yosys/passes/opt/share.cc

1556 lines
49 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/satgen.h"
#include "kernel/sigtools.h"
#include "kernel/modtools.h"
#include "kernel/utils.h"
#include "kernel/macc.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
typedef RTLIL::IdString::compare_ptr_by_name<RTLIL::Cell> cell_ptr_cmp;
typedef std::pair<RTLIL::SigSpec, RTLIL::Const> ssc_pair_t;
struct ShareWorkerConfig
{
int limit;
bool opt_force;
bool opt_aggressive;
bool opt_fast;
pool<RTLIL::IdString> generic_uni_ops, generic_bin_ops, generic_cbin_ops, generic_other_ops;
};
struct ShareWorker
{
const ShareWorkerConfig config;
int limit;
pool<RTLIL::IdString> generic_ops;
RTLIL::Design *design;
RTLIL::Module *module;
CellTypes fwd_ct, cone_ct;
ModWalker modwalker;
pool<RTLIL::Cell*> cells_to_remove;
pool<RTLIL::Cell*> recursion_state;
SigMap topo_sigmap;
std::map<RTLIL::Cell*, std::set<RTLIL::Cell*, cell_ptr_cmp>, cell_ptr_cmp> topo_cell_drivers;
std::map<RTLIL::SigBit, std::set<RTLIL::Cell*, cell_ptr_cmp>> topo_bit_drivers;
std::vector<std::pair<RTLIL::SigBit, RTLIL::SigBit>> exclusive_ctrls;
// ------------------------------------------------------------------------------
// Find terminal bits -- i.e. bits that do not (exclusively) feed into a mux tree
// ------------------------------------------------------------------------------
pool<RTLIL::SigBit> terminal_bits;
void find_terminal_bits()
{
pool<RTLIL::SigBit> queue_bits;
pool<RTLIL::Cell*> visited_cells;
queue_bits.insert(modwalker.signal_outputs.begin(), modwalker.signal_outputs.end());
for (auto &it : module->cells_)
if (!fwd_ct.cell_known(it.second->type)) {
pool<RTLIL::SigBit> &bits = modwalker.cell_inputs[it.second];
queue_bits.insert(bits.begin(), bits.end());
}
terminal_bits.insert(queue_bits.begin(), queue_bits.end());
while (!queue_bits.empty())
{
pool<ModWalker::PortBit> portbits;
modwalker.get_drivers(portbits, queue_bits);
queue_bits.clear();
for (auto &pbit : portbits) {
if (pbit.cell->type == ID($mux) || pbit.cell->type == ID($pmux)) {
pool<RTLIL::SigBit> bits = modwalker.sigmap(pbit.cell->getPort(ID(S))).to_sigbit_pool();
terminal_bits.insert(bits.begin(), bits.end());
queue_bits.insert(bits.begin(), bits.end());
visited_cells.insert(pbit.cell);
}
if (fwd_ct.cell_known(pbit.cell->type) && visited_cells.count(pbit.cell) == 0) {
pool<RTLIL::SigBit> &bits = modwalker.cell_inputs[pbit.cell];
terminal_bits.insert(bits.begin(), bits.end());
queue_bits.insert(bits.begin(), bits.end());
visited_cells.insert(pbit.cell);
}
}
}
}
// ---------------------------------------------------
// Code for sharing and comparing MACC cells
// ---------------------------------------------------
static int bits_macc_port(const Macc::port_t &p, int width)
{
if (GetSize(p.in_a) == 0 || GetSize(p.in_b) == 0)
return min(max(GetSize(p.in_a), GetSize(p.in_b)), width);
return min(GetSize(p.in_a), width) * min(GetSize(p.in_b), width) / 2;
}
static int bits_macc(const Macc &m, int width)
{
int bits = GetSize(m.bit_ports);
for (auto &p : m.ports)
bits += bits_macc_port(p, width);
return bits;
}
static int bits_macc(RTLIL::Cell *c)
{
Macc m(c);
int width = GetSize(c->getPort(ID::Y));
return bits_macc(m, width);
}
static bool cmp_macc_ports(const Macc::port_t &p1, const Macc::port_t &p2)
{
bool mul1 = GetSize(p1.in_a) && GetSize(p1.in_b);
bool mul2 = GetSize(p2.in_a) && GetSize(p2.in_b);
int w1 = mul1 ? GetSize(p1.in_a) * GetSize(p1.in_b) : GetSize(p1.in_a) + GetSize(p1.in_b);
int w2 = mul2 ? GetSize(p2.in_a) * GetSize(p2.in_b) : GetSize(p2.in_a) + GetSize(p2.in_b);
if (mul1 != mul2)
return mul1;
if (w1 != w2)
return w1 > w2;
if (p1.is_signed != p2.is_signed)
return p1.is_signed < p2.is_signed;
if (p1.do_subtract != p2.do_subtract)
return p1.do_subtract < p2.do_subtract;
if (p1.in_a != p2.in_a)
return p1.in_a < p2.in_a;
if (p1.in_b != p2.in_b)
return p1.in_b < p2.in_b;
return false;
}
int share_macc_ports(Macc::port_t &p1, Macc::port_t &p2, int w1, int w2,
RTLIL::SigSpec act = RTLIL::SigSpec(), Macc *supermacc = nullptr, pool<RTLIL::Cell*> *supercell_aux = nullptr)
{
if (p1.do_subtract != p2.do_subtract)
return -1;
bool mul1 = GetSize(p1.in_a) && GetSize(p1.in_b);
bool mul2 = GetSize(p2.in_a) && GetSize(p2.in_b);
if (mul1 != mul2)
return -1;
bool force_signed = false, force_not_signed = false;
if ((GetSize(p1.in_a) && GetSize(p1.in_a) < w1) || (GetSize(p1.in_b) && GetSize(p1.in_b) < w1)) {
if (p1.is_signed)
force_signed = true;
else
force_not_signed = true;
}
if ((GetSize(p2.in_a) && GetSize(p2.in_a) < w2) || (GetSize(p2.in_b) && GetSize(p2.in_b) < w2)) {
if (p2.is_signed)
force_signed = true;
else
force_not_signed = true;
}
if (force_signed && force_not_signed)
return -1;
if (supermacc)
{
RTLIL::SigSpec sig_a1 = p1.in_a, sig_b1 = p1.in_b;
RTLIL::SigSpec sig_a2 = p2.in_a, sig_b2 = p2.in_b;
RTLIL::SigSpec sig_a = GetSize(sig_a1) > GetSize(sig_a2) ? sig_a1 : sig_a2;
RTLIL::SigSpec sig_b = GetSize(sig_b1) > GetSize(sig_b2) ? sig_b1 : sig_b2;
sig_a1.extend_u0(GetSize(sig_a), p1.is_signed);
sig_b1.extend_u0(GetSize(sig_b), p1.is_signed);
sig_a2.extend_u0(GetSize(sig_a), p2.is_signed);
sig_b2.extend_u0(GetSize(sig_b), p2.is_signed);
if (supercell_aux && GetSize(sig_a)) {
sig_a = module->addWire(NEW_ID, GetSize(sig_a));
supercell_aux->insert(module->addMux(NEW_ID, sig_a2, sig_a1, act, sig_a));
}
if (supercell_aux && GetSize(sig_b)) {
sig_b = module->addWire(NEW_ID, GetSize(sig_b));
supercell_aux->insert(module->addMux(NEW_ID, sig_b2, sig_b1, act, sig_b));
}
Macc::port_t p;
p.in_a = sig_a;
p.in_b = sig_b;
