port_idx = 0; port_idx < GetSize(mem.wr_ports); port_idx++)
{
auto &port = mem.wr_ports[port_idx];
Const addr, data, enable;
if (!port.clk_enable)
{
addr = get_state(port.addr);
data = get_state(port.data);
enable = get_state(port.en);
}
else
{
if (port.clk_polarity ?
(mdb.past_wr_clk[port_idx] == State::S1 || get_state(port.clk) != State::S1) :
(mdb.past_wr_clk[port_idx] == State::S0 || get_state(port.clk) != State::S0))
continue;
addr = mdb.past_wr_addr[port_idx];
data = mdb.past_wr_data[port_idx];
enable = mdb.past_wr_en[port_idx];
}
if (addr.is_fully_def())
{
int addr_int = addr.as_int();
int index = addr_int - mem.start_offset;
if (index >= 0 && index < mem.size)
for (int i = 0; i < (mem.width << port.wide_log2); i++)
if (enable[i] == State::S1 && mdb.data.bits.at(index*mem.width+i) != data[i]) {
mdb.data.bits.at(index*mem.width+i) = data[i];
dirty_memories.insert(mem.memid);
did_something = true;
}
for (int i = 0; i < 1 << port.wide_log2; i++)
register_memory_addr(it.first, addr_int + i);
}
}
}
for (auto it : children)
if (it.second->update_ph2(gclk)) {
dirty_children.insert(it.second);
did_something = true;
}
return did_something;
}
void update_ph3(bool check_assertions)
{
for (auto &it : ff_database)
{
ff_state_t &ff = it.second;
if (ff.data.has_aload)
ff.past_ad = get_state(ff.data.sig_ad);
if (ff.data.has_clk || ff.data.has_gclk)
ff.past_d = get_state(ff.data.sig_d);
if (ff.data.has_clk)
ff.past_clk = get_state(ff.data.sig_clk)[0];
if (ff.data.has_ce)
ff.past_ce = get_state(ff.data.sig_ce)[0];
if (ff.data.has_srst)
ff.past_srst = get_state(ff.data.sig_srst)[0];
}
for (auto &it : mem_database)
{
mem_state_t &mem = it.second;
for (int i = 0; i < GetSize(mem.mem->wr_ports); i++) {
auto &port = mem.mem->wr_ports[i];
mem.past_wr_clk[i] = get_state(port.clk);
mem.past_wr_en[i] = get_state(port.en);
mem.past_wr_addr[i] = get_state(port.addr);
mem.past_wr_data[i] = get_state(port.data);
}
}
if (check_assertions)
{
for (auto cell : formal_database)
{
string label = log_id(cell);
if (cell->attributes.count(ID::src))
label = cell->attributes.at(ID::src).decode_string();
State a = get_state(cell->getPort(ID::A))[0];
State en = get_state(cell->getPort(ID::EN))[0];
if (en == State::S1 && (cell->type == ID($cover) ? a == State::S1 : a != State::S1)) {
shared->triggered_assertions.emplace_back(shared->step, this, cell);
}
if (cell->type == ID($cover) && en == State::S1 && a == State::S1)
log("Cover %s.%s (%s) reached.\n", hiername().c_str(), log_id(cell), label.c_str());
if (cell->type == ID($assume) && en == State::S1 && a != State::S1)
log("Assumption %s.%s (%s) failed.\n", hiername().c_str(), log_id(cell), label.c_str());
if (cell->type == ID($assert) && en == State::S1 && a != State::S1)
log_warning("Assert %s.%s (%s) failed.\n", hiername().c_str(), log_id(cell), label.c_str());
}
}
for (auto it : children)
it.second->update_ph3(check_assertions);
}
void set_initstate_outputs(State state)
{
for (auto cell : initstate_database)
set_state(cell->getPort(ID::Y), state);
for (auto child : children)
child.second->set_initstate_outputs(state);
}
void writeback(pool<Module*> &wbmods)
{
if (!ff_database.empty() || !mem_database.empty()) {
if (wbmods.count(module))
log_error("Instance %s of module %s is not unique: Writeback not possible. (Fix by running 'uniquify'.)\n", hiername().c_str(), log_id(module));
wbmods.insert(module);
}
for (auto wire : module->wires())
wire->attributes.erase(ID::init);
for (auto &it : ff_database)
{
SigSpec sig_q = it.second.data.sig_q;
Const initval = get_state(sig_q);
for (int i = 0; i < GetSize(sig_q); i++)
{
Wire *w = sig_q[i].wire;
if (w->attributes.count(ID::init) == 0)
w->attributes[ID::init] = Const(State::Sx, GetSize(w));
w->attributes[ID::init][sig_q[i].offset] = initval[i];
}
}
for (auto &it : mem_database)
{
mem_state_t &mem = it.second;
mem.mem->clear_inits();
MemInit minit;
minit.addr = mem.mem->start_offset;
minit.data = mem.data;
minit.en = Const(State::S1, mem.mem->width);
mem.mem->inits.push_back(minit);
mem.mem->emit();
}
for (auto it : children)
it.second->writeback(wbmods);
}
void register_signals(int &id)
{
for (auto wire : module->wires())
{
if (shared->hide_internal && wire->name[0] == '$')
continue;
signal_database[wire] = make_pair(id, Const());
id++;
}
for (auto child : children)
child.second->register_signals(id);
}
void write_output_header(std::function<void(IdString)> enter_scope, std::function<void()> exit_scope, std::function<void(const char*, int, Wire*, int, bool)> register_signal)
{
int exit_scopes = 1;
if (shared->hdlname && instance != nullptr && instance->name.isPublic() && instance->has_attribute(ID::hdlname)) {
auto hdlname = instance->get_hdlname_attribute();
log_assert(!hdlname.empty());
for (auto name : hdlname)
enter_scope("\\" + name);
exit_scopes = hdlname.size();
} else
enter_scope(name());
dict<Wire*,bool> registers;
for (auto cell : module->cells())
{
if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
FfData ff_data(nullptr, cell);
SigSpec q = sigmap(ff_data.sig_q);
if (q.is_wire() && signal_database.count(q.as_wire()) != 0) {
registers[q.as_wire()] = true;
}
}
}
for (auto signal : signal_database)
{
if (shared->hdlname && signal.first->name.isPublic() && signal.first->has_attribute(ID::hdlname)) {
auto hdlname = signal.first->get_hdlname_attribute();
log_assert(!hdlname.empty());
auto signal_name = std::move(hdlname.back());
hdlname.pop_back();
for (auto name : hdlname)
enter_scope("\\" + name);
register_signal(signal_name.c_str(), GetSize(signal.first), signal.first, signal.second.first, registers.count(signal.first)!=0);
for (auto name : hdlname)
exit_scope();
} else
register_signal(log_id(signal.first->name), GetSize(signal.first), signal.first, signal.second.first, registers.count(signal.first)!=0);
}
for (auto &trace_mem : trace_mem_database)
{
auto memid = trace_mem.first;
auto &mdb = mem_database.at(memid);
Cell *cell = mdb.mem->cell;
std::vector<std::string> hdlname;
std::string signal_name;
bool has_hdlname = shared->hdlname && cell != nullptr && cell->name.isPublic() && cell->has_attribute(ID::hdlname);
if (has_hdlname) {
hdlname = cell->get_hdlname_attribute();
log_assert(!hdlname.empty());
signal_name = std::move(hdlname.back());
hdlname.pop_back();
for (auto name : hdlname)
enter_scope("\\" + name);
} else {
signal_name = log_id(memid);
}
for (auto &trace_index : trace_mem.second) {
int output_id = trace_index.second.first;
int index = trace_index.first;
register_signal(
stringf("%s[%d]", signal_name.c_str(), (index + mdb.mem->start_offset)).c_str(),
mdb.mem->width, nullptr, output_id, true);
}
if (has_hdlname)
for (auto name : hdlname)
exit_scope();
}
for (auto child : children)
child.second->write_output_header(enter_scope, exit_scope, register_signal);
for (int i = 0; i < exit_scopes; i++)
exit_scope();
}
void register_memory_addr(IdString memid, int addr)
{
auto &mdb = mem_database.at(memid);
auto &mem = *mdb.mem;
int index = addr - mem.start_offset;
if (index < 0 || index >= mem.size)
return;
auto it = trace_mem_database.find(memid);
if (it != trace_mem_database.end() && it->second.count(index))
return;
int output_id = shared->next_output_id++;
Const data;
if (!shared->output_data.empty()) {
auto init_it = trace_mem_init_database.find(std::make_pair(memid, addr));
if (init_it != trace_mem_init_database.end())
data = init_it->second;
else
data = mem.get_init_data().extract(index * mem.width, mem.width);
shared->output_data.front().second.emplace(output_id, data);
}
trace_mem_database[memid].emplace(index, make_pair(output_id, data));
}
void register_output_step_values(std::map<int,Const> *data)
{
for (auto &it : signal_database)
{
Wire *wire = it.first;
Const value = get_state(wire);
int id = it.second.first;
if (it.second.second == value)
continue;
it.second.second = value;
data->emplace(id, value);
}
