yosys/kernel/satgen.h

1421 lines
52 KiB
C++

/* -*- c++ -*-
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef SATGEN_H
#define SATGEN_H
#include "kernel/rtlil.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "kernel/macc.h"
#include "libs/ezsat/ezminisat.h"
YOSYS_NAMESPACE_BEGIN
// defined in kernel/register.cc
extern struct SatSolver *yosys_satsolver_list;
extern struct SatSolver *yosys_satsolver;
struct SatSolver
{
string name;
SatSolver *next;
virtual ezSAT *create() = 0;
SatSolver(string name) : name(name) {
next = yosys_satsolver_list;
yosys_satsolver_list = this;
}
virtual ~SatSolver() {
auto p = &yosys_satsolver_list;
while (*p) {
if (*p == this)
*p = next;
else
p = &(*p)->next;
}
if (yosys_satsolver == this)
yosys_satsolver = yosys_satsolver_list;
}
};
struct ezSatPtr : public std::unique_ptr<ezSAT> {
ezSatPtr() : unique_ptr<ezSAT>(yosys_satsolver->create()) { }
};
struct SatGen
{
ezSAT *ez;
SigMap *sigmap;
std::string prefix;
SigPool initial_state;
std::map<std::string, RTLIL::SigSpec> asserts_a, asserts_en;
std::map<std::string, RTLIL::SigSpec> assumes_a, assumes_en;
std::map<std::string, std::map<RTLIL::SigBit, int>> imported_signals;
std::map<std::pair<std::string, int>, bool> initstates;
bool ignore_div_by_zero;
bool model_undef;
SatGen(ezSAT *ez, SigMap *sigmap, std::string prefix = std::string()) :
ez(ez), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false)
{
}
void setContext(SigMap *sigmap, std::string prefix = std::string())
{
this->sigmap = sigmap;
this->prefix = prefix;
}
std::vector<int> importSigSpecWorker(RTLIL::SigSpec sig, std::string &pf, bool undef_mode, bool dup_undef)
{
log_assert(!undef_mode || model_undef);
sigmap->apply(sig);
std::vector<int> vec;
vec.reserve(GetSize(sig));
for (auto &bit : sig)
if (bit.wire == NULL) {
if (model_undef && dup_undef && bit == RTLIL::State::Sx)
vec.push_back(ez->frozen_literal());
else
vec.push_back(bit == (undef_mode ? RTLIL::State::Sx : RTLIL::State::S1) ? ez->CONST_TRUE : ez->CONST_FALSE);
} else {
std::string name = pf + (bit.wire->width == 1 ? stringf("%s", log_id(bit.wire)) : stringf("%s [%d]", log_id(bit.wire->name), bit.offset));
vec.push_back(ez->frozen_literal(name));
imported_signals[pf][bit] = vec.back();
}
return vec;
}
std::vector<int> importSigSpec(RTLIL::SigSpec sig, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(sig, pf, false, false);
}
std::vector<int> importDefSigSpec(RTLIL::SigSpec sig, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(sig, pf, false, true);
}
std::vector<int> importUndefSigSpec(RTLIL::SigSpec sig, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = "undef:" + prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(sig, pf, true, false);
}
int importSigBit(RTLIL::SigBit bit, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(bit, pf, false, false).front();
}
int importDefSigBit(RTLIL::SigBit bit, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(bit, pf, false, true).front();
}
int importUndefSigBit(RTLIL::SigBit bit, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = "undef:" + prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(bit, pf, true, false).front();
}
bool importedSigBit(RTLIL::SigBit bit, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return imported_signals[pf].count(bit) != 0;
}
void getAsserts(RTLIL::SigSpec &sig_a, RTLIL::SigSpec &sig_en, int timestep = -1)
{
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
sig_a = asserts_a[pf];
sig_en = asserts_en[pf];
}
void getAssumes(RTLIL::SigSpec &sig_a, RTLIL::SigSpec &sig_en, int timestep = -1)
{
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
sig_a = assumes_a[pf];
sig_en = assumes_en[pf];
}
int importAsserts(int timestep = -1)
{
std::vector<int> check_bits, enable_bits;
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
if (model_undef) {
check_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_a[pf], timestep)), importDefSigSpec(asserts_a[pf], timestep));
enable_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_en[pf], timestep)), importDefSigSpec(asserts_en[pf], timestep));
} else {
check_bits = importDefSigSpec(asserts_a[pf], timestep);
enable_bits = importDefSigSpec(asserts_en[pf], timestep);
}
return ez->vec_reduce_and(ez->vec_or(check_bits, ez->vec_not(enable_bits)));
}
int importAssumes(int timestep = -1)
{
std::vector<int> check_bits, enable_bits;
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
if (model_undef) {
check_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(assumes_a[pf], timestep)), importDefSigSpec(assumes_a[pf], timestep));
enable_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(assumes_en[pf], timestep)), importDefSigSpec(assumes_en[pf], timestep));
} else {
check_bits = importDefSigSpec(assumes_a[pf], timestep);
enable_bits = importDefSigSpec(assumes_en[pf], timestep);
}
return ez->vec_reduce_and(ez->vec_or(check_bits, ez->vec_not(enable_bits)));
}
int signals_eq(RTLIL::SigSpec lhs, RTLIL::SigSpec rhs, int timestep_lhs = -1, int timestep_rhs = -1)
{
if (timestep_rhs < 0)
timestep_rhs = timestep_lhs;
log_assert(lhs.size() == rhs.size());
std::vector<int> vec_lhs = importSigSpec(lhs, timestep_lhs);
std::vector<int> vec_rhs = importSigSpec(rhs, timestep_rhs);
if (!model_undef)