p.is_signed = force_signed;
p.do_subtract = p1.do_subtract;
supermacc->ports.push_back(p);
}
int score = 1000 + abs(GetSize(p1.in_a) - GetSize(p2.in_a)) * max(abs(GetSize(p1.in_b) - GetSize(p2.in_b)), 1);
for (int i = 0; i < min(GetSize(p1.in_a), GetSize(p2.in_a)); i++)
if (p1.in_a[i] == p2.in_a[i] && score > 0)
score--;
for (int i = 0; i < min(GetSize(p1.in_b), GetSize(p2.in_b)); i++)
if (p1.in_b[i] == p2.in_b[i] && score > 0)
score--;
return score;
}
int share_macc(RTLIL::Cell *c1, RTLIL::Cell *c2,
RTLIL::SigSpec act = RTLIL::SigSpec(), RTLIL::Cell *supercell = nullptr, pool<RTLIL::Cell*> *supercell_aux = nullptr)
{
Macc m1(c1), m2(c2), supermacc;
int w1 = GetSize(c1->getPort(ID::Y)), w2 = GetSize(c2->getPort(ID::Y));
int width = max(w1, w2);
m1.optimize(w1);
m2.optimize(w2);
std::sort(m1.ports.begin(), m1.ports.end(), cmp_macc_ports);
std::sort(m2.ports.begin(), m2.ports.end(), cmp_macc_ports);
std::set<int> m1_unmapped, m2_unmapped;
for (int i = 0; i < GetSize(m1.ports); i++)
m1_unmapped.insert(i);
for (int i = 0; i < GetSize(m2.ports); i++)
m2_unmapped.insert(i);
while (1)
{
int best_i = -1, best_j = -1, best_score = 0;
for (int i : m1_unmapped)
for (int j : m2_unmapped) {
int score = share_macc_ports(m1.ports[i], m2.ports[j], w1, w2);
if (score >= 0 && (best_i < 0 || best_score > score))
best_i = i, best_j = j, best_score = score;
}
if (best_i >= 0) {
m1_unmapped.erase(best_i);
m2_unmapped.erase(best_j);
share_macc_ports(m1.ports[best_i], m2.ports[best_j], w1, w2, act, &supermacc, supercell_aux);
} else
break;
}
for (int i : m1_unmapped)
{
RTLIL::SigSpec sig_a = m1.ports[i].in_a;
RTLIL::SigSpec sig_b = m1.ports[i].in_b;
if (supercell_aux && GetSize(sig_a)) {
sig_a = module->addWire(NEW_ID, GetSize(sig_a));
supercell_aux->insert(module->addMux(NEW_ID, RTLIL::SigSpec(0, GetSize(sig_a)), m1.ports[i].in_a, act, sig_a));
}
if (supercell_aux && GetSize(sig_b)) {
sig_b = module->addWire(NEW_ID, GetSize(sig_b));
supercell_aux->insert(module->addMux(NEW_ID, RTLIL::SigSpec(0, GetSize(sig_b)), m1.ports[i].in_b, act, sig_b));
}
Macc::port_t p;
p.in_a = sig_a;
p.in_b = sig_b;
p.is_signed = m1.ports[i].is_signed;
p.do_subtract = m1.ports[i].do_subtract;
supermacc.ports.push_back(p);
}
for (int i : m2_unmapped)
{
RTLIL::SigSpec sig_a = m2.ports[i].in_a;
RTLIL::SigSpec sig_b = m2.ports[i].in_b;
if (supercell_aux && GetSize(sig_a)) {
sig_a = module->addWire(NEW_ID, GetSize(sig_a));
supercell_aux->insert(module->addMux(NEW_ID, m2.ports[i].in_a, RTLIL::SigSpec(0, GetSize(sig_a)), act, sig_a));
}
if (supercell_aux && GetSize(sig_b)) {
sig_b = module->addWire(NEW_ID, GetSize(sig_b));
supercell_aux->insert(module->addMux(NEW_ID, m2.ports[i].in_b, RTLIL::SigSpec(0, GetSize(sig_b)), act, sig_b));
}
Macc::port_t p;
p.in_a = sig_a;
p.in_b = sig_b;
p.is_signed = m2.ports[i].is_signed;
p.do_subtract = m2.ports[i].do_subtract;
supermacc.ports.push_back(p);
}
if (supercell)
{
RTLIL::SigSpec sig_y = module->addWire(NEW_ID, width);
supercell_aux->insert(module->addPos(NEW_ID, sig_y, c1->getPort(ID::Y)));
supercell_aux->insert(module->addPos(NEW_ID, sig_y, c2->getPort(ID::Y)));
supercell->setParam(ID(Y_WIDTH), width);
supercell->setPort(ID::Y, sig_y);
supermacc.optimize(width);
supermacc.to_cell(supercell);
}
return bits_macc(supermacc, width);
}
// ---------------------------------------------------
// Find shareable cells and compatible groups of cells
// ---------------------------------------------------
pool<RTLIL::Cell*> shareable_cells;
void find_shareable_cells()
{
for (auto cell : module->cells())
{
if (!design->selected(module, cell) || !modwalker.ct.cell_known(cell->type))
continue;
for (auto &bit : modwalker.cell_outputs[cell])
if (terminal_bits.count(bit))
goto not_a_muxed_cell;
if (0)
not_a_muxed_cell:
continue;
if (config.opt_force) {
shareable_cells.insert(cell);
continue;
}
if (cell->type == ID($memrd)) {
if (cell->parameters.at(ID(CLK_ENABLE)).as_bool())
continue;
if (config.opt_aggressive || !modwalker.sigmap(cell->getPort(ID(ADDR))).is_fully_const())
shareable_cells.insert(cell);
continue;
}
if (cell->type.in(ID($mul), ID($div), ID($mod))) {
if (config.opt_aggressive || cell->parameters.at(ID(Y_WIDTH)).as_int() >= 4)
shareable_cells.insert(cell);
continue;
}
if (cell->type.in(ID($shl), ID($shr), ID($sshl), ID($sshr))) {
if (config.opt_aggressive || cell->parameters.at(ID(Y_WIDTH)).as_int() >= 8)
shareable_cells.insert(cell);
continue;
}
if (generic_ops.count(cell->type)) {
if (config.opt_aggressive)
shareable_cells.insert(cell);
continue;
}
}
}
bool is_shareable_pair(RTLIL::Cell *c1, RTLIL::Cell *c2)
{
if (c1->type != c2->type)
return false;
if (c1->type == ID($memrd))
{
if (c1->parameters.at(ID(MEMID)).decode_string() != c2->parameters.at(ID(MEMID)).decode_string())
return false;
return true;
}
if (config.generic_uni_ops.count(c1->type))
{
if (!config.opt_aggressive)
{
int a1_width = c1->parameters.at(ID(A_WIDTH)).as_int();
int y1_width = c1->parameters.at(ID(Y_WIDTH)).as_int();
int a2_width = c2->parameters.at(ID(A_WIDTH)).as_int();
int y2_width = c2->parameters.at(ID(Y_WIDTH)).as_int();
if (max(a1_width, a2_width) > 2 * min(a1_width, a2_width)) return false;
if (max(y1_width, y2_width) > 2 * min(y1_width, y2_width)) return false;
}
return true;
}
if (config.generic_bin_ops.count(c1->type) || c1->type == ID($alu))
{
if (!config.opt_aggressive)
{
int a1_width = c1->parameters.at(ID(A_WIDTH)).as_int();
int b1_width = c1->parameters.at(ID(B_WIDTH)).as_int();
int y1_width = c1->parameters.at(ID(Y_WIDTH)).as_int();
int a2_width = c2->parameters.at(ID(A_WIDTH)).as_int();