for (auto &trace_mem : trace_mem_database)
{
auto memid = trace_mem.first;
auto &mdb = mem_database.at(memid);
auto &mem = *mdb.mem;
for (auto &trace_index : trace_mem.second)
{
int output_id = trace_index.second.first;
int index = trace_index.first;
auto value = mdb.data.extract(index * mem.width, mem.width);
if (trace_index.second.second == value)
continue;
trace_index.second.second = value;
data->emplace(output_id, value);
}
}
for (auto child : children)
child.second->register_output_step_values(data);
}
bool setInitState()
{
bool did_something = false;
for(auto &item : fst_handles) {
if (item.second==0) continue; // Ignore signals not found
std::string v = shared->fst->valueOf(item.second);
did_something |= set_state(item.first, Const::from_string(v));
}
for (auto cell : module->cells())
{
if (cell->is_mem_cell()) {
std::string memid = cell->parameters.at(ID::MEMID).decode_string();
for (auto &data : fst_memories[memid])
{
std::string v = shared->fst->valueOf(data.second);
set_memory_state(memid, Const(data.first), Const::from_string(v));
}
}
}
for (auto child : children)
did_something |= child.second->setInitState();
return did_something;
}
void addAdditionalInputs()
{
for (auto cell : module->cells())
{
if (cell->type.in(ID($anyseq))) {
SigSpec sig_y = sigmap(cell->getPort(ID::Y));
if (sig_y.is_wire()) {
bool found = false;
for(auto &item : fst_handles) {
if (item.second==0) continue; // Ignore signals not found
if (sig_y == sigmap(item.first)) {
fst_inputs[sig_y.as_wire()] = item.second;
found = true;
break;
}
}
if (!found)
log_error("Unable to find required '%s' signal in file\n",(scope + "." + RTLIL::unescape_id(sig_y.as_wire()->name)).c_str());
}
}
}
for (auto child : children)
child.second->addAdditionalInputs();
}
bool setInputs()
{
bool did_something = false;
for(auto &item : fst_inputs) {
std::string v = shared->fst->valueOf(item.second);
did_something |= set_state(item.first, Const::from_string(v));
}
for (auto child : children)
did_something |= child.second->setInputs();
return did_something;
}
void setState(dict<int, std::pair<SigBit,bool>> bits, std::string values)
{
for(auto bit : bits) {
if (bit.first >= GetSize(values))
log_error("Too few input data bits in file.\n");
switch(values.at(bit.first)) {
case '0': set_state(bit.second.first, bit.second.second ? State::S1 : State::S0); break;
case '1': set_state(bit.second.first, bit.second.second ? State::S0 : State::S1); break;
default: set_state(bit.second.first, State::Sx); break;
}
}
}
void setMemState(dict<int, std::pair<std::string,int>> bits, std::string values)
{
for(auto bit : bits) {
if (bit.first >= GetSize(values))
log_error("Too few input data bits in file.\n");
switch(values.at(bit.first)) {
case '0': set_memory_state_bit(bit.second.first, bit.second.second, State::S0); break;
case '1': set_memory_state_bit(bit.second.first, bit.second.second, State::S1); break;
default: set_memory_state_bit(bit.second.first, bit.second.second, State::Sx); break;
}
}
}
bool checkSignals()
{
bool retVal = false;
for(auto &item : fst_handles) {
if (item.second==0) continue; // Ignore signals not found
Const fst_val = Const::from_string(shared->fst->valueOf(item.second));
Const sim_val = get_state(item.first);
if (sim_val.size()!=fst_val.size()) {
log_warning("Signal '%s.%s' size is different in gold and gate.\n", scope.c_str(), log_id(item.first));
continue;
}
if (shared->sim_mode == SimulationMode::sim) {
// No checks performed when using stimulus
} else if (shared->sim_mode == SimulationMode::gate && !fst_val.is_fully_def()) { // FST data contains X
for(int i=0;i<fst_val.size();i++) {
if (fst_val[i]!=State::Sx && fst_val[i]!=sim_val[i]) {
log_warning("Signal '%s.%s' in file %s in simulation %s\n", scope.c_str(), log_id(item.first), log_signal(fst_val), log_signal(sim_val));
retVal = true;
break;
}
}
} else if (shared->sim_mode == SimulationMode::gold && !sim_val.is_fully_def()) { // sim data contains X
for(int i=0;i<sim_val.size();i++) {
if (sim_val[i]!=State::Sx && fst_val[i]!=sim_val[i]) {
log_warning("Signal '%s.%s' in file %s in simulation %s\n", scope.c_str(), log_id(item.first), log_signal(fst_val), log_signal(sim_val));
retVal = true;
break;
}
}
} else {
if (fst_val!=sim_val) {
log_warning("Signal '%s.%s' in file %s in simulation '%s'\n", scope.c_str(), log_id(item.first), log_signal(fst_val), log_signal(sim_val));
retVal = true;
}
}
}
for (auto child : children)
retVal |= child.second->checkSignals();
return retVal;
}
};
struct SimWorker : SimShared
{
SimInstance *top = nullptr;
pool<IdString> clock, clockn, reset, resetn;
std::string timescale;
std::string sim_filename;
std::string map_filename;
std::string summary_filename;
std::string scope;
~SimWorker()
{
outputfiles.clear();
delete top;
}
void register_signals()
{
next_output_id = 1;
top->register_signals(top->shared->next_output_id);
}
void register_output_step(int t)
{
std::map<int,Const> data;
top->register_output_step_values(&data);
output_data.emplace_back(t, data);
}
void write_output_files()
{
std::map<int, bool> use_signal;
bool first = ignore_x;
for(auto& d : output_data)
{
if (first) {
for (auto &data : d.second)
use_signal[data.first] = !data.second.is_fully_undef();
first = false;
} else {
for (auto &data : d.second)
use_signal[data.first] = true;
}
if (!ignore_x) break;
}
for(auto& writer : outputfiles)
writer->write(use_signal);
if (writeback) {
pool<Module*> wbmods;
top->writeback(wbmods);
}
}
void update(bool gclk)
{
if (gclk)
step += 1;
while (1)
{
if (debug)
log("\n-- ph1 --\n");
top->update_ph1();
if (debug)
log("\n-- ph2 --\n");
if (!top->update_ph2(gclk))
break;
}
if (debug)
log("\n-- ph3 --\n");
top->update_ph3(gclk);
}
void initialize_stable_past()
{
if (debug)
log("\n-- ph1 (initialize) --\n");
top->update_ph1();
if (debug)
log("\n-- ph3 (initialize) --\n");
top->update_ph3(true);
}
void set_inports(pool<IdString> ports, State value)
{
for (auto portname : ports)
{
Wire *w = top->module->wire(portname);
if (w == nullptr)
log_error("Can't find port %s on module %s.\n", log_id(portname), log_id(top->module));
top->set_state(w, value);
}
}
void run(Module *topmod, int numcycles)
{
log_assert(top == nullptr);
top = new SimInstance(this, scope, topmod);
register_signals();
if (debug)
log("\n===== 0 =====\n");
else if (verbose)
log("Simulating cycle 0.\n");
set_inports(reset, State::S1);
set_inports(resetn, State::S0);
set_inports(clock, State::Sx);
set_inports(clockn, State::Sx);
update(false);
register_output_step(0);
for (int cycle = 0; cycle < numcycles; cycle++)
{
if (debug)
log("\n===== %d =====\n", 10*cycle + 5);
else if (verbose)
log("Simulating cycle %d.\n", (cycle*2)+1);
set_inports(clock, State::S0);
set_inports(clockn, State::S1);
update(true);
register_output_step(10*cycle + 5);
if (debug)
log("\n===== %d =====\n", 10*cycle + 10);
else if (verbose)
log("Simulating cycle %d.\n", (cycle*2)+2);
set_inports(clock, State::S1);
set_inports(clockn, State::S0);
if (cycle+1 == rstlen) {
set_inports(reset, State::S0);
set_inports(resetn, State::S1);
}
update(true);
register_output_step(10*cycle + 10);
}
register_output_step(10*numcycles + 2);
write_output_files();
}
void run_cosim_fst(Module *topmod, int numcycles)
{
log_assert(top == nullptr);
fst = new FstData(sim_filename);
if (scope.empty())
log_error("Scope must be defined for co-simulation.\n");
top = new SimInstance(this, scope, topmod);
register_signals();
std::vector<fstHandle> fst_clock;
for (auto portname : clock)
{
Wire *w = topmod->wire(portname);
if (!w)
log_error("Can't find port %s on module %s.\n", log_id(portname), log_id(top->module));
if (!w->port_input)
log_error("Clock port %s on module %s is not input.\n", log_id(portname), log_id(top->module));
fstHandle id = fst->getHandle(scope + "." + RTLIL::unescape_id(portname));
if (id==0)
log_error("Can't find port %s.%s in FST.\n", scope.c_str(), log_id(portname));