return ez->vec_eq(vec_lhs, vec_rhs);
std::vector<int> undef_lhs = importUndefSigSpec(lhs, timestep_lhs);
std::vector<int> undef_rhs = importUndefSigSpec(rhs, timestep_rhs);
std::vector<int> eq_bits;
for (int i = 0; i < lhs.size(); i++)
eq_bits.push_back(ez->AND(ez->IFF(undef_lhs.at(i), undef_rhs.at(i)),
ez->IFF(ez->OR(vec_lhs.at(i), undef_lhs.at(i)), ez->OR(vec_rhs.at(i), undef_rhs.at(i)))));
return ez->expression(ezSAT::OpAnd, eq_bits);
}
void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, RTLIL::Cell *cell, size_t y_width = 0, bool forced_signed = false)
{
bool is_signed = forced_signed;
if (!forced_signed && cell->parameters.count(ID(A_SIGNED)) > 0 && cell->parameters.count(ID(B_SIGNED)) > 0)
is_signed = cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool();
while (vec_a.size() < vec_b.size() || vec_a.size() < y_width)
vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->CONST_FALSE);
while (vec_b.size() < vec_a.size() || vec_b.size() < y_width)
vec_b.push_back(is_signed && vec_b.size() > 0 ? vec_b.back() : ez->CONST_FALSE);
}
void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false)
{
extendSignalWidth(vec_a, vec_b, cell, vec_y.size(), forced_signed);
while (vec_y.size() < vec_a.size())
vec_y.push_back(ez->literal());
}
void extendSignalWidthUnary(std::vector<int> &vec_a, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false)
{
bool is_signed = forced_signed || (cell->parameters.count(ID(A_SIGNED)) > 0 && cell->parameters[ID(A_SIGNED)].as_bool());
while (vec_a.size() < vec_y.size())
vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->CONST_FALSE);
while (vec_y.size() < vec_a.size())
vec_y.push_back(ez->literal());
}
void undefGating(std::vector<int> &vec_y, std::vector<int> &vec_yy, std::vector<int> &vec_undef)
{
log_assert(model_undef);
log_assert(vec_y.size() == vec_yy.size());
if (vec_y.size() > vec_undef.size()) {
std::vector<int> trunc_y(vec_y.begin(), vec_y.begin() + vec_undef.size());
std::vector<int> trunc_yy(vec_yy.begin(), vec_yy.begin() + vec_undef.size());
ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(trunc_y, trunc_yy))));
} else {
log_assert(vec_y.size() == vec_undef.size());
ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(vec_y, vec_yy))));
}
}
void undefGating(int y, int yy, int undef)
{
ez->assume(ez->OR(undef, ez->IFF(y, yy)));
}
void setInitState(int timestep)
{
auto key = make_pair(prefix, timestep);
log_assert(initstates.count(key) == 0 || initstates.at(key) == true);
initstates[key] = true;
}
bool importCell(RTLIL::Cell *cell, int timestep = -1)
{
bool arith_undef_handled = false;
bool is_arith_compare = cell->type.in(ID($lt), ID($le), ID($ge), ID($gt));
if (model_undef && (cell->type.in(ID($add), ID($sub), ID($mul), ID($div), ID($mod)) || is_arith_compare))
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
if (is_arith_compare)
extendSignalWidth(undef_a, undef_b, cell, true);
else
extendSignalWidth(undef_a, undef_b, undef_y, cell, true);
int undef_any_a = ez->expression(ezSAT::OpOr, undef_a);
int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
int undef_y_bit = ez->OR(undef_any_a, undef_any_b);
if (cell->type.in(ID($div), ID($mod))) {
std::vector<int> b = importSigSpec(cell->getPort(ID::B), timestep);
undef_y_bit = ez->OR(undef_y_bit, ez->NOT(ez->expression(ezSAT::OpOr, b)));
}
if (is_arith_compare) {
for (size_t i = 1; i < undef_y.size(); i++)
ez->SET(ez->CONST_FALSE, undef_y.at(i));
ez->SET(undef_y_bit, undef_y.at(0));
} else {
std::vector<int> undef_y_bits(undef_y.size(), undef_y_bit);
ez->assume(ez->vec_eq(undef_y_bits, undef_y));
}
arith_undef_handled = true;
}
if (cell->type.in(ID($_AND_), ID($_NAND_), ID($_OR_), ID($_NOR_), ID($_XOR_), ID($_XNOR_), ID($_ANDNOT_), ID($_ORNOT_),
ID($and), ID($or), ID($xor), ID($xnor), ID($add), ID($sub)))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
extendSignalWidth(a, b, y, cell);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
if (cell->type.in(ID($and), ID($_AND_)))
ez->assume(ez->vec_eq(ez->vec_and(a, b), yy));
if (cell->type == ID($_NAND_))
ez->assume(ez->vec_eq(ez->vec_not(ez->vec_and(a, b)), yy));
if (cell->type.in(ID($or), ID($_OR_)))
ez->assume(ez->vec_eq(ez->vec_or(a, b), yy));
if (cell->type == ID($_NOR_))
ez->assume(ez->vec_eq(ez->vec_not(ez->vec_or(a, b)), yy));
if (cell->type.in(ID($xor), ID($_XOR_)))
ez->assume(ez->vec_eq(ez->vec_xor(a, b), yy));
if (cell->type.in(ID($xnor), ID($_XNOR_)))
ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(a, b)), yy));
if (cell->type == ID($_ANDNOT_))
ez->assume(ez->vec_eq(ez->vec_and(a, ez->vec_not(b)), yy));
if (cell->type == ID($_ORNOT_))
ez->assume(ez->vec_eq(ez->vec_or(a, ez->vec_not(b)), yy));
if (cell->type == ID($add))
ez->assume(ez->vec_eq(ez->vec_add(a, b), yy));
if (cell->type == ID($sub))
ez->assume(ez->vec_eq(ez->vec_sub(a, b), yy));
if (model_undef && !arith_undef_handled)
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
extendSignalWidth(undef_a, undef_b, undef_y, cell, false);
if (cell->type.in(ID($and), ID($_AND_), ID($_NAND_))) {
std::vector<int> a0 = ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a));
std::vector<int> b0 = ez->vec_and(ez->vec_not(b), ez->vec_not(undef_b));
std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a0, b0)));