int b2_width = c2->parameters.at(ID(B_WIDTH)).as_int();
int y2_width = c2->parameters.at(ID(Y_WIDTH)).as_int();
if (max(a1_width, a2_width) > 2 * min(a1_width, a2_width)) return false;
if (max(b1_width, b2_width) > 2 * min(b1_width, b2_width)) return false;
if (max(y1_width, y2_width) > 2 * min(y1_width, y2_width)) return false;
}
return true;
}
if (config.generic_cbin_ops.count(c1->type))
{
if (!config.opt_aggressive)
{
int a1_width = c1->parameters.at(ID(A_WIDTH)).as_int();
int b1_width = c1->parameters.at(ID(B_WIDTH)).as_int();
int y1_width = c1->parameters.at(ID(Y_WIDTH)).as_int();
int a2_width = c2->parameters.at(ID(A_WIDTH)).as_int();
int b2_width = c2->parameters.at(ID(B_WIDTH)).as_int();
int y2_width = c2->parameters.at(ID(Y_WIDTH)).as_int();
int min1_width = min(a1_width, b1_width);
int max1_width = max(a1_width, b1_width);
int min2_width = min(a2_width, b2_width);
int max2_width = max(a2_width, b2_width);
if (max(min1_width, min2_width) > 2 * min(min1_width, min2_width)) return false;
if (max(max1_width, max2_width) > 2 * min(max1_width, max2_width)) return false;
if (max(y1_width, y2_width) > 2 * min(y1_width, y2_width)) return false;
}
return true;
}
if (c1->type == ID($macc))
{
if (!config.opt_aggressive)
if (share_macc(c1, c2) > 2 * min(bits_macc(c1), bits_macc(c2))) return false;
return true;
}
for (auto &it : c1->parameters)
if (c2->parameters.count(it.first) == 0 || c2->parameters.at(it.first) != it.second)
return false;
for (auto &it : c2->parameters)
if (c1->parameters.count(it.first) == 0 || c1->parameters.at(it.first) != it.second)
return false;
return true;
}
void find_shareable_partners(std::vector<RTLIL::Cell*> &results, RTLIL::Cell *cell)
{
results.clear();
for (auto c : shareable_cells)
if (c != cell && is_shareable_pair(c, cell))
results.push_back(c);
}
// -----------------------
// Create replacement cell
// -----------------------
RTLIL::Cell *make_supercell(RTLIL::Cell *c1, RTLIL::Cell *c2, RTLIL::SigSpec act, pool<RTLIL::Cell*> &supercell_aux)
{
log_assert(c1->type == c2->type);
if (config.generic_uni_ops.count(c1->type))
{
if (c1->parameters.at(ID(A_SIGNED)).as_bool() != c2->parameters.at(ID(A_SIGNED)).as_bool())
{
RTLIL::Cell *unsigned_cell = c1->parameters.at(ID(A_SIGNED)).as_bool() ? c2 : c1;
if (unsigned_cell->getPort(ID::A).to_sigbit_vector().back() != RTLIL::State::S0) {
unsigned_cell->parameters.at(ID(A_WIDTH)) = unsigned_cell->parameters.at(ID(A_WIDTH)).as_int() + 1;
RTLIL::SigSpec new_a = unsigned_cell->getPort(ID::A);
new_a.append_bit(RTLIL::State::S0);
unsigned_cell->setPort(ID::A, new_a);
}
unsigned_cell->parameters.at(ID(A_SIGNED)) = true;
unsigned_cell->check();
}
bool a_signed = c1->parameters.at(ID(A_SIGNED)).as_bool();
log_assert(a_signed == c2->parameters.at(ID(A_SIGNED)).as_bool());
RTLIL::SigSpec a1 = c1->getPort(ID::A);
RTLIL::SigSpec y1 = c1->getPort(ID::Y);
RTLIL::SigSpec a2 = c2->getPort(ID::A);
RTLIL::SigSpec y2 = c2->getPort(ID::Y);
int a_width = max(a1.size(), a2.size());
int y_width = max(y1.size(), y2.size());
a1.extend_u0(a_width, a_signed);
a2.extend_u0(a_width, a_signed);
RTLIL::SigSpec a = module->addWire(NEW_ID, a_width);
supercell_aux.insert(module->addMux(NEW_ID, a2, a1, act, a));
RTLIL::Wire *y = module->addWire(NEW_ID, y_width);
RTLIL::Cell *supercell = module->addCell(NEW_ID, c1->type);
supercell->parameters[ID(A_SIGNED)] = a_signed;
supercell->parameters[ID(A_WIDTH)] = a_width;
supercell->parameters[ID(Y_WIDTH)] = y_width;
supercell->setPort(ID::A, a);
supercell->setPort(ID::Y, y);
supercell_aux.insert(module->addPos(NEW_ID, y, y1));
supercell_aux.insert(module->addPos(NEW_ID, y, y2));
supercell_aux.insert(supercell);
return supercell;
}
if (config.generic_bin_ops.count(c1->type) || config.generic_cbin_ops.count(c1->type) || c1->type == ID($alu))
{
bool modified_src_cells = false;
if (config.generic_cbin_ops.count(c1->type))
{
int score_unflipped = max(c1->parameters.at(ID(A_WIDTH)).as_int(), c2->parameters.at(ID(A_WIDTH)).as_int()) +
max(c1->parameters.at(ID(B_WIDTH)).as_int(), c2->parameters.at(ID(B_WIDTH)).as_int());
int score_flipped = max(c1->parameters.at(ID(A_WIDTH)).as_int(), c2->parameters.at(ID(B_WIDTH)).as_int()) +
max(c1->parameters.at(ID(B_WIDTH)).as_int(), c2->parameters.at(ID(A_WIDTH)).as_int());
if (score_flipped < score_unflipped)
{
RTLIL::SigSpec tmp = c2->getPort(ID::A);
c2->setPort(ID::A, c2->getPort(ID::B));
c2->setPort(ID::B, tmp);
std::swap(c2->parameters.at(ID(A_WIDTH)), c2->parameters.at(ID(B_WIDTH)));
std::swap(c2->parameters.at(ID(A_SIGNED)), c2->parameters.at(ID(B_SIGNED)));
modified_src_cells = true;
}
}
if (c1->parameters.at(ID(A_SIGNED)).as_bool() != c2->parameters.at(ID(A_SIGNED)).as_bool())
{
RTLIL::Cell *unsigned_cell = c1->parameters.at(ID(A_SIGNED)).as_bool() ? c2 : c1;
if (unsigned_cell->getPort(ID::A).to_sigbit_vector().back() != RTLIL::State::S0) {
unsigned_cell->parameters.at(ID(A_WIDTH)) = unsigned_cell->parameters.at(ID(A_WIDTH)).as_int() + 1;
RTLIL::SigSpec new_a = unsigned_cell->getPort(ID::A);
new_a.append_bit(RTLIL::State::S0);
unsigned_cell->setPort(ID::A, new_a);
}
unsigned_cell->parameters.at(ID(A_SIGNED)) = true;
modified_src_cells = true;
}
if (c1->parameters.at(ID(B_SIGNED)).as_bool() != c2->parameters.at(ID(B_SIGNED)).as_bool())
{
RTLIL::Cell *unsigned_cell = c1->parameters.at(ID(B_SIGNED)).as_bool() ? c2 : c1;
if (unsigned_cell->getPort(ID::B).to_sigbit_vector().back() != RTLIL::State::S0) {
unsigned_cell->parameters.at(ID(B_WIDTH)) = unsigned_cell->parameters.at(ID(B_WIDTH)).as_int() + 1;