fst_clock.push_back(id);
}
for (auto portname : clockn)
{
Wire *w = topmod->wire(portname);
if (!w)
log_error("Can't find port %s on module %s.\n", log_id(portname), log_id(top->module));
if (!w->port_input)
log_error("Clock port %s on module %s is not input.\n", log_id(portname), log_id(top->module));
fstHandle id = fst->getHandle(scope + "." + RTLIL::unescape_id(portname));
if (id==0)
log_error("Can't find port %s.%s in FST.\n", scope.c_str(), log_id(portname));
fst_clock.push_back(id);
}
SigMap sigmap(topmod);
for (auto wire : topmod->wires()) {
if (wire->port_input) {
fstHandle id = fst->getHandle(scope + "." + RTLIL::unescape_id(wire->name));
if (id==0)
log_error("Unable to find required '%s' signal in file\n",(scope + "." + RTLIL::unescape_id(wire->name)).c_str());
top->fst_inputs[wire] = id;
}
}
top->addAdditionalInputs();
uint64_t startCount = 0;
uint64_t stopCount = 0;
if (start_time==0) {
if (start_time < fst->getStartTime())
log_warning("Start time is before simulation file start time\n");
startCount = fst->getStartTime();
} else if (start_time==-1)
startCount = fst->getEndTime();
else {
startCount = start_time / fst->getTimescale();
if (startCount > fst->getEndTime()) {
startCount = fst->getEndTime();
log_warning("Start time is after simulation file end time\n");
}
}
if (stop_time==0) {
if (stop_time < fst->getStartTime())
log_warning("Stop time is before simulation file start time\n");
stopCount = fst->getStartTime();
} else if (stop_time==-1)
stopCount = fst->getEndTime();
else {
stopCount = stop_time / fst->getTimescale();
if (stopCount > fst->getEndTime()) {
stopCount = fst->getEndTime();
log_warning("Stop time is after simulation file end time\n");
}
}
if (stopCount<startCount) {
log_error("Stop time is before start time\n");
}
bool initial = true;
int cycle = 0;
log("Co-simulation from %lu%s to %lu%s", (unsigned long)startCount, fst->getTimescaleString(), (unsigned long)stopCount, fst->getTimescaleString());
if (cycles_set)
log(" for %d clock cycle(s)",numcycles);
log("\n");
bool all_samples = fst_clock.empty();
try {
fst->reconstructAllAtTimes(fst_clock, startCount, stopCount, [&](uint64_t time) {
if (verbose)
log("Co-simulating %s %d [%lu%s].\n", (all_samples ? "sample" : "cycle"), cycle, (unsigned long)time, fst->getTimescaleString());
bool did_something = top->setInputs();
if (initial) {
did_something |= top->setInitState();
initialize_stable_past();
initial = false;
}
if (did_something)
update(true);
register_output_step(time);
bool status = top->checkSignals();
if (status)
log_error("Signal difference\n");
cycle++;
// Limit to number of cycles if provided
if (cycles_set && cycle > numcycles *2)
throw fst_end_of_data_exception();
if (time==stopCount)
throw fst_end_of_data_exception();
});
} catch(fst_end_of_data_exception) {
// end of data detected
}
write_output_files();
delete fst;
}
std::string cell_name(std::string const & name)
{
size_t pos = name.find_last_of("[");
if (pos!=std::string::npos)
return name.substr(0, pos);
return name;
}
int mem_cell_addr(std::string const & name)
{
size_t pos = name.find_last_of("[");
return atoi(name.substr(pos+1).c_str());
}
void run_cosim_aiger_witness(Module *topmod)
{
log_assert(top == nullptr);
if (!multiclock && (clock.size()+clockn.size())==0)
log_error("Clock signal must be specified.\n");
if (multiclock && (clock.size()+clockn.size())>0)
log_error("For multiclock witness there should be no clock signal.\n");
top = new SimInstance(this, scope, topmod);
register_signals();
std::ifstream mf(map_filename);
std::string type, symbol;
int variable, index;
dict<int, std::pair<SigBit,bool>> inputs, inits, latches;
dict<int, std::pair<std::string,int>> mem_inits, mem_latches;
if (mf.fail())
log_cmd_error("Not able to read AIGER witness map file.\n");
while (mf >> type >> variable >> index >> symbol) {
RTLIL::IdString escaped_s = RTLIL::escape_id(symbol);
Wire *w = topmod->wire(escaped_s);
if (!w) {
escaped_s = RTLIL::escape_id(cell_name(symbol));
Cell *c = topmod->cell(escaped_s);
if (!c)
log_warning("Wire/cell %s not present in module %s\n",symbol.c_str(),log_id(topmod));
if (c->is_mem_cell()) {
std::string memid = c->parameters.at(ID::MEMID).decode_string();
auto &state = top->mem_database[memid];
int offset = (mem_cell_addr(symbol) - state.mem->start_offset) * state.mem->width + index;
if (type == "init")
mem_inits[variable] = { memid, offset };
else if (type == "latch")
mem_latches[variable] = { memid, offset };
else
log_error("Map file addressing cell %s as type %s\n", symbol.c_str(), type.c_str());
} else {
log_error("Cell %s in map file is not memory cell\n", symbol.c_str());
}
} else {
if (index < w->start_offset || index > w->start_offset + w->width)
log_error("Index %d for wire %s is out of range\n", index, log_signal(w));
if (type == "input") {
inputs[variable] = {SigBit(w,index-w->start_offset), false};
} else if (type == "init") {
inits[variable] = {SigBit(w,index-w->start_offset), false};
} else if (type == "latch") {
latches[variable] = {SigBit(w,index-w->start_offset), false};
} else if (type == "invlatch") {
latches[variable] = {SigBit(w,index-w->start_offset), true};
}
}
}
std::ifstream f;
f.open(sim_filename.c_str());
if (f.fail() || GetSize(sim_filename) == 0)
log_error("Can not open file `%s`\n", sim_filename.c_str());
int state = 0;
std::string status;
int cycle = 0;
while (!f.eof())
{
std::string line;
std::getline(f, line);
if (line.size()==0 || line[0]=='#' || line[0]=='c' || line[0]=='f' || line[0]=='u') continue;
if (line[0]=='.') break;
if (state==0 && line.size()!=1) {
// old format detected, latch data
state = 2;
}
if (state==1 && line[0]!='b' && line[0]!='j') {
// was old format but with 1 bit latch
top->setState(latches, status);
state = 3;
}
switch(state)
{
case 0:
status = line;
state = 1;
break;
case 1:
state = 2;
break;
case 2:
top->setState(latches, line);
top->setMemState(mem_latches, line);
state = 3;
break;
default:
if (verbose)
log("Simulating cycle %d.\n", cycle);
top->setState(inputs, line);
if (cycle) {
set_inports(clock, State::S1);
set_inports(clockn, State::S0);
} else {
top->setState(inits, line);
top->setMemState(mem_inits, line);
set_inports(clock, State::S0);
set_inports(clockn, State::S1);
}
update(true);
register_output_step(10*cycle);
if (!multiclock && cycle) {
set_inports(clock, State::S0);
set_inports(clockn, State::S1);
update(true);
register_output_step(10*cycle + 5);
}
cycle++;
break;
}
}
register_output_step(10*cycle);
write_output_files();
}
std::vector<std::string> split(std::string text, const char *delim)
{
std::vector<std::string> list;
char *p = strdup(text.c_str());
char *t = strtok(p, delim);
while (t != NULL) {
list.push_back(t);
t = strtok(NULL, delim);
}
free(p);
return list;
}
std::string signal_name(std::string const & name)
{
size_t pos = name.find_first_of("@");
if (pos==std::string::npos) {
pos = name.find_first_of("#");
if (pos==std::string::npos)
log_error("Line does not contain proper signal name `%s`\n", name.c_str());
}
return name.substr(0, pos);
}
void run_cosim_btor2_witness(Module *topmod)
{
log_assert(top == nullptr);
if (!multiclock && (clock.size()+clockn.size())==0)
log_error("Clock signal must be specified.\n");
if (multiclock && (clock.size()+clockn.size())>0)
log_error("For multiclock witness there should be no clock signal.\n");
std::ifstream f;
f.open(sim_filename.c_str());
if (f.fail() || GetSize(sim_filename) == 0)
log_error("Can not open file `%s`\n", sim_filename.c_str());
int state = 0;
int cycle = 0;
top = new SimInstance(this, scope, topmod);
register_signals();
int prev_cycle = 0;
int curr_cycle = 0;
std::vector<std::string> parts;
size_t len = 0;
while (!f.eof())
{
std::string line;
std::getline(f, line);
if (line.size()==0) continue;
if (line[0]=='#' || line[0]=='@' || line[0]=='.') {
if (line[0]!='.')