ez->assume(ez->vec_eq(yX, undef_y));
}
else if (cell->type.in(ID($or), ID($_OR_), ID($_NOR_))) {
std::vector<int> a1 = ez->vec_and(a, ez->vec_not(undef_a));
std::vector<int> b1 = ez->vec_and(b, ez->vec_not(undef_b));
std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a1, b1)));
ez->assume(ez->vec_eq(yX, undef_y));
}
else if (cell->type.in(ID($xor), ID($xnor), ID($_XOR_), ID($_XNOR_))) {
std::vector<int> yX = ez->vec_or(undef_a, undef_b);
ez->assume(ez->vec_eq(yX, undef_y));
}
else if (cell->type == ID($_ANDNOT_)) {
std::vector<int> a0 = ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a));
std::vector<int> b1 = ez->vec_and(b, ez->vec_not(undef_b));
std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a0, b1)));
ez->assume(ez->vec_eq(yX, undef_y));
}
else if (cell->type == ID($_ORNOT_)) {
std::vector<int> a1 = ez->vec_and(a, ez->vec_not(undef_a));
std::vector<int> b0 = ez->vec_and(ez->vec_not(b), ez->vec_not(undef_b));
std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a1, b0)));
ez->assume(ez->vec_eq(yX, undef_y));
}
else
log_abort();
undefGating(y, yy, undef_y);
}
else if (model_undef)
{
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type.in(ID($_AOI3_), ID($_OAI3_), ID($_AOI4_), ID($_OAI4_)))
{
bool aoi_mode = cell->type.in(ID($_AOI3_), ID($_AOI4_));
bool three_mode = cell->type.in(ID($_AOI3_), ID($_OAI3_));
int a = importDefSigSpec(cell->getPort(ID::A), timestep).at(0);
int b = importDefSigSpec(cell->getPort(ID::B), timestep).at(0);
int c = importDefSigSpec(cell->getPort(ID(C)), timestep).at(0);
int d = three_mode ? (aoi_mode ? ez->CONST_TRUE : ez->CONST_FALSE) : importDefSigSpec(cell->getPort(ID(D)), timestep).at(0);
int y = importDefSigSpec(cell->getPort(ID::Y), timestep).at(0);
int yy = model_undef ? ez->literal() : y;
if (cell->type.in(ID($_AOI3_), ID($_AOI4_)))
ez->assume(ez->IFF(ez->NOT(ez->OR(ez->AND(a, b), ez->AND(c, d))), yy));
else
ez->assume(ez->IFF(ez->NOT(ez->AND(ez->OR(a, b), ez->OR(c, d))), yy));
if (model_undef)
{
int undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep).at(0);
int undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep).at(0);
int undef_c = importUndefSigSpec(cell->getPort(ID(C)), timestep).at(0);
int undef_d = three_mode ? ez->CONST_FALSE : importUndefSigSpec(cell->getPort(ID(D)), timestep).at(0);
int undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep).at(0);
if (aoi_mode)
{
int a0 = ez->AND(ez->NOT(a), ez->NOT(undef_a));
int b0 = ez->AND(ez->NOT(b), ez->NOT(undef_b));
int c0 = ez->AND(ez->NOT(c), ez->NOT(undef_c));
int d0 = ez->AND(ez->NOT(d), ez->NOT(undef_d));
int ab = ez->AND(a, b), cd = ez->AND(c, d);
int undef_ab = ez->AND(ez->OR(undef_a, undef_b), ez->NOT(ez->OR(a0, b0)));
int undef_cd = ez->AND(ez->OR(undef_c, undef_d), ez->NOT(ez->OR(c0, d0)));
int ab1 = ez->AND(ab, ez->NOT(undef_ab));
int cd1 = ez->AND(cd, ez->NOT(undef_cd));
int yX = ez->AND(ez->OR(undef_ab, undef_cd), ez->NOT(ez->OR(ab1, cd1)));
ez->assume(ez->IFF(yX, undef_y));
}
else
{
int a1 = ez->AND(a, ez->NOT(undef_a));
int b1 = ez->AND(b, ez->NOT(undef_b));
int c1 = ez->AND(c, ez->NOT(undef_c));
int d1 = ez->AND(d, ez->NOT(undef_d));
int ab = ez->OR(a, b), cd = ez->OR(c, d);
int undef_ab = ez->AND(ez->OR(undef_a, undef_b), ez->NOT(ez->OR(a1, b1)));
int undef_cd = ez->AND(ez->OR(undef_c, undef_d), ez->NOT(ez->OR(c1, d1)));
int ab0 = ez->AND(ez->NOT(ab), ez->NOT(undef_ab));
int cd0 = ez->AND(ez->NOT(cd), ez->NOT(undef_cd));
int yX = ez->AND(ez->OR(undef_ab, undef_cd), ez->NOT(ez->OR(ab0, cd0)));
ez->assume(ez->IFF(yX, undef_y));
}
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type.in(ID($_NOT_), ID($not)))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
extendSignalWidthUnary(a, y, cell);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
ez->assume(ez->vec_eq(ez->vec_not(a), yy));
if (model_undef) {
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
extendSignalWidthUnary(undef_a, undef_y, cell, false);
ez->assume(ez->vec_eq(undef_a, undef_y));
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type.in(ID($_MUX_), ID($mux), ID($_NMUX_)))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> s = importDefSigSpec(cell->getPort(ID(S)), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
if (cell->type == ID($_NMUX_))
ez->assume(ez->vec_eq(ez->vec_not(ez->vec_ite(s.at(0), b, a)), yy));
else
ez->assume(ez->vec_eq(ez->vec_ite(s.at(0), b, a), yy));
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> undef_s = importUndefSigSpec(cell->getPort(ID(S)), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
std::vector<int> unequal_ab = ez->vec_not(ez->vec_iff(a, b));
std::vector<int> undef_ab = ez->vec_or(unequal_ab, ez->vec_or(undef_a, undef_b));
std::vector<int> yX = ez->vec_ite(undef_s.at(0), undef_ab, ez->vec_ite(s.at(0), undef_b, undef_a));
ez->assume(ez->vec_eq(yX, undef_y));
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == ID($pmux))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> s = importDefSigSpec(cell->getPort(ID(S)), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
std::vector<int> tmp = a;
for (size_t i = 0; i < s.size(); i++) {
std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size());
tmp = ez->vec_ite(s.at(i), part_of_b, tmp);