RTLIL::SigSpec new_b = unsigned_cell->getPort(ID::B);
new_b.append_bit(RTLIL::State::S0);
unsigned_cell->setPort(ID::B, new_b);
}
unsigned_cell->parameters.at(ID(B_SIGNED)) = true;
modified_src_cells = true;
}
if (modified_src_cells) {
c1->check();
c2->check();
}
bool a_signed = c1->parameters.at(ID(A_SIGNED)).as_bool();
bool b_signed = c1->parameters.at(ID(B_SIGNED)).as_bool();
log_assert(a_signed == c2->parameters.at(ID(A_SIGNED)).as_bool());
log_assert(b_signed == c2->parameters.at(ID(B_SIGNED)).as_bool());
if (c1->type == ID($shl) || c1->type == ID($shr) || c1->type == ID($sshl) || c1->type == ID($sshr))
b_signed = false;
RTLIL::SigSpec a1 = c1->getPort(ID::A);
RTLIL::SigSpec b1 = c1->getPort(ID::B);
RTLIL::SigSpec y1 = c1->getPort(ID::Y);
RTLIL::SigSpec a2 = c2->getPort(ID::A);
RTLIL::SigSpec b2 = c2->getPort(ID::B);
RTLIL::SigSpec y2 = c2->getPort(ID::Y);
int a_width = max(a1.size(), a2.size());
int b_width = max(b1.size(), b2.size());
int y_width = max(y1.size(), y2.size());
if (c1->type == ID($shr) && a_signed)
{
a_width = max(y_width, a_width);
if (a1.size() < y1.size()) a1.extend_u0(y1.size(), true);
if (a2.size() < y2.size()) a2.extend_u0(y2.size(), true);
a1.extend_u0(a_width, false);
a2.extend_u0(a_width, false);
}
else
{
a1.extend_u0(a_width, a_signed);
a2.extend_u0(a_width, a_signed);
}
b1.extend_u0(b_width, b_signed);
b2.extend_u0(b_width, b_signed);
RTLIL::SigSpec a = module->addWire(NEW_ID, a_width);
RTLIL::SigSpec b = module->addWire(NEW_ID, b_width);
supercell_aux.insert(module->addMux(NEW_ID, a2, a1, act, a));
supercell_aux.insert(module->addMux(NEW_ID, b2, b1, act, b));
RTLIL::Wire *y = module->addWire(NEW_ID, y_width);
RTLIL::Wire *x = c1->type == ID($alu) ? module->addWire(NEW_ID, y_width) : nullptr;
RTLIL::Wire *co = c1->type == ID($alu) ? module->addWire(NEW_ID, y_width) : nullptr;
RTLIL::Cell *supercell = module->addCell(NEW_ID, c1->type);
supercell->parameters[ID(A_SIGNED)] = a_signed;
supercell->parameters[ID(B_SIGNED)] = b_signed;
supercell->parameters[ID(A_WIDTH)] = a_width;
supercell->parameters[ID(B_WIDTH)] = b_width;
supercell->parameters[ID(Y_WIDTH)] = y_width;
supercell->setPort(ID::A, a);
supercell->setPort(ID::B, b);
supercell->setPort(ID::Y, y);
if (c1->type == ID($alu)) {
RTLIL::Wire *ci = module->addWire(NEW_ID), *bi = module->addWire(NEW_ID);
supercell_aux.insert(module->addMux(NEW_ID, c2->getPort(ID(CI)), c1->getPort(ID(CI)), act, ci));
supercell_aux.insert(module->addMux(NEW_ID, c2->getPort(ID(BI)), c1->getPort(ID(BI)), act, bi));
supercell->setPort(ID(CI), ci);
supercell->setPort(ID(BI), bi);
supercell->setPort(ID(CO), co);
supercell->setPort(ID(X), x);
}
supercell->check();
supercell_aux.insert(module->addPos(NEW_ID, y, y1));
supercell_aux.insert(module->addPos(NEW_ID, y, y2));
if (c1->type == ID($alu)) {
supercell_aux.insert(module->addPos(NEW_ID, co, c1->getPort(ID(CO))));
supercell_aux.insert(module->addPos(NEW_ID, co, c2->getPort(ID(CO))));
supercell_aux.insert(module->addPos(NEW_ID, x, c1->getPort(ID(X))));
supercell_aux.insert(module->addPos(NEW_ID, x, c2->getPort(ID(X))));
}
supercell_aux.insert(supercell);
return supercell;
}
if (c1->type == ID($macc))
{
RTLIL::Cell *supercell = module->addCell(NEW_ID, c1->type);
supercell_aux.insert(supercell);
share_macc(c1, c2, act, supercell, &supercell_aux);
supercell->check();
return supercell;
}
if (c1->type == ID($memrd))
{
RTLIL::Cell *supercell = module->addCell(NEW_ID, c1);
RTLIL::SigSpec addr1 = c1->getPort(ID(ADDR));
RTLIL::SigSpec addr2 = c2->getPort(ID(ADDR));
if (GetSize(addr1) < GetSize(addr2))
addr1.extend_u0(GetSize(addr2));
else
addr2.extend_u0(GetSize(addr1));
supercell->setPort(ID(ADDR), addr1 != addr2 ? module->Mux(NEW_ID, addr2, addr1, act) : addr1);
supercell->parameters[ID(ABITS)] = RTLIL::Const(GetSize(addr1));
supercell_aux.insert(module->addPos(NEW_ID, supercell->getPort(ID(DATA)), c2->getPort(ID(DATA))));
supercell_aux.insert(supercell);
return supercell;
}
log_abort();
}
// -------------------------------------------
// Finding forbidden control inputs for a cell
// -------------------------------------------
std::map<RTLIL::Cell*, pool<RTLIL::SigBit>, cell_ptr_cmp> forbidden_controls_cache;
const pool<RTLIL::SigBit> &find_forbidden_controls(RTLIL::Cell *cell)
{
if (recursion_state.count(cell)) {
static pool<RTLIL::SigBit> empty_controls_set;
return empty_controls_set;
}
if (forbidden_controls_cache.count(cell))
return forbidden_controls_cache.at(cell);
pool<ModWalker::PortBit> pbits;
pool<RTLIL::Cell*> consumer_cells;
modwalker.get_consumers(pbits, modwalker.cell_outputs[cell]);
for (auto &bit : pbits) {
if ((bit.cell->type == ID($mux) || bit.cell->type == ID($pmux)) && bit.port == ID(S))
forbidden_controls_cache[cell].insert(bit.cell->getPort(ID(S)).extract(bit.offset, 1));
consumer_cells.insert(bit.cell);
}
recursion_state.insert(cell);
for (auto c : consumer_cells)
if (fwd_ct.cell_known(c->type)) {
const pool<RTLIL::SigBit> &bits = find_forbidden_controls(c);
forbidden_controls_cache[cell].insert(bits.begin(), bits.end());
}
log_assert(recursion_state.count(cell) != 0);
recursion_state.erase(cell);
return forbidden_controls_cache[cell];
}
// --------------------------------------------------------
// Finding control inputs and activation pattern for a cell
// --------------------------------------------------------
std::map<RTLIL::Cell*, pool<ssc_pair_t>, cell_ptr_cmp> activation_patterns_cache;
bool sort_check_activation_pattern(ssc_pair_t &p)
{
std::map<RTLIL::SigBit, RTLIL::State> p_bits;
std::vector<RTLIL::SigBit> p_first_bits = p.first;