curr_cycle = atoi(line.c_str()+1);
else
curr_cycle = -1; // force detect change
if (curr_cycle != prev_cycle) {
if (verbose)
log("Simulating cycle %d.\n", cycle);
set_inports(clock, State::S1);
set_inports(clockn, State::S0);
update(true);
register_output_step(10*cycle+0);
if (!multiclock) {
set_inports(clock, State::S0);
set_inports(clockn, State::S1);
update(true);
register_output_step(10*cycle+5);
}
cycle++;
prev_cycle = curr_cycle;
}
if (line[0]=='.') break;
continue;
}
switch(state)
{
case 0:
if (line=="sat")
state = 1;
break;
case 1:
if (line[0]=='b' || line[0]=='j')
state = 2;
else
log_error("Line does not contain property.\n");
break;
default: // set state or inputs
parts = split(line, " ");
len = parts.size();
if (len<3 || len>4)
log_error("Invalid set state line content.\n");
RTLIL::IdString escaped_s = RTLIL::escape_id(signal_name(parts[len-1]));
if (len==3) {
Wire *w = topmod->wire(escaped_s);
if (!w) {
Cell *c = topmod->cell(escaped_s);
if (!c)
log_warning("Wire/cell %s not present in module %s\n",log_id(escaped_s),log_id(topmod));
else if (c->type.in(ID($anyconst), ID($anyseq))) {
SigSpec sig_y= c->getPort(ID::Y);
if ((int)parts[1].size() != GetSize(sig_y))
log_error("Size of wire %s is different than provided data.\n", log_signal(sig_y));
top->set_state(sig_y, Const::from_string(parts[1]));
}
} else {
if ((int)parts[1].size() != w->width)
log_error("Size of wire %s is different than provided data.\n", log_signal(w));
top->set_state(w, Const::from_string(parts[1]));
}
} else {
Cell *c = topmod->cell(escaped_s);
if (!c)
log_error("Cell %s not present in module %s\n",log_id(escaped_s),log_id(topmod));
if (!c->is_mem_cell())
log_error("Cell %s is not memory cell in module %s\n",log_id(escaped_s),log_id(topmod));
Const addr = Const::from_string(parts[1].substr(1,parts[1].size()-2));
Const data = Const::from_string(parts[2]);
top->set_memory_state(c->parameters.at(ID::MEMID).decode_string(), addr, data);
}
break;
}
}
register_output_step(10*cycle);
write_output_files();
}
struct FoundYWPath
{
SimInstance *instance;
Wire *wire;
IdString memid;
int addr;
};
struct YwHierarchy {
dict<IdPath, FoundYWPath> paths;
};
YwHierarchy prepare_yw_hierarchy(const ReadWitness &yw)
{
YwHierarchy hierarchy;
pool<IdPath> paths;
dict<IdPath, pool<IdString>> mem_paths;
for (auto &signal : yw.signals)
paths.insert(signal.path);
for (auto &clock : yw.clocks)
paths.insert(clock.path);
for (auto &path : paths)
if (path.has_address())
mem_paths[path.prefix()].insert(path.back());
witness_hierarchy(top->module, top, [&](IdPath const &path, WitnessHierarchyItem item, SimInstance *instance) {
if (item.cell != nullptr)
return instance->children.at(item.cell);
if (item.wire != nullptr) {
if (paths.count(path)) {
if (debug)
log("witness hierarchy: found wire %s\n", path.str().c_str());
bool inserted = hierarchy.paths.emplace(path, {instance, item.wire, {}, INT_MIN}).second;
if (!inserted)
log_warning("Yosys witness path `%s` is ambiguous in this design\n", path.str().c_str());
}
} else if (item.mem) {
auto it = mem_paths.find(path);
if (it != mem_paths.end()) {
if (debug)
log("witness hierarchy: found mem %s\n", path.str().c_str());
IdPath word_path = path;
word_path.emplace_back();
for (auto addr_part : it->second) {
word_path.back() = addr_part;
int addr;
word_path.get_address(addr);
if (addr < item.mem->start_offset || (addr - item.mem->start_offset) >= item.mem->size)
continue;
bool inserted = hierarchy.paths.emplace(word_path, {instance, nullptr, item.mem->memid, addr}).second;
if (!inserted)
log_warning("Yosys witness path `%s` is ambiguous in this design\n", path.str().c_str());
}
}
}
return instance;
});
for (auto &path : paths)
if (!hierarchy.paths.count(path))
log_warning("Yosys witness path `%s` was not found in this design, ignoring\n", path.str().c_str());
dict<IdPath, dict<int, bool>> clock_inputs;
for (auto &clock : yw.clocks) {
if (clock.is_negedge == clock.is_posedge)
continue;
clock_inputs[clock.path].emplace(clock.offset, clock.is_posedge);
}
for (auto &signal : yw.signals) {
auto it = clock_inputs.find(signal.path);
if (it == clock_inputs.end())
continue;
for (auto &clock_input : it->second) {
int offset = clock_input.first;
if (offset >= signal.offset && (offset - signal.offset) < signal.width) {
int clock_bits_offset = signal.bits_offset + (offset - signal.offset);
State expected = clock_input.second ? State::S0 : State::S1;
for (int t = 0; t < GetSize(yw.steps); t++) {
if (yw.get_bits(t, clock_bits_offset, 1) != expected)
log_warning("Yosys witness trace has an unexpected value for the clock input `%s` in step %d.\n", signal.path.str().c_str(), t);
}
}
}
}
// TODO add checks and warnings for witness signals (toplevel inputs, $any*) not present in the witness file
return hierarchy;
}
void set_yw_state(const ReadWitness &yw, const YwHierarchy &hierarchy, int t)
{
log_assert(t >= 0 && t < GetSize(yw.steps));
for (auto &signal : yw.signals) {
if (signal.init_only && t >= 1)
continue;
auto found_path_it = hierarchy.paths.find(signal.path);
if (found_path_it == hierarchy.paths.end())
continue;
auto &found_path = found_path_it->second;
Const value = yw.get_bits(t, signal.bits_offset, signal.width);
if (debug)
log("yw: set %s to %s\n", signal.path.str().c_str(), log_const(value));
if (found_path.wire != nullptr) {
found_path.instance->set_state_parent_drivers(
SigChunk(found_path.wire, signal.offset, signal.width),
value);
} else if (!found_path.memid.empty()) {
if (t >= 1)
found_path.instance->register_memory_addr(found_path.memid, found_path.addr);
else
found_path.instance->trace_mem_init_database.emplace(make_pair(found_path.memid, found_path.addr), value);
found_path.instance->set_memory_state(
found_path.memid, found_path.addr,
value);
}
}
}
void set_yw_clocks(const ReadWitness &yw, const YwHierarchy &hierarchy, bool active_edge)
{
for (auto &clock : yw.clocks) {
if (clock.is_negedge == clock.is_posedge)
continue;
auto found_path_it = hierarchy.paths.find(clock.path);
if (found_path_it == hierarchy.paths.end())
continue;
auto &found_path = found_path_it->second;
if (found_path.wire != nullptr) {
found_path.instance->set_state(
SigChunk(found_path.wire, clock.offset, 1),
active_edge == clock.is_posedge ? State::S1 : State::S0);
}
}
}
void run_cosim_yw_witness(Module *topmod, int append)
{
if (!clock.empty())
log_cmd_error("The -clock option is not required nor supported when reading a Yosys witness file.\n");
if (!reset.empty())
log_cmd_error("The -reset option is not required nor supported when reading a Yosys witness file.\n");
if (multiclock)
log_warning("The -multiclock option is not required and ignored when reading a Yosys witness file.\n");
ReadWitness yw(sim_filename);
top = new SimInstance(this, scope, topmod);
register_signals();
YwHierarchy hierarchy = prepare_yw_hierarchy(yw);
if (yw.steps.empty()) {
log_warning("Yosys witness file `%s` contains no time steps\n", yw.filename.c_str());
} else {
top->set_initstate_outputs(State::S1);
set_yw_state(yw, hierarchy, 0);
set_yw_clocks(yw, hierarchy, true);