}
ez->assume(ez->vec_eq(tmp, yy));
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> undef_s = importUndefSigSpec(cell->getPort(ID(S)), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
int maybe_a = ez->CONST_TRUE;
std::vector<int> bits_set = std::vector<int>(undef_y.size(), ez->CONST_FALSE);
std::vector<int> bits_clr = std::vector<int>(undef_y.size(), ez->CONST_FALSE);
for (size_t i = 0; i < s.size(); i++)
{
std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size());
std::vector<int> part_of_undef_b(undef_b.begin()+i*a.size(), undef_b.begin()+(i+1)*a.size());
int maybe_s = ez->OR(s.at(i), undef_s.at(i));
int sure_s = ez->AND(s.at(i), ez->NOT(undef_s.at(i)));
maybe_a = ez->AND(maybe_a, ez->NOT(sure_s));
bits_set = ez->vec_ite(maybe_s, ez->vec_or(bits_set, ez->vec_or(part_of_b, part_of_undef_b)), bits_set);
bits_clr = ez->vec_ite(maybe_s, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(part_of_b), part_of_undef_b)), bits_clr);
}
bits_set = ez->vec_ite(maybe_a, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(a, undef_a))), bits_set);
bits_clr = ez->vec_ite(maybe_a, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(a), undef_a))), bits_clr);
ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(bits_set, bits_clr)), undef_y));
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type.in(ID($pos), ID($neg)))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
extendSignalWidthUnary(a, y, cell);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
if (cell->type == ID($pos)) {
ez->assume(ez->vec_eq(a, yy));
} else {
std::vector<int> zero(a.size(), ez->CONST_FALSE);
ez->assume(ez->vec_eq(ez->vec_sub(zero, a), yy));
}
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
extendSignalWidthUnary(undef_a, undef_y, cell);
if (cell->type == ID($pos)) {
ez->assume(ez->vec_eq(undef_a, undef_y));
} else {
int undef_any_a = ez->expression(ezSAT::OpOr, undef_a);
std::vector<int> undef_y_bits(undef_y.size(), undef_any_a);
ez->assume(ez->vec_eq(undef_y_bits, undef_y));
}
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type.in(ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool), ID($logic_not)))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
if (cell->type == ID($reduce_and))
ez->SET(ez->expression(ez->OpAnd, a), yy.at(0));
if (cell->type.in(ID($reduce_or), ID($reduce_bool)))
ez->SET(ez->expression(ez->OpOr, a), yy.at(0));
if (cell->type == ID($reduce_xor))
ez->SET(ez->expression(ez->OpXor, a), yy.at(0));
if (cell->type == ID($reduce_xnor))
ez->SET(ez->NOT(ez->expression(ez->OpXor, a)), yy.at(0));
if (cell->type == ID($logic_not))
ez->SET(ez->NOT(ez->expression(ez->OpOr, a)), yy.at(0));
for (size_t i = 1; i < y.size(); i++)
ez->SET(ez->CONST_FALSE, yy.at(i));
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
int aX = ez->expression(ezSAT::OpOr, undef_a);
if (cell->type == ID($reduce_and)) {
int a0 = ez->expression(ezSAT::OpOr, ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a)));
ez->assume(ez->IFF(ez->AND(ez->NOT(a0), aX), undef_y.at(0)));
}
else if (cell->type.in(ID($reduce_or), ID($reduce_bool), ID($logic_not))) {
int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(a, ez->vec_not(undef_a)));
ez->assume(ez->IFF(ez->AND(ez->NOT(a1), aX), undef_y.at(0)));
}
else if (cell->type.in(ID($reduce_xor), ID($reduce_xnor))) {
ez->assume(ez->IFF(aX, undef_y.at(0)));
} else
log_abort();
for (size_t i = 1; i < undef_y.size(); i++)
ez->SET(ez->CONST_FALSE, undef_y.at(i));
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type.in(ID($logic_and), ID($logic_or)))
{
std::vector<int> vec_a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> vec_b = importDefSigSpec(cell->getPort(ID::B), timestep);
int a = ez->expression(ez->OpOr, vec_a);
int b = ez->expression(ez->OpOr, vec_b);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
if (cell->type == ID($logic_and))
ez->SET(ez->expression(ez->OpAnd, a, b), yy.at(0));
else
ez->SET(ez->expression(ez->OpOr, a, b), yy.at(0));
for (size_t i = 1; i < y.size(); i++)
ez->SET(ez->CONST_FALSE, yy.at(i));
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
int a0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_a), ez->expression(ezSAT::OpOr, undef_a)));
int b0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_b), ez->expression(ezSAT::OpOr, undef_b)));
int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_a, ez->vec_not(undef_a)));
int b1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_b, ez->vec_not(undef_b)));
int aX = ez->expression(ezSAT::OpOr, undef_a);
int bX = ez->expression(ezSAT::OpOr, undef_b);
if (cell->type == ID($logic_and))
ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a1, b1)), ez->NOT(a0), ez->NOT(b0)), undef_y.at(0));
else if (cell->type == ID($logic_or))
ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a0, b0)), ez->NOT(a1), ez->NOT(b1)), undef_y.at(0));
else
log_abort();
for (size_t i = 1; i < undef_y.size(); i++)
ez->SET(ez->CONST_FALSE, undef_y.at(i));
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type.in(ID($lt), ID($le), ID($eq), ID($ne), ID($eqx), ID($nex), ID($ge), ID($gt)))
{
bool is_signed = cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool();
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