for (int i = 0; i < GetSize(p_first_bits); i++) {
RTLIL::SigBit b = p_first_bits[i];
RTLIL::State v = p.second.bits[i];
if (p_bits.count(b) && p_bits.at(b) != v)
return false;
p_bits[b] = v;
}
p.first = RTLIL::SigSpec();
p.second.bits.clear();
for (auto &it : p_bits) {
p.first.append_bit(it.first);
p.second.bits.push_back(it.second);
}
return true;
}
void optimize_activation_patterns(pool<ssc_pair_t> &patterns)
{
// TODO: Remove patterns that are contained in other patterns
dict<SigSpec, pool<Const>> db;
bool did_something = false;
for (auto const &p : patterns)
{
auto &sig = p.first;
auto &val = p.second;
int len = GetSize(sig);
for (int i = 0; i < len; i++)
{
auto otherval = val;
if (otherval.bits[i] == State::S0)
otherval.bits[i] = State::S1;
else if (otherval.bits[i] == State::S1)
otherval.bits[i] = State::S0;
else
continue;
if (db[sig].count(otherval))
{
auto newsig = sig;
newsig.remove(i);
auto newval = val;
newval.bits.erase(newval.bits.begin() + i);
db[newsig].insert(newval);
db[sig].erase(otherval);
did_something = true;
goto next_pattern;
}
}
db[sig].insert(val);
next_pattern:;
}
if (!did_something)
return;
patterns.clear();
for (auto &it : db)
for (auto &val : it.second)
patterns.insert(make_pair(it.first, val));
optimize_activation_patterns(patterns);
}
const pool<ssc_pair_t> &find_cell_activation_patterns(RTLIL::Cell *cell, const char *indent)
{
if (recursion_state.count(cell)) {
static pool<ssc_pair_t> empty_patterns_set;
return empty_patterns_set;
}
if (activation_patterns_cache.count(cell))
return activation_patterns_cache.at(cell);
const pool<RTLIL::SigBit> &cell_out_bits = modwalker.cell_outputs[cell];
pool<RTLIL::Cell*> driven_cells, driven_data_muxes;
for (auto &bit : cell_out_bits)
{
if (terminal_bits.count(bit)) {
// Terminal cells are always active: unconditional activation pattern
activation_patterns_cache[cell].insert(ssc_pair_t());
return activation_patterns_cache.at(cell);
}
for (auto &pbit : modwalker.signal_consumers[bit]) {
log_assert(fwd_ct.cell_known(pbit.cell->type));
if ((pbit.cell->type == ID($mux) || pbit.cell->type == ID($pmux)) && (pbit.port == ID::A || pbit.port == ID::B))
driven_data_muxes.insert(pbit.cell);
else
driven_cells.insert(pbit.cell);
}
}
recursion_state.insert(cell);
for (auto c : driven_data_muxes)
{
const pool<ssc_pair_t> &c_patterns = find_cell_activation_patterns(c, indent);
bool used_in_a = false;
std::set<int> used_in_b_parts;
int width = c->parameters.at(ID(WIDTH)).as_int();
std::vector<RTLIL::SigBit> sig_a = modwalker.sigmap(c->getPort(ID::A));
std::vector<RTLIL::SigBit> sig_b = modwalker.sigmap(c->getPort(ID::B));
std::vector<RTLIL::SigBit> sig_s = modwalker.sigmap(c->getPort(ID(S)));
for (auto &bit : sig_a)
if (cell_out_bits.count(bit))
used_in_a = true;
for (int i = 0; i < GetSize(sig_b); i++)
if (cell_out_bits.count(sig_b[i]))
used_in_b_parts.insert(i / width);
if (used_in_a)
for (auto p : c_patterns) {
for (int i = 0; i < GetSize(sig_s); i++)
p.first.append_bit(sig_s[i]), p.second.bits.push_back(RTLIL::State::S0);
if (sort_check_activation_pattern(p))
activation_patterns_cache[cell].insert(p);
}
for (int idx : used_in_b_parts)
for (auto p : c_patterns) {
p.first.append_bit(sig_s[idx]), p.second.bits.push_back(RTLIL::State::S1);
if (sort_check_activation_pattern(p))
activation_patterns_cache[cell].insert(p);
}
}
for (auto c : driven_cells) {
const pool<ssc_pair_t> &c_patterns = find_cell_activation_patterns(c, indent);
activation_patterns_cache[cell].insert(c_patterns.begin(), c_patterns.end());
}
log_assert(recursion_state.count(cell) != 0);
recursion_state.erase(cell);
optimize_activation_patterns(activation_patterns_cache[cell]);
if (activation_patterns_cache[cell].empty()) {
log("%sFound cell that is never activated: %s\n", indent, log_id(cell));
RTLIL::SigSpec cell_outputs = modwalker.cell_outputs[cell];
module->connect(RTLIL::SigSig(cell_outputs, RTLIL::SigSpec(RTLIL::State::Sx, cell_outputs.size())));
cells_to_remove.insert(cell);
}
return activation_patterns_cache[cell];
}
RTLIL::SigSpec bits_from_activation_patterns(const pool<ssc_pair_t> &activation_patterns)
{
std::set<RTLIL::SigBit> all_bits;
for (auto &it : activation_patterns) {
std::vector<RTLIL::SigBit> bits = it.first;
all_bits.insert(bits.begin(), bits.end());
}
RTLIL::SigSpec signal;
for (auto &bit : all_bits)
signal.append_bit(bit);
return signal;
}
void filter_activation_patterns(pool<ssc_pair_t> &out,
const pool<ssc_pair_t> &in, const std::set<RTLIL::SigBit> &filter_bits)
{
for (auto &p : in)
{
std::vector<RTLIL::SigBit> p_first = p.first;
ssc_pair_t new_p;
for (int i = 0; i < GetSize(p_first); i++)
if (filter_bits.count(p_first[i]) == 0) {
new_p.first.append_bit(p_first[i]);
new_p.second.bits.push_back(p.second.bits.at(i));
}
out.insert(new_p);
}
}
RTLIL::SigSpec make_cell_activation_logic(const pool<ssc_pair_t> &activation_patterns, pool<RTLIL::Cell*> &supercell_aux)
{
RTLIL::Wire *all_cases_wire = module->addWire(NEW_ID, 0);
for (auto &p : activation_patterns) {
all_cases_wire->width++;
supercell_aux.insert(module->addEq(NEW_ID, p.first, p.second, RTLIL::SigSpec(all_cases_wire, all_cases_wire->width - 1)));
}
if (all_cases_wire->width == 1)
return all_cases_wire;
RTLIL::Wire *result_wire = module->addWire(NEW_ID);
supercell_aux.insert(module->addReduceOr(NEW_ID, all_cases_wire, result_wire));
return result_wire;
}
// -------------------------------------------------------------------------------------
// Helper functions used to make sure that this pass does not introduce new logic loops.
