mirror of https://github.com/YosysHQ/yosys.git
1457 lines
47 KiB
C++
1457 lines
47 KiB
C++
/*
|
||
* yosys -- Yosys Open SYnthesis Suite
|
||
*
|
||
* Copyright (C) 2019-2020 whitequark <whitequark@whitequark.org>
|
||
*
|
||
* Permission to use, copy, modify, and/or distribute this software for any
|
||
* purpose with or without fee is hereby granted.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||
*
|
||
*/
|
||
|
||
// This file is included by the designs generated with `write_cxxrtl`. It is not used in Yosys itself.
|
||
//
|
||
// The CXXRTL support library implements compile time specialized arbitrary width arithmetics, as well as provides
|
||
// composite lvalues made out of bit slices and concatenations of lvalues. This allows the `write_cxxrtl` pass
|
||
// to perform a straightforward translation of RTLIL structures to readable C++, relying on the C++ compiler
|
||
// to unwrap the abstraction and generate efficient code.
|
||
|
||
#ifndef CXXRTL_H
|
||
#define CXXRTL_H
|
||
|
||
#include <cstddef>
|
||
#include <cstdint>
|
||
#include <cassert>
|
||
#include <limits>
|
||
#include <type_traits>
|
||
#include <tuple>
|
||
#include <vector>
|
||
#include <map>
|
||
#include <algorithm>
|
||
#include <memory>
|
||
#include <sstream>
|
||
|
||
#include <backends/cxxrtl/cxxrtl_capi.h>
|
||
|
||
// CXXRTL essentially uses the C++ compiler as a hygienic macro engine that feeds an instruction selector.
|
||
// It generates a lot of specialized template functions with relatively large bodies that, when inlined
|
||
// into the caller and (for those with loops) unrolled, often expose many new optimization opportunities.
|
||
// Because of this, most of the CXXRTL runtime must be always inlined for best performance.
|
||
#ifndef __has_attribute
|
||
# define __has_attribute(x) 0
|
||
#endif
|
||
#if __has_attribute(always_inline)
|
||
#define CXXRTL_ALWAYS_INLINE inline __attribute__((__always_inline__))
|
||
#else
|
||
#define CXXRTL_ALWAYS_INLINE inline
|
||
#endif
|
||
|
||
namespace cxxrtl {
|
||
|
||
// All arbitrary-width values in CXXRTL are backed by arrays of unsigned integers called chunks. The chunk size
|
||
// is the same regardless of the value width to simplify manipulating values via FFI interfaces, e.g. driving
|
||
// and introspecting the simulation in Python.
|
||
//
|
||
// It is practical to use chunk sizes between 32 bits and platform register size because when arithmetics on
|
||
// narrower integer types is legalized by the C++ compiler, it inserts code to clear the high bits of the register.
|
||
// However, (a) most of our operations do not change those bits in the first place because of invariants that are
|
||
// invisible to the compiler, (b) we often operate on non-power-of-2 values and have to clear the high bits anyway.
|
||
// Therefore, using relatively wide chunks and clearing the high bits explicitly and only when we know they may be
|
||
// clobbered results in simpler generated code.
|
||
typedef uint32_t chunk_t;
|
||
typedef uint64_t wide_chunk_t;
|
||
|
||
template<typename T>
|
||
struct chunk_traits {
|
||
static_assert(std::is_integral<T>::value && std::is_unsigned<T>::value,
|
||
"chunk type must be an unsigned integral type");
|
||
using type = T;
|
||
static constexpr size_t bits = std::numeric_limits<T>::digits;
|
||
static constexpr T mask = std::numeric_limits<T>::max();
|
||
};
|
||
|
||
template<class T>
|
||
struct expr_base;
|
||
|
||
template<size_t Bits>
|
||
struct value : public expr_base<value<Bits>> {
|
||
static constexpr size_t bits = Bits;
|
||
|
||
using chunk = chunk_traits<chunk_t>;
|
||
static constexpr chunk::type msb_mask = (Bits % chunk::bits == 0) ? chunk::mask
|
||
: chunk::mask >> (chunk::bits - (Bits % chunk::bits));
|
||
|
||
static constexpr size_t chunks = (Bits + chunk::bits - 1) / chunk::bits;
|
||
chunk::type data[chunks] = {};
|
||
|
||
value() = default;
|
||
template<typename... Init>
|
||
explicit constexpr value(Init ...init) : data{init...} {}
|
||
|
||
value(const value<Bits> &) = default;
|
||
value(value<Bits> &&) = default;
|
||
value<Bits> &operator=(const value<Bits> &) = default;
|
||
|
||
// A (no-op) helper that forces the cast to value<>.