extendSignalWidth(a, b, cell);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
if (model_undef && cell->type.in(ID($eqx), ID($nex))) {
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep);
extendSignalWidth(undef_a, undef_b, cell, true);
a = ez->vec_or(a, undef_a);
b = ez->vec_or(b, undef_b);
}
if (cell->type == ID($lt))
ez->SET(is_signed ? ez->vec_lt_signed(a, b) : ez->vec_lt_unsigned(a, b), yy.at(0));
if (cell->type == ID($le))
ez->SET(is_signed ? ez->vec_le_signed(a, b) : ez->vec_le_unsigned(a, b), yy.at(0));
if (cell->type.in(ID($eq), ID($eqx)))
ez->SET(ez->vec_eq(a, b), yy.at(0));
if (cell->type.in(ID($ne), ID($nex)))
ez->SET(ez->vec_ne(a, b), yy.at(0));
if (cell->type == ID($ge))
ez->SET(is_signed ? ez->vec_ge_signed(a, b) : ez->vec_ge_unsigned(a, b), yy.at(0));
if (cell->type == ID($gt))
ez->SET(is_signed ? ez->vec_gt_signed(a, b) : ez->vec_gt_unsigned(a, b), yy.at(0));
for (size_t i = 1; i < y.size(); i++)
ez->SET(ez->CONST_FALSE, yy.at(i));
if (model_undef && cell->type.in(ID($eqx), ID($nex)))
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
extendSignalWidth(undef_a, undef_b, cell, true);
if (cell->type == ID($eqx))
yy.at(0) = ez->AND(yy.at(0), ez->vec_eq(undef_a, undef_b));
else
yy.at(0) = ez->OR(yy.at(0), ez->vec_ne(undef_a, undef_b));
for (size_t i = 0; i < y.size(); i++)
ez->SET(ez->CONST_FALSE, undef_y.at(i));
ez->assume(ez->vec_eq(y, yy));
}
else if (model_undef && cell->type.in(ID($eq), ID($ne)))
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
extendSignalWidth(undef_a, undef_b, cell, true);
int undef_any_a = ez->expression(ezSAT::OpOr, undef_a);
int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
int undef_any = ez->OR(undef_any_a, undef_any_b);
std::vector<int> masked_a_bits = ez->vec_or(a, ez->vec_or(undef_a, undef_b));
std::vector<int> masked_b_bits = ez->vec_or(b, ez->vec_or(undef_a, undef_b));
int masked_ne = ez->vec_ne(masked_a_bits, masked_b_bits);
int undef_y_bit = ez->AND(undef_any, ez->NOT(masked_ne));
for (size_t i = 1; i < undef_y.size(); i++)
ez->SET(ez->CONST_FALSE, undef_y.at(i));
ez->SET(undef_y_bit, undef_y.at(0));
undefGating(y, yy, undef_y);
}
else
{
if (model_undef) {
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
undefGating(y, yy, undef_y);
}
log_assert(!model_undef || arith_undef_handled);
}
return true;
}
if (cell->type.in(ID($shl), ID($shr), ID($sshl), ID($sshr), ID($shift), ID($shiftx)))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
int extend_bit = ez->CONST_FALSE;
if (!cell->type.in(ID($shift), ID($shiftx)) && cell->parameters[ID(A_SIGNED)].as_bool())
extend_bit = a.back();
while (y.size() < a.size())
y.push_back(ez->literal());
while (y.size() > a.size())
a.push_back(extend_bit);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
std::vector<int> shifted_a;
if (cell->type.in( ID($shl), ID($sshl)))
shifted_a = ez->vec_shift_left(a, b, false, ez->CONST_FALSE, ez->CONST_FALSE);
if (cell->type == ID($shr))
shifted_a = ez->vec_shift_right(a, b, false, ez->CONST_FALSE, ez->CONST_FALSE);
if (cell->type == ID($sshr))
shifted_a = ez->vec_shift_right(a, b, false, cell->parameters[ID(A_SIGNED)].as_bool() ? a.back() : ez->CONST_FALSE, ez->CONST_FALSE);
if (cell->type.in(ID($shift), ID($shiftx)))
shifted_a = ez->vec_shift_right(a, b, cell->parameters[ID(B_SIGNED)].as_bool(), ez->CONST_FALSE, ez->CONST_FALSE);
ez->assume(ez->vec_eq(shifted_a, yy));
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
std::vector<int> undef_a_shifted;
extend_bit = cell->type == ID($shiftx) ? ez->CONST_TRUE : ez->CONST_FALSE;
if (!cell->type.in(ID($shift), ID($shiftx)) && cell->parameters[ID(A_SIGNED)].as_bool())
extend_bit = undef_a.back();
while (undef_y.size() < undef_a.size())
undef_y.push_back(ez->literal());
while (undef_y.size() > undef_a.size())
undef_a.push_back(extend_bit);
if (cell->type.in(ID($shl), ID($sshl)))
undef_a_shifted = ez->vec_shift_left(undef_a, b, false, ez->CONST_FALSE, ez->CONST_FALSE);
if (cell->type == ID($shr))
undef_a_shifted = ez->vec_shift_right(undef_a, b, false, ez->CONST_FALSE, ez->CONST_FALSE);
if (cell->type == ID($sshr))
undef_a_shifted = ez->vec_shift_right(undef_a, b, false, cell->parameters[ID(A_SIGNED)].as_bool() ? undef_a.back() : ez->CONST_FALSE, ez->CONST_FALSE);
if (cell->type == ID($shift))
undef_a_shifted = ez->vec_shift_right(undef_a, b, cell->parameters[ID(B_SIGNED)].as_bool(), ez->CONST_FALSE, ez->CONST_FALSE);
if (cell->type == ID($shiftx))
undef_a_shifted = ez->vec_shift_right(undef_a, b, cell->parameters[ID(B_SIGNED)].as_bool(), ez->CONST_TRUE, ez->CONST_TRUE);
int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
std::vector<int> undef_all_y_bits(undef_y.size(), undef_any_b);
ez->assume(ez->vec_eq(ez->vec_or(undef_a_shifted, undef_all_y_bits), undef_y));
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == ID($mul))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
extendSignalWidth(a, b, y, cell);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
std::vector<int> tmp(a.size(), ez->CONST_FALSE);
for (int i = 0; i < int(a.size()); i++)
{
std::vector<int> shifted_a(a.size(), ez->CONST_FALSE);
for (int j = i; j < int(a.size()); j++)
shifted_a.at(j) = a.at(j-i);
tmp = ez->vec_ite(b.at(i), ez->vec_add(tmp, shifted_a), tmp);