// -------------------------------------------------------------------------------------
bool module_has_scc()
{
CellTypes ct;
ct.setup_internals();
ct.setup_stdcells();
TopoSort<RTLIL::Cell*, cell_ptr_cmp> toposort;
toposort.analyze_loops = false;
topo_sigmap.set(module);
topo_bit_drivers.clear();
dict<RTLIL::Cell*, pool<RTLIL::SigBit>> cell_to_bits;
dict<RTLIL::SigBit, pool<RTLIL::Cell*>> bit_to_cells;
for (auto cell : module->cells())
if (ct.cell_known(cell->type))
for (auto &conn : cell->connections()) {
if (ct.cell_output(cell->type, conn.first))
for (auto bit : topo_sigmap(conn.second)) {
cell_to_bits[cell].insert(bit);
topo_bit_drivers[bit].insert(cell);
}
else
for (auto bit : topo_sigmap(conn.second))
bit_to_cells[bit].insert(cell);
}
for (auto &it : cell_to_bits)
{
RTLIL::Cell *c1 = it.first;
for (auto bit : it.second)
for (auto c2 : bit_to_cells[bit])
toposort.edge(c1, c2);
}
bool found_scc = !toposort.sort();
topo_cell_drivers = std::move(toposort.database);
if (found_scc && toposort.analyze_loops)
for (auto &loop : toposort.loops) {
log("### loop ###\n");
for (auto &c : loop)
log("%s (%s)\n", log_id(c), log_id(c->type));
}
return found_scc;
}
bool find_in_input_cone_worker(RTLIL::Cell *root, RTLIL::Cell *needle, pool<RTLIL::Cell*> &stop)
{
if (root == needle)
return true;
if (stop.count(root))
return false;
stop.insert(root);
for (auto c : topo_cell_drivers[root])
if (find_in_input_cone_worker(c, needle, stop))
return true;
return false;
}
bool find_in_input_cone(RTLIL::Cell *root, RTLIL::Cell *needle)
{
pool<RTLIL::Cell*> stop;
return find_in_input_cone_worker(root, needle, stop);
}
bool is_part_of_scc(RTLIL::Cell *cell)
{
CellTypes ct;
ct.setup_internals();
ct.setup_stdcells();
ModIndex mi(module);
pool<RTLIL::Cell*> queue, covered;
queue.insert(cell);
while (!queue.empty())
{
pool<RTLIL::Cell*> new_queue;
for (auto c : queue) {
if (!ct.cell_known(c->type))
continue;
for (auto &conn : c->connections())
if (ct.cell_input(c->type, conn.first))
for (auto bit : conn.second)
for (auto &pi : mi.query_ports(bit))
if (ct.cell_known(pi.cell->type) && ct.cell_output(pi.cell->type, pi.port))
new_queue.insert(pi.cell);
covered.insert(c);
}
queue.clear();
for (auto c : new_queue) {
if (cells_to_remove.count(c))
continue;
if (c == cell)
return true;
if (!covered.count(c))
queue.insert(c);
}
}
return false;
}
// -------------
// Setup and run
// -------------
void remove_cell(Cell *cell)
{
shareable_cells.erase(cell);
forbidden_controls_cache.erase(cell);
activation_patterns_cache.erase(cell);
module->remove(cell);
}
ShareWorker(ShareWorkerConfig config, RTLIL::Design* design) :
config(config), design(design), modwalker(design)
{
generic_ops.insert(config.generic_uni_ops.begin(), config.generic_uni_ops.end());
generic_ops.insert(config.generic_bin_ops.begin(), config.generic_bin_ops.end());
generic_ops.insert(config.generic_cbin_ops.begin(), config.generic_cbin_ops.end());
generic_ops.insert(config.generic_other_ops.begin(), config.generic_other_ops.end());
fwd_ct.setup_internals();
cone_ct.setup_internals();
cone_ct.cell_types.erase(ID($mul));
cone_ct.cell_types.erase(ID($mod));
cone_ct.cell_types.erase(ID($div));
cone_ct.cell_types.erase(ID($pow));
cone_ct.cell_types.erase(ID($shl));
cone_ct.cell_types.erase(ID($shr));
cone_ct.cell_types.erase(ID($sshl));
cone_ct.cell_types.erase(ID($sshr));
}
void operator()(RTLIL::Module *module) {
this->module = module;
#ifndef NDEBUG
bool before_scc = module_has_scc();
#endif
limit = config.limit;
modwalker.setup(module);
cells_to_remove.clear();
recursion_state.clear();
topo_cell_drivers.clear();
topo_bit_drivers.clear();
exclusive_ctrls.clear();
terminal_bits.clear();
shareable_cells.clear();
forbidden_controls_cache.clear();
activation_patterns_cache.clear();
find_terminal_bits();
find_shareable_cells();
if (shareable_cells.size() < 2)
return;
log("Found %d cells in module %s that may be considered for resource sharing.\n",
GetSize(shareable_cells), log_id(module));
for (auto cell : module->cells())
if (cell->type == ID($pmux))
for (auto bit : cell->getPort(ID(S)))
for (auto other_bit : cell->getPort(ID(S)))
if (bit < other_bit)
exclusive_ctrls.push_back(std::pair<RTLIL::SigBit, RTLIL::SigBit>(bit, other_bit));
while (!shareable_cells.empty() && config.limit != 0)
{
RTLIL::Cell *cell = *shareable_cells.begin();
shareable_cells.erase(cell);
log(" Analyzing resource sharing options for %s (%s):\n", log_id(cell), log_id(cell->type));
const pool<ssc_pair_t> &cell_activation_patterns = find_cell_activation_patterns(cell, " ");
RTLIL::SigSpec cell_activation_signals = bits_from_activation_patterns(cell_activation_patterns);
if (cell_activation_patterns.empty()) {
log(" Cell is never active. Sharing is pointless, we simply remove it.\n");
cells_to_remove.insert(cell);
continue;
}
if (cell_activation_patterns.count(ssc_pair_t())) {
log(" Cell is always active. Therefore no sharing is possible.\n");
continue;
}
log(" Found %d activation_patterns using ctrl signal %s.\n", GetSize(cell_activation_patterns), log_signal(cell_activation_signals));
std::vector<RTLIL::Cell*> candidates;
find_shareable_partners(candidates, cell);
if (candidates.empty()) {
log(" No candidates found.\n");
continue;
}
log(" Found %d candidates:", GetSize(candidates));
for (auto c : candidates)
log(" %s", log_id(c));
log("\n");
for (auto other_cell : candidates)
{
log(" Analyzing resource sharing with %s (%s):\n", log_id(other_cell), log_id(other_cell->type));
const pool<ssc_pair_t> &other_cell_activation_patterns = find_cell_activation_patterns(other_cell, " ");
RTLIL::SigSpec other_cell_activation_signals = bits_from_activation_patterns(other_cell_activation_patterns);