initialize_stable_past();
register_output_step(0);
if (!yw.clocks.empty()) {
if (debug)
log("Simulating non-active clock edge.\n");
set_yw_clocks(yw, hierarchy, false);
update(false);
register_output_step(5);
}
top->set_initstate_outputs(State::S0);
}
for (int cycle = 1; cycle < GetSize(yw.steps) + append; cycle++)
{
if (verbose)
log("Simulating cycle %d.\n", cycle);
if (cycle < GetSize(yw.steps))
set_yw_state(yw, hierarchy, cycle);
set_yw_clocks(yw, hierarchy, true);
update(true);
register_output_step(10 * cycle);
if (!yw.clocks.empty()) {
if (debug)
log("Simulating non-active clock edge.\n");
set_yw_clocks(yw, hierarchy, false);
update(false);
register_output_step(5 + 10 * cycle);
}
}
register_output_step(10 * (GetSize(yw.steps) + append));
write_output_files();
}
void write_summary()
{
if (summary_filename.empty())
return;
PrettyJson json;
if (!json.write_to_file(summary_filename))
log_error("Can't open file `%s' for writing: %s\n", summary_filename.c_str(), strerror(errno));
json.begin_object();
json.entry("version", "Yosys sim summary");
json.entry("generator", yosys_version_str);
json.entry("steps", step);
json.entry("top", log_id(top->module->name));
json.name("assertions");
json.begin_array();
for (auto &assertion : triggered_assertions) {
json.begin_object();
json.entry("step", assertion.step);
json.entry("type", log_id(assertion.cell->type));
json.entry("path", assertion.instance->witness_full_path(assertion.cell));
auto src = assertion.cell->get_string_attribute(ID::src);
if (!src.empty()) {
json.entry("src", src);
}
json.end_object();
}
json.end_array();
json.end_object();
}
std::string define_signal(Wire *wire)
{
std::stringstream f;
if (wire->width==1)
f << stringf("%s", RTLIL::unescape_id(wire->name).c_str());
else
if (wire->upto)
f << stringf("[%d:%d] %s", wire->start_offset, wire->width - 1 + wire->start_offset, RTLIL::unescape_id(wire->name).c_str());
else
f << stringf("[%d:%d] %s", wire->width - 1 + wire->start_offset, wire->start_offset, RTLIL::unescape_id(wire->name).c_str());
return f.str();
}
std::string signal_list(std::map<Wire*,fstHandle> &signals)
{
std::stringstream f;
for(auto item=signals.begin();item!=signals.end();item++)
f << stringf("%c%s", (item==signals.begin() ? ' ' : ','), RTLIL::unescape_id(item->first->name).c_str());
return f.str();
}
void generate_tb(Module *topmod, std::string tb_filename, int numcycles)
{
fst = new FstData(sim_filename);
if (scope.empty())
log_error("Scope must be defined for co-simulation.\n");
if ((clock.size()+clockn.size())==0)
log_error("Clock signal must be specified.\n");
std::vector<fstHandle> fst_clock;
std::map<Wire*,fstHandle> clocks;
for (auto portname : clock)
{
Wire *w = topmod->wire(portname);
if (!w)
log_error("Can't find port %s on module %s.\n", log_id(portname), log_id(top->module));
if (!w->port_input)
log_error("Clock port %s on module %s is not input.\n", log_id(portname), log_id(top->module));
fstHandle id = fst->getHandle(scope + "." + RTLIL::unescape_id(portname));
if (id==0)
log_error("Can't find port %s.%s in FST.\n", scope.c_str(), log_id(portname));
fst_clock.push_back(id);
clocks[w] = id;
}
for (auto portname : clockn)
{
Wire *w = topmod->wire(portname);
if (!w)
log_error("Can't find port %s on module %s.\n", log_id(portname), log_id(top->module));
if (!w->port_input)
log_error("Clock port %s on module %s is not input.\n", log_id(portname), log_id(top->module));
fstHandle id = fst->getHandle(scope + "." + RTLIL::unescape_id(portname));
if (id==0)
log_error("Can't find port %s.%s in FST.\n", scope.c_str(), log_id(portname));
fst_clock.push_back(id);
clocks[w] = id;
}
SigMap sigmap(topmod);
std::map<Wire*,fstHandle> inputs;
std::map<Wire*,fstHandle> outputs;
for (auto wire : topmod->wires()) {
fstHandle id = fst->getHandle(scope + "." + RTLIL::unescape_id(wire->name));
if (id==0 && (wire->port_input || wire->port_output))
log_error("Unable to find required '%s' signal in file\n",(scope + "." + RTLIL::unescape_id(wire->name)).c_str());
if (wire->port_input)
if (clocks.find(wire)==clocks.end())
inputs[wire] = id;
if (wire->port_output)
outputs[wire] = id;
}
uint64_t startCount = 0;
uint64_t stopCount = 0;
if (start_time==0) {
if (start_time < fst->getStartTime())
log_warning("Start time is before simulation file start time\n");
startCount = fst->getStartTime();
} else if (start_time==-1)
startCount = fst->getEndTime();
else {
startCount = start_time / fst->getTimescale();
if (startCount > fst->getEndTime()) {
startCount = fst->getEndTime();
log_warning("Start time is after simulation file end time\n");
}
}
if (stop_time==0) {
if (stop_time < fst->getStartTime())
log_warning("Stop time is before simulation file start time\n");
stopCount = fst->getStartTime();
} else if (stop_time==-1)
stopCount = fst->getEndTime();
else {
stopCount = stop_time / fst->getTimescale();
if (stopCount > fst->getEndTime()) {
stopCount = fst->getEndTime();
log_warning("Stop time is after simulation file end time\n");
}
}
if (stopCount<startCount) {
log_error("Stop time is before start time\n");
}
int cycle = 0;
log("Generate testbench data from %lu%s to %lu%s", (unsigned long)startCount, fst->getTimescaleString(), (unsigned long)stopCount, fst->getTimescaleString());
if (cycles_set)
log(" for %d clock cycle(s)",numcycles);
log("\n");
std::stringstream f;
f << stringf("`timescale 1%s/1%s\n", fst->getTimescaleString(),fst->getTimescaleString());
f << stringf("module %s();\n",tb_filename.c_str());
int clk_len = 0;
int inputs_len = 0;
int outputs_len = 0;
for(auto &item : clocks) {
clk_len += item.first->width;
f << "\treg " << define_signal(item.first) << ";\n";
}
for(auto &item : inputs) {
inputs_len += item.first->width;
f << "\treg " << define_signal(item.first) << ";\n";
}
for(auto &item : outputs) {
outputs_len += item.first->width;
f << "\twire " << define_signal(item.first) << ";\n";
}
int data_len = clk_len + inputs_len + outputs_len + 32;
f << "\n";
f << stringf("\t%s uut(",RTLIL::unescape_id(topmod->name).c_str());
for(auto item=clocks.begin();item!=clocks.end();item++)
f << stringf("%c.%s(%s)", (item==clocks.begin() ? ' ' : ','), RTLIL::unescape_id(item->first->name).c_str(), RTLIL::unescape_id(item->first->name).c_str());
for(auto &item : inputs)
f << stringf(",.%s(%s)", RTLIL::unescape_id(item.first->name).c_str(), RTLIL::unescape_id(item.first->name).c_str());
for(auto &item : outputs)
f << stringf(",.%s(%s)", RTLIL::unescape_id(item.first->name).c_str(), RTLIL::unescape_id(item.first->name).c_str());
f << ");\n";
f << "\n";
f << "\tinteger i;\n";
uint64_t prev_time = startCount;
log("Writing data to `%s`\n", (tb_filename+".txt").c_str());
std::ofstream data_file(tb_filename+".txt");
std::stringstream initstate;
try {
fst->reconstructAllAtTimes(fst_clock, startCount, stopCount, [&](uint64_t time) {
for(auto &item : clocks)
data_file << stringf("%s",fst->valueOf(item.second).c_str());
for(auto &item : inputs)
data_file << stringf("%s",fst->valueOf(item.second).c_str());
for(auto &item : outputs)