}
ez->assume(ez->vec_eq(tmp, yy));
if (model_undef) {
log_assert(arith_undef_handled);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == ID($macc))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
Macc macc;
macc.from_cell(cell);
std::vector<int> tmp(GetSize(y), ez->CONST_FALSE);
for (auto &port : macc.ports)
{
std::vector<int> in_a = importDefSigSpec(port.in_a, timestep);
std::vector<int> in_b = importDefSigSpec(port.in_b, timestep);
while (GetSize(in_a) < GetSize(y))
in_a.push_back(port.is_signed && !in_a.empty() ? in_a.back() : ez->CONST_FALSE);
in_a.resize(GetSize(y));
if (GetSize(in_b))
{
while (GetSize(in_b) < GetSize(y))
in_b.push_back(port.is_signed && !in_b.empty() ? in_b.back() : ez->CONST_FALSE);
in_b.resize(GetSize(y));
for (int i = 0; i < GetSize(in_b); i++) {
std::vector<int> shifted_a(in_a.size(), ez->CONST_FALSE);
for (int j = i; j < int(in_a.size()); j++)
shifted_a.at(j) = in_a.at(j-i);
if (port.do_subtract)
tmp = ez->vec_ite(in_b.at(i), ez->vec_sub(tmp, shifted_a), tmp);
else
tmp = ez->vec_ite(in_b.at(i), ez->vec_add(tmp, shifted_a), tmp);
}
}
else
{
if (port.do_subtract)
tmp = ez->vec_sub(tmp, in_a);
else
tmp = ez->vec_add(tmp, in_a);
}
}
for (int i = 0; i < GetSize(b); i++) {
std::vector<int> val(GetSize(y), ez->CONST_FALSE);
val.at(0) = b.at(i);
tmp = ez->vec_add(tmp, val);
}
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep);
int undef_any_a = ez->expression(ezSAT::OpOr, undef_a);
int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
ez->assume(ez->vec_eq(undef_y, std::vector<int>(GetSize(y), ez->OR(undef_any_a, undef_any_b))));
undefGating(y, tmp, undef_y);
}
else
ez->assume(ez->vec_eq(y, tmp));
return true;
}
if (cell->type.in(ID($div), ID($mod)))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
extendSignalWidth(a, b, y, cell);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
std::vector<int> a_u, b_u;
if (cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool()) {
a_u = ez->vec_ite(a.back(), ez->vec_neg(a), a);
b_u = ez->vec_ite(b.back(), ez->vec_neg(b), b);
} else {
a_u = a;
b_u = b;
}
std::vector<int> chain_buf = a_u;
std::vector<int> y_u(a_u.size(), ez->CONST_FALSE);
for (int i = int(a.size())-1; i >= 0; i--)
{
chain_buf.insert(chain_buf.end(), chain_buf.size(), ez->CONST_FALSE);
std::vector<int> b_shl(i, ez->CONST_FALSE);
b_shl.insert(b_shl.end(), b_u.begin(), b_u.end());
b_shl.insert(b_shl.end(), chain_buf.size()-b_shl.size(), ez->CONST_FALSE);
y_u.at(i) = ez->vec_ge_unsigned(chain_buf, b_shl);
chain_buf = ez->vec_ite(y_u.at(i), ez->vec_sub(chain_buf, b_shl), chain_buf);
chain_buf.erase(chain_buf.begin() + a_u.size(), chain_buf.end());
}
std::vector<int> y_tmp = ignore_div_by_zero ? yy : ez->vec_var(y.size());
if (cell->type == ID($div)) {
if (cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool())
ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(ez->XOR(a.back(), b.back()), ez->vec_neg(y_u), y_u)));
else
ez->assume(ez->vec_eq(y_tmp, y_u));
} else {
if (cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool())
ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(a.back(), ez->vec_neg(chain_buf), chain_buf)));
else
ez->assume(ez->vec_eq(y_tmp, chain_buf));
}
if (ignore_div_by_zero) {
ez->assume(ez->expression(ezSAT::OpOr, b));
} else {
std::vector<int> div_zero_result;
if (cell->type == ID($div)) {
if (cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool()) {
std::vector<int> all_ones(y.size(), ez->CONST_TRUE);
std::vector<int> only_first_one(y.size(), ez->CONST_FALSE);
only_first_one.at(0) = ez->CONST_TRUE;
div_zero_result = ez->vec_ite(a.back(), only_first_one, all_ones);
} else {
div_zero_result.insert(div_zero_result.end(), cell->getPort(ID::A).size(), ez->CONST_TRUE);
div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->CONST_FALSE);
}
} else {
int copy_a_bits = min(cell->getPort(ID::A).size(), cell->getPort(ID::B).size());
div_zero_result.insert(div_zero_result.end(), a.begin(), a.begin() + copy_a_bits);
if (cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool())
div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), div_zero_result.back());
else
div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->CONST_FALSE);
}
ez->assume(ez->vec_eq(yy, ez->vec_ite(ez->expression(ezSAT::OpOr, b), y_tmp, div_zero_result)));
}
if (model_undef) {
log_assert(arith_undef_handled);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == ID($lut))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
std::vector<int> lut;
for (auto bit : cell->getParam(ID(LUT)).bits)
lut.push_back(bit == State::S1 ? ez->CONST_TRUE : ez->CONST_FALSE);
while (GetSize(lut) < (1 << GetSize(a)))
lut.push_back(ez->CONST_FALSE);
lut.resize(1 << GetSize(a));
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> t(lut), u(GetSize(t), ez->CONST_FALSE);
for (int i = GetSize(a)-1; i >= 0; i--)
{
std::vector<int> t0(t.begin(), t.begin() + GetSize(t)/2);
std::vector<int> t1(t.begin() + GetSize(t)/2, t.end());
std::vector<int> u0(u.begin(), u.begin() + GetSize(u)/2);
std::vector<int> u1(u.begin() + GetSize(u)/2, u.end());
t = ez->vec_ite(a[i], t1, t0);
u = ez->vec_ite(undef_a[i], ez->vec_or(ez->vec_xor(t0, t1), ez->vec_or(u0, u1)), ez->vec_ite(a[i], u1, u0));