if (other_cell_activation_patterns.empty()) {
log(" Cell is never active. Sharing is pointless, we simply remove it.\n");
shareable_cells.erase(other_cell);
cells_to_remove.insert(other_cell);
continue;
}
if (other_cell_activation_patterns.count(ssc_pair_t())) {
log(" Cell is always active. Therefore no sharing is possible.\n");
shareable_cells.erase(other_cell);
continue;
}
log(" Found %d activation_patterns using ctrl signal %s.\n",
GetSize(other_cell_activation_patterns), log_signal(other_cell_activation_signals));
const pool<RTLIL::SigBit> &cell_forbidden_controls = find_forbidden_controls(cell);
const pool<RTLIL::SigBit> &other_cell_forbidden_controls = find_forbidden_controls(other_cell);
std::set<RTLIL::SigBit> union_forbidden_controls;
union_forbidden_controls.insert(cell_forbidden_controls.begin(), cell_forbidden_controls.end());
union_forbidden_controls.insert(other_cell_forbidden_controls.begin(), other_cell_forbidden_controls.end());
if (!union_forbidden_controls.empty())
log(" Forbidden control signals for this pair of cells: %s\n", log_signal(union_forbidden_controls));
pool<ssc_pair_t> filtered_cell_activation_patterns;
pool<ssc_pair_t> filtered_other_cell_activation_patterns;
filter_activation_patterns(filtered_cell_activation_patterns, cell_activation_patterns, union_forbidden_controls);
filter_activation_patterns(filtered_other_cell_activation_patterns, other_cell_activation_patterns, union_forbidden_controls);
optimize_activation_patterns(filtered_cell_activation_patterns);
optimize_activation_patterns(filtered_other_cell_activation_patterns);
ezSatPtr ez;
SatGen satgen(ez.get(), &modwalker.sigmap);
pool<RTLIL::Cell*> sat_cells;
std::set<RTLIL::SigBit> bits_queue;
std::vector<int> cell_active, other_cell_active;
RTLIL::SigSpec all_ctrl_signals;
for (auto &p : filtered_cell_activation_patterns) {
log(" Activation pattern for cell %s: %s = %s\n", log_id(cell), log_signal(p.first), log_signal(p.second));
cell_active.push_back(ez->vec_eq(satgen.importSigSpec(p.first), satgen.importSigSpec(p.second)));
all_ctrl_signals.append(p.first);
}
for (auto &p : filtered_other_cell_activation_patterns) {
log(" Activation pattern for cell %s: %s = %s\n", log_id(other_cell), log_signal(p.first), log_signal(p.second));
other_cell_active.push_back(ez->vec_eq(satgen.importSigSpec(p.first), satgen.importSigSpec(p.second)));
all_ctrl_signals.append(p.first);
}
for (auto &bit : cell_activation_signals.to_sigbit_vector())
bits_queue.insert(bit);
for (auto &bit : other_cell_activation_signals.to_sigbit_vector())
bits_queue.insert(bit);
while (!bits_queue.empty())
{
pool<ModWalker::PortBit> portbits;
modwalker.get_drivers(portbits, bits_queue);
bits_queue.clear();
for (auto &pbit : portbits)
if (sat_cells.count(pbit.cell) == 0 && cone_ct.cell_known(pbit.cell->type)) {
if (config.opt_fast && modwalker.cell_outputs[pbit.cell].size() >= 4)
continue;
// log(" Adding cell %s (%s) to SAT problem.\n", log_id(pbit.cell), log_id(pbit.cell->type));
bits_queue.insert(modwalker.cell_inputs[pbit.cell].begin(), modwalker.cell_inputs[pbit.cell].end());
satgen.importCell(pbit.cell);
sat_cells.insert(pbit.cell);
}
if (config.opt_fast && sat_cells.size() > 100)
break;
}
for (auto it : exclusive_ctrls)
if (satgen.importedSigBit(it.first) && satgen.importedSigBit(it.second)) {
log(" Adding exclusive control bits: %s vs. %s\n", log_signal(it.first), log_signal(it.second));
int sub1 = satgen.importSigBit(it.first);
int sub2 = satgen.importSigBit(it.second);
ez->assume(ez->NOT(ez->AND(sub1, sub2)));
}
if (!ez->solve(ez->expression(ez->OpOr, cell_active))) {
log(" According to the SAT solver the cell %s is never active. Sharing is pointless, we simply remove it.\n", log_id(cell));
cells_to_remove.insert(cell);
break;
}
if (!ez->solve(ez->expression(ez->OpOr, other_cell_active))) {
log(" According to the SAT solver the cell %s is never active. Sharing is pointless, we simply remove it.\n", log_id(other_cell));
cells_to_remove.insert(other_cell);
shareable_cells.erase(other_cell);
continue;
}
ez->non_incremental();
all_ctrl_signals.sort_and_unify();
std::vector<int> sat_model = satgen.importSigSpec(all_ctrl_signals);
std::vector<bool> sat_model_values;
int sub1 = ez->expression(ez->OpOr, cell_active);
int sub2 = ez->expression(ez->OpOr, other_cell_active);
ez->assume(ez->AND(sub1, sub2));
log(" Size of SAT problem: %d cells, %d variables, %d clauses\n",
GetSize(sat_cells), ez->numCnfVariables(), ez->numCnfClauses());
if (ez->solve(sat_model, sat_model_values)) {
log(" According to the SAT solver this pair of cells can not be shared.\n");
log(" Model from SAT solver: %s = %d'", log_signal(all_ctrl_signals), GetSize(sat_model_values));
for (int i = GetSize(sat_model_values)-1; i >= 0; i--)
log("%c", sat_model_values[i] ? '1' : '0');
log("\n");
continue;
}
log(" According to the SAT solver this pair of cells can be shared.\n");
if (find_in_input_cone(cell, other_cell)) {
log(" Sharing not possible: %s is in input cone of %s.\n", log_id(other_cell), log_id(cell));
continue;
}
if (find_in_input_cone(other_cell, cell)) {
log(" Sharing not possible: %s is in input cone of %s.\n", log_id(cell), log_id(other_cell));
continue;
}
shareable_cells.erase(other_cell);
int cell_select_score = 0;
int other_cell_select_score = 0;
for (auto &p : filtered_cell_activation_patterns)
cell_select_score += p.first.size();
for (auto &p : filtered_other_cell_activation_patterns)
other_cell_select_score += p.first.size();
RTLIL::Cell *supercell;
pool<RTLIL::Cell*> supercell_aux;
if (cell_select_score <= other_cell_select_score) {