data_file << stringf("%s",fst->valueOf(item.second).c_str());
data_file << stringf("%s\n",Const(time-prev_time).as_string().c_str());
if (time==startCount) {
// initial state
for(auto var : fst->getVars()) {
if (var.is_reg && !Const::from_string(fst->valueOf(var.id).c_str()).is_fully_undef()) {
if (var.scope == scope) {
initstate << stringf("\t\tuut.%s = %d'b%s;\n", var.name.c_str(), var.width, fst->valueOf(var.id).c_str());
} else if (var.scope.find(scope+".")==0) {
initstate << stringf("\t\tuut.%s.%s = %d'b%s;\n",var.scope.substr(scope.size()+1).c_str(), var.name.c_str(), var.width, fst->valueOf(var.id).c_str());
}
}
}
}
cycle++;
prev_time = time;
// Limit to number of cycles if provided
if (cycles_set && cycle > numcycles *2)
throw fst_end_of_data_exception();
if (time==stopCount)
throw fst_end_of_data_exception();
});
} catch(fst_end_of_data_exception) {
// end of data detected
}
f << stringf("\treg [0:%d] data [0:%d];\n", data_len-1, cycle-1);
f << "\tinitial begin;\n";
f << stringf("\t\t$dumpfile(\"%s\");\n",tb_filename.c_str());
f << stringf("\t\t$dumpvars(0,%s);\n",tb_filename.c_str());
f << initstate.str();
f << stringf("\t\t$readmemb(\"%s.txt\", data);\n",tb_filename.c_str());
f << stringf("\t\t#(data[0][%d:%d]);\n", data_len-32, data_len-1);
f << stringf("\t\t{%s } = data[0][%d:%d];\n", signal_list(clocks).c_str(), 0, clk_len-1);
f << stringf("\t\t{%s } <= data[0][%d:%d];\n", signal_list(inputs).c_str(), clk_len, clk_len+inputs_len-1);
f << stringf("\t\tfor (i = 1; i < %d; i++) begin\n",cycle);
f << stringf("\t\t\t#(data[i][%d:%d]);\n", data_len-32, data_len-1);
f << stringf("\t\t\t{%s } = data[i][%d:%d];\n", signal_list(clocks).c_str(), 0, clk_len-1);
f << stringf("\t\t\t{%s } <= data[i][%d:%d];\n", signal_list(inputs).c_str(), clk_len, clk_len+inputs_len-1);
f << stringf("\t\t\tif ({%s } != data[i-1][%d:%d]) begin\n", signal_list(outputs).c_str(), clk_len+inputs_len, clk_len+inputs_len+outputs_len-1);
f << "\t\t\t\t$error(\"Signal difference detected\\n\");\n";
f << "\t\t\tend\n";
f << "\t\tend\n";
f << "\t\t$finish;\n";
f << "\tend\n";
f << "endmodule\n";
log("Writing testbench to `%s`\n", (tb_filename+".v").c_str());
std::ofstream tb_file(tb_filename+".v");
tb_file << f.str();
delete fst;
}
};
struct VCDWriter : public OutputWriter
{
VCDWriter(SimWorker *worker, std::string filename) : OutputWriter(worker) {
vcdfile.open(filename.c_str());
}
void write(std::map<int, bool> &use_signal) override
{
if (!vcdfile.is_open()) return;
vcdfile << stringf("$version %s $end\n", worker->date ? yosys_version_str : "Yosys");
if (worker->date) {
std::time_t t = std::time(nullptr);
char mbstr[255];
if (std::strftime(mbstr, sizeof(mbstr), "%c", std::localtime(&t))) {
vcdfile << stringf("$date ") << mbstr << stringf(" $end\n");
}
}
if (!worker->timescale.empty())
vcdfile << stringf("$timescale %s $end\n", worker->timescale.c_str());
worker->top->write_output_header(
[this](IdString name) { vcdfile << stringf("$scope module %s $end\n", log_id(name)); },
[this]() { vcdfile << stringf("$upscope $end\n");},
[this,use_signal](const char *name, int size, Wire *, int id, bool is_reg) {
if (use_signal.at(id)) {
// Works around gtkwave trying to parse everything past the last [ in a signal
// name. While the emitted range doesn't necessarily match the wire's range,
// this is consistent with the range gtkwave makes up if it doesn't find a
// range
std::string range = strchr(name, '[') ? stringf("[%d:0]", size - 1) : std::string();
vcdfile << stringf("$var %s %d n%d %s%s%s $end\n", is_reg ? "reg" : "wire", size, id, name[0] == '$' ? "\\" : "", name, range.c_str());
}
}
);
vcdfile << stringf("$enddefinitions $end\n");
for(auto& d : worker->output_data)
{
vcdfile << stringf("#%d\n", d.first);
for (auto &data : d.second)
{
if (!use_signal.at(data.first)) continue;
Const value = data.second;
vcdfile << "b";
for (int i = GetSize(value)-1; i >= 0; i--) {
switch (value[i]) {
case State::S0: vcdfile << "0"; break;
case State::S1: vcdfile << "1"; break;
case State::Sx: vcdfile << "x"; break;
default: vcdfile << "z";
}
}
vcdfile << stringf(" n%d\n", data.first);
}
}
}
std::ofstream vcdfile;
};
struct FSTWriter : public OutputWriter
{
FSTWriter(SimWorker *worker, std::string filename) : OutputWriter(worker) {
fstfile = (struct fstContext *)fstWriterCreate(filename.c_str(),1);
}
virtual ~FSTWriter()
{
fstWriterClose(fstfile);
}
void write(std::map<int, bool> &use_signal) override
{
if (!fstfile) return;
std::time_t t = std::time(nullptr);
fstWriterSetVersion(fstfile, worker->date ? yosys_version_str : "Yosys");
if (worker->date)
fstWriterSetDate(fstfile, asctime(std::localtime(&t)));
else
fstWriterSetDate(fstfile, "");
if (!worker->timescale.empty())
fstWriterSetTimescaleFromString(fstfile, worker->timescale.c_str());
fstWriterSetPackType(fstfile, FST_WR_PT_FASTLZ);
fstWriterSetRepackOnClose(fstfile, 1);
worker->top->write_output_header(
[this](IdString name) { fstWriterSetScope(fstfile, FST_ST_VCD_MODULE, stringf("%s",log_id(name)).c_str(), nullptr); },
[this]() { fstWriterSetUpscope(fstfile); },
[this,use_signal](const char *name, int size, Wire *, int id, bool is_reg) {
if (!use_signal.at(id)) return;
fstHandle fst_id = fstWriterCreateVar(fstfile, is_reg ? FST_VT_VCD_REG : FST_VT_VCD_WIRE, FST_VD_IMPLICIT, size,
name, 0);
mapping.emplace(id, fst_id);
}
);
for(auto& d : worker->output_data)
{
fstWriterEmitTimeChange(fstfile, d.first);
for (auto &data : d.second)
{
if (!use_signal.at(data.first)) continue;
Const value = data.second;
std::stringstream ss;
for (int i = GetSize(value)-1; i >= 0; i--) {
switch (value[i]) {
case State::S0: ss << "0"; break;
case State::S1: ss << "1"; break;
case State::Sx: ss << "x"; break;
default: ss << "z";
}
}
fstWriterEmitValueChange(fstfile, mapping[data.first], ss.str().c_str());
}
}
}
struct fstContext *fstfile = nullptr;
std::map<int,fstHandle> mapping;
};
struct AIWWriter : public OutputWriter
{
AIWWriter(SimWorker *worker, std::string filename) : OutputWriter(worker) {
aiwfile.open(filename.c_str());
}
virtual ~AIWWriter()
{
aiwfile << '.' << '\n';
}
void write(std::map<int, bool> &) override
{
if (!aiwfile.is_open()) return;
if (worker->map_filename.empty())
log_cmd_error("For AIGER witness file map parameter is mandatory.\n");
std::ifstream mf(worker->map_filename);
std::string type, symbol;
int variable, index;
int max_input = 0;
if (mf.fail())
log_cmd_error("Not able to read AIGER witness map file.\n");
while (mf >> type >> variable >> index >> symbol) {
RTLIL::IdString escaped_s = RTLIL::escape_id(symbol);
Wire *w = worker->top->module->wire(escaped_s);
if (!w)
log_error("Wire %s not present in module %s\n",log_id(escaped_s),log_id(worker->top->module));
if (index < w->start_offset || index > w->start_offset + w->width)
log_error("Index %d for wire %s is out of range\n", index, log_signal(w));
if (type == "input") {
aiw_inputs[variable] = SigBit(w,index-w->start_offset);
if (worker->clock.count(escaped_s)) {
clocks[variable] = true;
}
if (worker->clockn.count(escaped_s)) {
clocks[variable] = false;
}