}
log_assert(GetSize(t) == 1);
log_assert(GetSize(u) == 1);
undefGating(y, t, u);
ez->assume(ez->vec_eq(importUndefSigSpec(cell->getPort(ID::Y), timestep), u));
}
else
{
std::vector<int> t = lut;
for (int i = GetSize(a)-1; i >= 0; i--)
{
std::vector<int> t0(t.begin(), t.begin() + GetSize(t)/2);
std::vector<int> t1(t.begin() + GetSize(t)/2, t.end());
t = ez->vec_ite(a[i], t1, t0);
}
log_assert(GetSize(t) == 1);
ez->assume(ez->vec_eq(y, t));
}
return true;
}
if (cell->type == ID($sop))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
int y = importDefSigSpec(cell->getPort(ID::Y), timestep).at(0);
int width = cell->getParam(ID(WIDTH)).as_int();
int depth = cell->getParam(ID(DEPTH)).as_int();
vector<State> table_raw = cell->getParam(ID(TABLE)).bits;
while (GetSize(table_raw) < 2*width*depth)
table_raw.push_back(State::S0);
vector<vector<int>> table(depth);
for (int i = 0; i < depth; i++)
for (int j = 0; j < width; j++)
{
bool pat0 = (table_raw[2*width*i + 2*j + 0] == State::S1);
bool pat1 = (table_raw[2*width*i + 2*j + 1] == State::S1);
if (pat0 && !pat1)
table.at(i).push_back(0);
else if (!pat0 && pat1)
table.at(i).push_back(1);
else
table.at(i).push_back(-1);
}
if (model_undef)
{
std::vector<int> products, undef_products;
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
int undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep).at(0);
for (int i = 0; i < depth; i++)
{
std::vector<int> cmp_a, cmp_ua, cmp_b;
for (int j = 0; j < width; j++)
if (table.at(i).at(j) >= 0) {
cmp_a.push_back(a.at(j));
cmp_ua.push_back(undef_a.at(j));
cmp_b.push_back(table.at(i).at(j) ? ez->CONST_TRUE : ez->CONST_FALSE);
}
std::vector<int> masked_a = ez->vec_or(cmp_a, cmp_ua);
std::vector<int> masked_b = ez->vec_or(cmp_b, cmp_ua);
int masked_eq = ez->vec_eq(masked_a, masked_b);
int any_undef = ez->expression(ezSAT::OpOr, cmp_ua);
undef_products.push_back(ez->AND(any_undef, masked_eq));
products.push_back(ez->AND(ez->NOT(any_undef), masked_eq));
}
int yy = ez->expression(ezSAT::OpOr, products);
ez->SET(undef_y, ez->AND(ez->NOT(yy), ez->expression(ezSAT::OpOr, undef_products)));
undefGating(y, yy, undef_y);
}
else
{
std::vector<int> products;
for (int i = 0; i < depth; i++)
{
std::vector<int> cmp_a, cmp_b;
for (int j = 0; j < width; j++)
if (table.at(i).at(j) >= 0) {
cmp_a.push_back(a.at(j));
cmp_b.push_back(table.at(i).at(j) ? ez->CONST_TRUE : ez->CONST_FALSE);
}
products.push_back(ez->vec_eq(cmp_a, cmp_b));
}
ez->SET(y, ez->expression(ezSAT::OpOr, products));
}
return true;
}
if (cell->type == ID($fa))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> c = importDefSigSpec(cell->getPort(ID(C)), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
std::vector<int> x = importDefSigSpec(cell->getPort(ID(X)), timestep);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
std::vector<int> xx = model_undef ? ez->vec_var(x.size()) : x;
std::vector<int> t1 = ez->vec_xor(a, b);
ez->assume(ez->vec_eq(yy, ez->vec_xor(t1, c)));
std::vector<int> t2 = ez->vec_and(a, b);
std::vector<int> t3 = ez->vec_and(c, t1);
ez->assume(ez->vec_eq(xx, ez->vec_or(t2, t3)));
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> undef_c = importUndefSigSpec(cell->getPort(ID(C)), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
std::vector<int> undef_x = importUndefSigSpec(cell->getPort(ID(X)), timestep);
ez->assume(ez->vec_eq(undef_y, ez->vec_or(ez->vec_or(undef_a, undef_b), undef_c)));
ez->assume(ez->vec_eq(undef_x, undef_y));
undefGating(y, yy, undef_y);
undefGating(x, xx, undef_x);
}
return true;
}
if (cell->type == ID($lcu))
{
std::vector<int> p = importDefSigSpec(cell->getPort(ID(P)), timestep);
std::vector<int> g = importDefSigSpec(cell->getPort(ID(G)), timestep);
std::vector<int> ci = importDefSigSpec(cell->getPort(ID(CI)), timestep);
std::vector<int> co = importDefSigSpec(cell->getPort(ID(CO)), timestep);
std::vector<int> yy = model_undef ? ez->vec_var(co.size()) : co;
for (int i = 0; i < GetSize(co); i++)
ez->SET(yy[i], ez->OR(g[i], ez->AND(p[i], i ? yy[i-1] : ci[0])));
if (model_undef)
{
std::vector<int> undef_p = importUndefSigSpec(cell->getPort(ID(P)), timestep);
std::vector<int> undef_g = importUndefSigSpec(cell->getPort(ID(G)), timestep);
std::vector<int> undef_ci = importUndefSigSpec(cell->getPort(ID(CI)), timestep);
std::vector<int> undef_co = importUndefSigSpec(cell->getPort(ID(CO)), timestep);
int undef_any_p = ez->expression(ezSAT::OpOr, undef_p);
int undef_any_g = ez->expression(ezSAT::OpOr, undef_g);
int undef_any_ci = ez->expression(ezSAT::OpOr, undef_ci);
int undef_co_bit = ez->OR(undef_any_p, undef_any_g, undef_any_ci);
std::vector<int> undef_co_bits(undef_co.size(), undef_co_bit);
ez->assume(ez->vec_eq(undef_co_bits, undef_co));
undefGating(co, yy, undef_co);
}
return true;
}
if (cell->type == ID($alu))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
std::vector<int> x = importDefSigSpec(cell->getPort(ID(X)), timestep);
std::vector<int> ci = importDefSigSpec(cell->getPort(ID(CI)), timestep);
std::vector<int> bi = importDefSigSpec(cell->getPort(ID(BI)), timestep);
std::vector<int> co = importDefSigSpec(cell->getPort(ID(CO)), timestep);
extendSignalWidth(a, b, y, cell);
extendSignalWidth(a, b, x, cell);
extendSignalWidth(a, b, co, cell);