RTLIL::SigSpec act = make_cell_activation_logic(filtered_cell_activation_patterns, supercell_aux);
supercell = make_supercell(cell, other_cell, act, supercell_aux);
log(" Activation signal for %s: %s\n", log_id(cell), log_signal(act));
} else {
RTLIL::SigSpec act = make_cell_activation_logic(filtered_other_cell_activation_patterns, supercell_aux);
supercell = make_supercell(other_cell, cell, act, supercell_aux);
log(" Activation signal for %s: %s\n", log_id(other_cell), log_signal(act));
}
log(" New cell: %s (%s)\n", log_id(supercell), log_id(supercell->type));
cells_to_remove.insert(cell);
cells_to_remove.insert(other_cell);
for (auto c : supercell_aux)
if (is_part_of_scc(c))
goto do_rollback;
if (0) {
do_rollback:
log(" New topology contains loops! Rolling back..\n");
cells_to_remove.erase(cell);
cells_to_remove.erase(other_cell);
shareable_cells.insert(other_cell);
for (auto cc : supercell_aux)
remove_cell(cc);
continue;
}
pool<ssc_pair_t> supercell_activation_patterns;
supercell_activation_patterns.insert(filtered_cell_activation_patterns.begin(), filtered_cell_activation_patterns.end());
supercell_activation_patterns.insert(filtered_other_cell_activation_patterns.begin(), filtered_other_cell_activation_patterns.end());
optimize_activation_patterns(supercell_activation_patterns);
activation_patterns_cache[supercell] = supercell_activation_patterns;
shareable_cells.insert(supercell);
for (auto bit : topo_sigmap(all_ctrl_signals))
for (auto c : topo_bit_drivers[bit])
topo_cell_drivers[supercell].insert(c);
topo_cell_drivers[supercell].insert(topo_cell_drivers[cell].begin(), topo_cell_drivers[cell].end());
topo_cell_drivers[supercell].insert(topo_cell_drivers[other_cell].begin(), topo_cell_drivers[other_cell].end());
topo_cell_drivers[cell] = { supercell };
topo_cell_drivers[other_cell] = { supercell };
if (limit > 0)
limit--;
break;
}
}
if (!cells_to_remove.empty()) {
log("Removing %d cells in module %s:\n", GetSize(cells_to_remove), log_id(module));
for (auto c : cells_to_remove) {
log(" Removing cell %s (%s).\n", log_id(c), log_id(c->type));
remove_cell(c);
}
}
log_assert(recursion_state.empty());
#ifndef NDEBUG
bool after_scc = before_scc || module_has_scc();
log_assert(before_scc == after_scc);
#endif
}
};
struct SharePass : public Pass {
SharePass() : Pass("share", "perform sat-based resource sharing") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" share [options] [selection]\n");
log("\n");
log("This pass merges shareable resources into a single resource. A SAT solver\n");
log("is used to determine if two resources are share-able.\n");
log("\n");
log(" -force\n");
log(" Per default the selection of cells that is considered for sharing is\n");
log(" narrowed using a list of cell types. With this option all selected\n");
log(" cells are considered for resource sharing.\n");
log("\n");
log(" IMPORTANT NOTE: If the -all option is used then no cells with internal\n");
log(" state must be selected!\n");
log("\n");
log(" -aggressive\n");
log(" Per default some heuristics are used to reduce the number of cells\n");
log(" considered for resource sharing to only large resources. This options\n");
log(" turns this heuristics off, resulting in much more cells being considered\n");
log(" for resource sharing.\n");
log("\n");
log(" -fast\n");
log(" Only consider the simple part of the control logic in SAT solving, resulting\n");
log(" in much easier SAT problems at the cost of maybe missing some opportunities\n");
log(" for resource sharing.\n");
log("\n");
log(" -limit N\n");
log(" Only perform the first N merges, then stop. This is useful for debugging.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
ShareWorkerConfig config;
config.limit = -1;
config.opt_force = false;
config.opt_aggressive = false;
config.opt_fast = false;
config.generic_uni_ops.insert(ID($not));
// config.generic_uni_ops.insert(ID($pos));
config.generic_uni_ops.insert(ID($neg));
config.generic_cbin_ops.insert(ID($and));
config.generic_cbin_ops.insert(ID($or));
config.generic_cbin_ops.insert(ID($xor));
config.generic_cbin_ops.insert(ID($xnor));
config.generic_bin_ops.insert(ID($shl));
config.generic_bin_ops.insert(ID($shr));
config.generic_bin_ops.insert(ID($sshl));
config.generic_bin_ops.insert(ID($sshr));
config.generic_bin_ops.insert(ID($lt));
config.generic_bin_ops.insert(ID($le));
config.generic_bin_ops.insert(ID($eq));
config.generic_bin_ops.insert(ID($ne));
config.generic_bin_ops.insert(ID($eqx));
config.generic_bin_ops.insert(ID($nex));
config.generic_bin_ops.insert(ID($ge));
config.generic_bin_ops.insert(ID($gt));
config.generic_cbin_ops.insert(ID($add));
config.generic_cbin_ops.insert(ID($mul));
config.generic_bin_ops.insert(ID($sub));
config.generic_bin_ops.insert(ID($div));
config.generic_bin_ops.insert(ID($mod));
// config.generic_bin_ops.insert(ID($pow));
config.generic_uni_ops.insert(ID($logic_not));
config.generic_cbin_ops.insert(ID($logic_and));
config.generic_cbin_ops.insert(ID($logic_or));
config.generic_other_ops.insert(ID($alu));
config.generic_other_ops.insert(ID($macc));
log_header(design, "Executing SHARE pass (SAT-based resource sharing).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-force") {
config.opt_force = true;
continue;
}
if (args[argidx] == "-aggressive") {
config.opt_aggressive = true;
continue;
}
if (args[argidx] == "-fast") {
config.opt_fast = true;
continue;
}
if (args[argidx] == "-limit" && argidx+1 < args.size()) {
config.limit = atoi(args[++argidx].c_str());
continue;
}
break;
}
extra_args(args, argidx, design);
ShareWorker sw(config, design);
for (auto module : design->selected_modules())
sw(module);
}
} SharePass;
PRIVATE_NAMESPACE_END