max_input = max(max_input,variable);
} else if (type == "init") {
aiw_inits[variable] = SigBit(w,index-w->start_offset);
max_input = max(max_input,variable);
} else if (type == "latch") {
aiw_latches[variable] = {SigBit(w,index-w->start_offset), false};
} else if (type == "invlatch") {
aiw_latches[variable] = {SigBit(w,index-w->start_offset), true};
}
}
worker->top->write_output_header(
[](IdString) {},
[]() {},
[this](const char */*name*/, int /*size*/, Wire *wire, int id, bool) { if (wire != nullptr) mapping[wire] = id; }
);
std::map<int, Yosys::RTLIL::Const> current;
bool first = true;
for (auto iter = worker->output_data.begin(); iter != std::prev(worker->output_data.end()); ++iter)
{
auto& d = *iter;
for (auto &data : d.second)
{
current[data.first] = data.second;
}
if (first) {
for (int i = 0;; i++)
{
if (aiw_latches.count(i)) {
aiwfile << '0';
continue;
}
aiwfile << '\n';
break;
}
first = false;
}
bool skip = false;
for (auto it : clocks)
{
auto val = it.second ? State::S1 : State::S0;
SigBit bit = aiw_inputs.at(it.first);
auto v = current[mapping[bit.wire]].bits.at(bit.offset);
if (v == val)
skip = true;
}
if (skip)
continue;
for (int i = 0; i <= max_input; i++)
{
if (aiw_inputs.count(i)) {
SigBit bit = aiw_inputs.at(i);
auto v = current[mapping[bit.wire]].bits.at(bit.offset);
if (v == State::S1)
aiwfile << '1';
else
aiwfile << '0';
continue;
}
if (aiw_inits.count(i)) {
SigBit bit = aiw_inits.at(i);
auto v = current[mapping[bit.wire]].bits.at(bit.offset);
if (v == State::S1)
aiwfile << '1';
else
aiwfile << '0';
continue;
}
aiwfile << '0';
}
aiwfile << '\n';
}
}
std::ofstream aiwfile;
dict<int, std::pair<SigBit, bool>> aiw_latches;
dict<int, SigBit> aiw_inputs, aiw_inits;
dict<int, bool> clocks;
std::map<Wire*,int> mapping;
};
struct SimPass : public Pass {
SimPass() : Pass("sim", "simulate the circuit") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" sim [options] [top-level]\n");
log("\n");
log("This command simulates the circuit using the given top-level module.\n");
log("\n");
log(" -vcd <filename>\n");
log(" write the simulation results to the given VCD file\n");
log("\n");
log(" -fst <filename>\n");
log(" write the simulation results to the given FST file\n");
log("\n");
log(" -aiw <filename>\n");
log(" write the simulation results to an AIGER witness file\n");
log(" (requires a *.aim file via -map)\n");
log("\n");
log(" -hdlname\n");
log(" use the hdlname attribute when writing simulation results\n");
log(" (preserves hierarchy in a flattened design)\n");
log("\n");
log(" -x\n");
log(" ignore constant x outputs in simulation file.\n");
log("\n");
log(" -date\n");
log(" include date and full version info in output.\n");
log("\n");
log(" -clock <portname>\n");
log(" name of top-level clock input\n");
log("\n");
log(" -clockn <portname>\n");
log(" name of top-level clock input (inverse polarity)\n");
log("\n");
log(" -multiclock\n");
log(" mark that witness file is multiclock.\n");
log("\n");
log(" -reset <portname>\n");
log(" name of top-level reset input (active high)\n");
log("\n");
log(" -resetn <portname>\n");
log(" name of top-level inverted reset input (active low)\n");
log("\n");
log(" -rstlen <integer>\n");
log(" number of cycles reset should stay active (default: 1)\n");
log("\n");
log(" -zinit\n");
log(" zero-initialize all uninitialized regs and memories\n");
log("\n");
log(" -timescale <string>\n");
log(" include the specified timescale declaration in the vcd\n");
log("\n");
log(" -n <integer>\n");
log(" number of clock cycles to simulate (default: 20)\n");
log("\n");
log(" -a\n");
log(" use all nets in VCD/FST operations, not just those with public names\n");
log("\n");
log(" -w\n");
log(" writeback mode: use final simulation state as new init state\n");
log("\n");
log(" -r <filename>\n");
log(" read simulation or formal results file\n");
log(" File formats supported: FST, VCD, AIW, WIT and .yw\n");
log(" VCD support requires vcd2fst external tool to be present\n");
log("\n");
log(" -append <integer>\n");
log(" number of extra clock cycles to simulate for a Yosys witness input\n");
log("\n");
log(" -summary <filename>\n");
log(" write a JSON summary to the given file\n");
log("\n");
log(" -map <filename>\n");
log(" read file with port and latch symbols, needed for AIGER witness input\n");
log("\n");
log(" -scope <name>\n");
log(" scope of simulation top model\n");
log("\n");
log(" -at <time>\n");
log(" sets start and stop time\n");
log("\n");
log(" -start <time>\n");
log(" start co-simulation in arbitary time (default 0)\n");
log("\n");
log(" -stop <time>\n");
log(" stop co-simulation in arbitary time (default END)\n");
log("\n");
log(" -sim\n");
log(" simulation with stimulus from FST (default)\n");
log("\n");
log(" -sim-cmp\n");
log(" co-simulation expect exact match\n");
log("\n");
log(" -sim-gold\n");
log(" co-simulation, x in simulation can match any value in FST\n");
log("\n");
log(" -sim-gate\n");
log(" co-simulation, x in FST can match any value in simulation\n");
log("\n");
log(" -q\n");
log(" disable per-cycle/sample log message\n");
log("\n");
log(" -d\n");
log(" enable debug output\n");
log("\n");
}
static std::string file_base_name(std::string const & path)
{
return path.substr(path.find_last_of("/\\") + 1);
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
SimWorker worker;
int numcycles = 20;
int append = 0;
bool start_set = false, stop_set = false, at_set = false;
log_header(design, "Executing SIM pass (simulate the circuit).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-vcd" && argidx+1 < args.size()) {
std::string vcd_filename = args[++argidx];
rewrite_filename(vcd_filename);
worker.outputfiles.emplace_back(std::unique_ptr<VCDWriter>(new VCDWriter(&worker, vcd_filename.c_str())));
continue;
}
if (args[argidx] == "-fst" && argidx+1 < args.size()) {
std::string fst_filename = args[++argidx];
rewrite_filename(fst_filename);
worker.outputfiles.emplace_back(std::unique_ptr<FSTWriter>(new FSTWriter(&worker, fst_filename.c_str())));
continue;
}
if (args[argidx] == "-aiw" && argidx+1 < args.size()) {
std::string aiw_filename = args[++argidx];
rewrite_filename(aiw_filename);
worker.outputfiles.emplace_back(std::unique_ptr<AIWWriter>(new AIWWriter(&worker, aiw_filename.c_str())));
continue;
}
if (args[argidx] == "-hdlname") {
worker.hdlname = true;
continue;
}
if (args[argidx] == "-n" && argidx+1 < args.size()) {
numcycles = atoi(args[++argidx].c_str());
worker.cycles_set = true;
continue;
}
if (args[argidx] == "-rstlen" && argidx+1 < args.size()) {
worker.rstlen = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-clock" && argidx+1 < args.size()) {
worker.clock.insert(RTLIL::escape_id(args[++argidx]));
continue;
}
if (args[argidx] == "-clockn" && argidx+1 < args.size()) {
worker.clockn.insert(RTLIL::escape_id(args[++argidx]));
continue;
}
if (args[argidx] == "-reset" && argidx+1 < args.size()) {
worker.reset.insert(RTLIL::escape_id(args[++argidx]));
continue;
}
if (args[argidx] == "-resetn" && argidx+1 < args.size()) {
worker.resetn.insert(RTLIL::escape_id(args[++argidx]));