std::vector<int> def_y = model_undef ? ez->vec_var(y.size()) : y;
std::vector<int> def_x = model_undef ? ez->vec_var(x.size()) : x;
std::vector<int> def_co = model_undef ? ez->vec_var(co.size()) : co;
log_assert(GetSize(y) == GetSize(x));
log_assert(GetSize(y) == GetSize(co));
log_assert(GetSize(ci) == 1);
log_assert(GetSize(bi) == 1);
for (int i = 0; i < GetSize(y); i++)
{
int s1 = a.at(i), s2 = ez->XOR(b.at(i), bi.at(0)), s3 = i ? co.at(i-1) : ci.at(0);
ez->SET(def_x.at(i), ez->XOR(s1, s2));
ez->SET(def_y.at(i), ez->XOR(def_x.at(i), s3));
ez->SET(def_co.at(i), ez->OR(ez->AND(s1, s2), ez->AND(s1, s3), ez->AND(s2, s3)));
}
if (model_undef)
{
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep);
std::vector<int> undef_ci = importUndefSigSpec(cell->getPort(ID(CI)), timestep);
std::vector<int> undef_bi = importUndefSigSpec(cell->getPort(ID(BI)), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
std::vector<int> undef_x = importUndefSigSpec(cell->getPort(ID(X)), timestep);
std::vector<int> undef_co = importUndefSigSpec(cell->getPort(ID(CO)), timestep);
extendSignalWidth(undef_a, undef_b, undef_y, cell);
extendSignalWidth(undef_a, undef_b, undef_x, cell);
extendSignalWidth(undef_a, undef_b, undef_co, cell);
std::vector<int> all_inputs_undef;
all_inputs_undef.insert(all_inputs_undef.end(), undef_a.begin(), undef_a.end());
all_inputs_undef.insert(all_inputs_undef.end(), undef_b.begin(), undef_b.end());
all_inputs_undef.insert(all_inputs_undef.end(), undef_ci.begin(), undef_ci.end());
all_inputs_undef.insert(all_inputs_undef.end(), undef_bi.begin(), undef_bi.end());
int undef_any = ez->expression(ezSAT::OpOr, all_inputs_undef);
for (int i = 0; i < GetSize(undef_y); i++) {
ez->SET(undef_y.at(i), undef_any);
ez->SET(undef_x.at(i), ez->OR(undef_a.at(i), undef_b.at(i), undef_bi.at(0)));
ez->SET(undef_co.at(i), undef_any);
}
undefGating(y, def_y, undef_y);
undefGating(x, def_x, undef_x);
undefGating(co, def_co, undef_co);
}
return true;
}
if (cell->type == ID($slice))
{
RTLIL::SigSpec a = cell->getPort(ID::A);
RTLIL::SigSpec y = cell->getPort(ID::Y);
ez->assume(signals_eq(a.extract(cell->parameters.at(ID(OFFSET)).as_int(), y.size()), y, timestep));
return true;
}
if (cell->type == ID($concat))
{
RTLIL::SigSpec a = cell->getPort(ID::A);
RTLIL::SigSpec b = cell->getPort(ID::B);
RTLIL::SigSpec y = cell->getPort(ID::Y);
RTLIL::SigSpec ab = a;
ab.append(b);
ez->assume(signals_eq(ab, y, timestep));
return true;
}
if (timestep > 0 && cell->type.in(ID($ff), ID($dff), ID($_FF_), ID($_DFF_N_), ID($_DFF_P_)))
{
if (timestep == 1)
{
initial_state.add((*sigmap)(cell->getPort(ID(Q))));
}
else
{
std::vector<int> d = importDefSigSpec(cell->getPort(ID(D)), timestep-1);
std::vector<int> q = importDefSigSpec(cell->getPort(ID(Q)), timestep);
std::vector<int> qq = model_undef ? ez->vec_var(q.size()) : q;
ez->assume(ez->vec_eq(d, qq));
if (model_undef)
{
std::vector<int> undef_d = importUndefSigSpec(cell->getPort(ID(D)), timestep-1);
std::vector<int> undef_q = importUndefSigSpec(cell->getPort(ID(Q)), timestep);
ez->assume(ez->vec_eq(undef_d, undef_q));
undefGating(q, qq, undef_q);
}
}
return true;
}
if (cell->type == ID($anyconst))
{
if (timestep < 2)
return true;
std::vector<int> d = importDefSigSpec(cell->getPort(ID::Y), timestep-1);
std::vector<int> q = importDefSigSpec(cell->getPort(ID::Y), timestep);
std::vector<int> qq = model_undef ? ez->vec_var(q.size()) : q;
ez->assume(ez->vec_eq(d, qq));
if (model_undef)
{
std::vector<int> undef_d = importUndefSigSpec(cell->getPort(ID::Y), timestep-1);
std::vector<int> undef_q = importUndefSigSpec(cell->getPort(ID::Y), timestep);
ez->assume(ez->vec_eq(undef_d, undef_q));
undefGating(q, qq, undef_q);
}
return true;
}
if (cell->type == ID($anyseq))
{
return true;
}
if (cell->type.in(ID($_BUF_), ID($equiv)))
{
std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
extendSignalWidthUnary(a, y, cell);
std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
ez->assume(ez->vec_eq(a, yy));
if (model_undef) {
std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
extendSignalWidthUnary(undef_a, undef_y, cell, false);
ez->assume(ez->vec_eq(undef_a, undef_y));
undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == ID($initstate))
{
auto key = make_pair(prefix, timestep);
if (initstates.count(key) == 0)
initstates[key] = false;
std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep);
log_assert(GetSize(y) == 1);
ez->SET(y[0], initstates[key] ? ez->CONST_TRUE : ez->CONST_FALSE);
if (model_undef) {
std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep);
log_assert(GetSize(undef_y) == 1);
ez->SET(undef_y[0], ez->CONST_FALSE);
}
return true;
}
if (cell->type == ID($assert))
{
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
asserts_a[pf].append((*sigmap)(cell->getPort(ID::A)));
asserts_en[pf].append((*sigmap)(cell->getPort(ID(EN))));
return true;
}
if (cell->type == ID($assume))
{
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
assumes_a[pf].append((*sigmap)(cell->getPort(ID::A)));
assumes_en[pf].append((*sigmap)(cell->getPort(ID(EN))));
return true;
}
// Unsupported internal cell types: $pow $lut
// .. and all sequential cells except $dff and $_DFF_[NP]_
return false;
}
};
YOSYS_NAMESPACE_END
#endif