continue;
}
if (args[argidx] == "-timescale" && argidx+1 < args.size()) {
worker.timescale = args[++argidx];
continue;
}
if (args[argidx] == "-a") {
worker.hide_internal = false;
continue;
}
if (args[argidx] == "-q") {
worker.verbose = false;
continue;
}
if (args[argidx] == "-d") {
worker.debug = true;
continue;
}
if (args[argidx] == "-w") {
worker.writeback = true;
continue;
}
if (args[argidx] == "-zinit") {
worker.zinit = true;
continue;
}
if (args[argidx] == "-r" && argidx+1 < args.size()) {
std::string sim_filename = args[++argidx];
rewrite_filename(sim_filename);
worker.sim_filename = sim_filename;
continue;
}
if (args[argidx] == "-append" && argidx+1 < args.size()) {
append = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-map" && argidx+1 < args.size()) {
std::string map_filename = args[++argidx];
rewrite_filename(map_filename);
worker.map_filename = map_filename;
continue;
}
if (args[argidx] == "-summary" && argidx+1 < args.size()) {
std::string summary_filename = args[++argidx];
rewrite_filename(summary_filename);
worker.summary_filename = summary_filename;
continue;
}
if (args[argidx] == "-scope" && argidx+1 < args.size()) {
worker.scope = args[++argidx];
continue;
}
if (args[argidx] == "-start" && argidx+1 < args.size()) {
worker.start_time = stringToTime(args[++argidx]);
start_set = true;
continue;
}
if (args[argidx] == "-stop" && argidx+1 < args.size()) {
worker.stop_time = stringToTime(args[++argidx]);
stop_set = true;
continue;
}
if (args[argidx] == "-at" && argidx+1 < args.size()) {
worker.start_time = stringToTime(args[++argidx]);
worker.stop_time = worker.start_time;
at_set = true;
continue;
}
if (args[argidx] == "-sim") {
worker.sim_mode = SimulationMode::sim;
continue;
}
if (args[argidx] == "-sim-cmp") {
worker.sim_mode = SimulationMode::cmp;
continue;
}
if (args[argidx] == "-sim-gold") {
worker.sim_mode = SimulationMode::gold;
continue;
}
if (args[argidx] == "-sim-gate") {
worker.sim_mode = SimulationMode::gate;
continue;
}
if (args[argidx] == "-x") {
worker.ignore_x = true;
continue;
}
if (args[argidx] == "-date") {
worker.date = true;
continue;
}
if (args[argidx] == "-multiclock") {
worker.multiclock = true;
continue;
}
break;
}
extra_args(args, argidx, design);
if (at_set && (start_set || stop_set || worker.cycles_set))
log_error("'at' option can only be defined separate of 'start','stop' and 'n'\n");
if (stop_set && worker.cycles_set)
log_error("'stop' and 'n' can only be used exclusively'\n");
Module *top_mod = nullptr;
if (design->full_selection()) {
top_mod = design->top_module();
if (!top_mod)
log_cmd_error("Design has no top module, use the 'hierarchy' command to specify one.\n");
} else {
auto mods = design->selected_whole_modules();
if (GetSize(mods) != 1)
log_cmd_error("Only one top module must be selected.\n");
top_mod = mods.front();
}
if (worker.sim_filename.empty())
worker.run(top_mod, numcycles);
else {
std::string filename_trim = file_base_name(worker.sim_filename);
if (filename_trim.size() > 4 && ((filename_trim.compare(filename_trim.size()-4, std::string::npos, ".fst") == 0) ||
filename_trim.compare(filename_trim.size()-4, std::string::npos, ".vcd") == 0)) {
worker.run_cosim_fst(top_mod, numcycles);
} else if (filename_trim.size() > 4 && filename_trim.compare(filename_trim.size()-4, std::string::npos, ".aiw") == 0) {
if (worker.map_filename.empty())
log_cmd_error("For AIGER witness file map parameter is mandatory.\n");
worker.run_cosim_aiger_witness(top_mod);
} else if (filename_trim.size() > 4 && filename_trim.compare(filename_trim.size()-4, std::string::npos, ".wit") == 0) {
worker.run_cosim_btor2_witness(top_mod);
} else if (filename_trim.size() > 3 && filename_trim.compare(filename_trim.size()-3, std::string::npos, ".yw") == 0) {
worker.run_cosim_yw_witness(top_mod, append);
} else {
log_cmd_error("Unhandled extension for simulation input file `%s`.\n", worker.sim_filename.c_str());
}
}
worker.write_summary();
}
} SimPass;
struct Fst2TbPass : public Pass {
Fst2TbPass() : Pass("fst2tb", "generate testbench out of fst file") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" fst2tb [options] [top-level]\n");
log("\n");
log("This command generates testbench for the circuit using the given top-level\n");
log("module and simulus signal from FST file\n");
log("\n");
log(" -tb <name>\n");
log(" generated testbench name.\n");
log(" files <name>.v and <name>.txt are created as result.\n");
log("\n");
log(" -r <filename>\n");
log(" read simulation FST file\n");
log("\n");
log(" -clock <portname>\n");
log(" name of top-level clock input\n");
log("\n");
log(" -clockn <portname>\n");
log(" name of top-level clock input (inverse polarity)\n");
log("\n");
log(" -scope <name>\n");
log(" scope of simulation top model\n");
log("\n");
log(" -start <time>\n");
log(" start co-simulation in arbitary time (default 0)\n");
log("\n");
log(" -stop <time>\n");
log(" stop co-simulation in arbitary time (default END)\n");
log("\n");
log(" -n <integer>\n");
log(" number of clock cycles to simulate (default: 20)\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
SimWorker worker;
int numcycles = 20;
bool stop_set = false;
std::string tb_filename;
log_header(design, "Executing FST2FB pass.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-clock" && argidx+1 < args.size()) {
worker.clock.insert(RTLIL::escape_id(args[++argidx]));
continue;
}
if (args[argidx] == "-clockn" && argidx+1 < args.size()) {
worker.clockn.insert(RTLIL::escape_id(args[++argidx]));
continue;
}
if (args[argidx] == "-r" && argidx+1 < args.size()) {
std::string sim_filename = args[++argidx];
rewrite_filename(sim_filename);
worker.sim_filename = sim_filename;
continue;
}
if (args[argidx] == "-n" && argidx+1 < args.size()) {
numcycles = atoi(args[++argidx].c_str());
worker.cycles_set = true;
continue;
}
if (args[argidx] == "-scope" && argidx+1 < args.size()) {
worker.scope = args[++argidx];
continue;
}
if (args[argidx] == "-start" && argidx+1 < args.size()) {
worker.start_time = stringToTime(args[++argidx]);
continue;
}
if (args[argidx] == "-stop" && argidx+1 < args.size()) {
worker.stop_time = stringToTime(args[++argidx]);
stop_set = true;
continue;
}
if (args[argidx] == "-tb" && argidx+1 < args.size()) {
tb_filename = args[++argidx];
continue;
}
break;
}
extra_args(args, argidx, design);
if (stop_set && worker.cycles_set)
log_error("'stop' and 'n' can only be used exclusively'\n");
Module *top_mod = nullptr;
if (design->full_selection()) {
top_mod = design->top_module();
if (!top_mod)
log_cmd_error("Design has no top module, use the 'hierarchy' command to specify one.\n");
} else {
auto mods = design->selected_whole_modules();
if (GetSize(mods) != 1)
log_cmd_error("Only one top module must be selected.\n");
top_mod = mods.front();
}
if (tb_filename.empty())
log_cmd_error("Testbench name must be defined.\n");
if (worker.sim_filename.empty())
log_cmd_error("Stimulus FST file must be defined.\n");
worker.generate_tb(top_mod, tb_filename, numcycles);
}
} Fst2TbPass;
PRIVATE_NAMESPACE_END