|
||
CXXRTL_ALWAYS_INLINE
|
||
const value<Bits> &val() const {
|
||
return *this;
|
||
}
|
||
|
||
std::string str() const {
|
||
std::stringstream ss;
|
||
ss << *this;
|
||
return ss.str();
|
||
}
|
||
|
||
// Conversion operations.
|
||
//
|
||
// These functions ensure that a conversion is never out of range, and should be always used, if at all
|
||
// possible, instead of direct manipulation of the `data` member. For very large types, .slice() and
|
||
// .concat() can be used to split them into more manageable parts.
|
||
template<class IntegerT>
|
||
CXXRTL_ALWAYS_INLINE
|
||
IntegerT get() const {
|
||
static_assert(std::numeric_limits<IntegerT>::is_integer && !std::numeric_limits<IntegerT>::is_signed,
|
||
"get<T>() requires T to be an unsigned integral type");
|
||
static_assert(std::numeric_limits<IntegerT>::digits >= Bits,
|
||
"get<T>() requires T to be at least as wide as the value is");
|
||
IntegerT result = 0;
|
||
for (size_t n = 0; n < chunks; n++)
|
||
result |= IntegerT(data[n]) << (n * chunk::bits);
|
||
return result;
|
||
}
|
||
|
||
template<class IntegerT>
|
||
CXXRTL_ALWAYS_INLINE
|
||
void set(IntegerT other) {
|
||
static_assert(std::numeric_limits<IntegerT>::is_integer && !std::numeric_limits<IntegerT>::is_signed,
|
||
"set<T>() requires T to be an unsigned integral type");
|
||
static_assert(std::numeric_limits<IntegerT>::digits >= Bits,
|
||
"set<T>() requires the value to be at least as wide as T is");
|
||
for (size_t n = 0; n < chunks; n++)
|
||
data[n] = (other >> (n * chunk::bits)) & chunk::mask;
|
||
}
|
||
|
||
// Operations with compile-time parameters.
|
||
//
|
||
// These operations are used to implement slicing, concatenation, and blitting.
|
||
// The trunc, zext and sext operations add or remove most significant bits (i.e. on the left);
|
||
// the rtrunc and rzext operations add or remove least significant bits (i.e. on the right).
|
||
template<size_t NewBits>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<NewBits> trunc() const {
|
||
static_assert(NewBits <= Bits, "trunc() may not increase width");
|
||
value<NewBits> result;
|
||
for (size_t n = 0; n < result.chunks; n++)
|
||
result.data[n] = data[n];
|
||
result.data[result.chunks - 1] &= result.msb_mask;
|
||
return result;
|
||
}
|
||
|
||
template<size_t NewBits>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<NewBits> zext() const {
|
||
static_assert(NewBits >= Bits, "zext() may not decrease width");
|
||
value<NewBits> result;
|
||
for (size_t n = 0; n < chunks; n++)
|
||
result.data[n] = data[n];
|
||
return result;
|
||
}
|
||
|
||
template<size_t NewBits>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<NewBits> sext() const {
|
||
static_assert(NewBits >= Bits, "sext() may not decrease width");
|
||
value<NewBits> result;
|
||
for (size_t n = 0; n < chunks; n++)
|
||
result.data[n] = data[n];
|
||
if (is_neg()) {
|
||
result.data[chunks - 1] |= ~msb_mask;
|
||
for (size_t n = chunks; n < result.chunks; n++)
|
||
result.data[n] = chunk::mask;
|
||
result.data[result.chunks - 1] &= result.msb_mask;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
template<size_t NewBits>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<NewBits> rtrunc() const {
|
||
static_assert(NewBits <= Bits, "rtrunc() may not increase width");
|
||
value<NewBits> result;
|
||
constexpr size_t shift_chunks = (Bits - NewBits) / chunk::bits;
|
||
constexpr size_t shift_bits = (Bits - NewBits) % chunk::bits;
|
||
chunk::type carry = 0;
|
||
if (shift_chunks + result.chunks < chunks) {
|
||
carry = (shift_bits == 0) ? 0
|
||
: data[shift_chunks + result.chunks] << (chunk::bits - shift_bits);
|
||
}
|
||
for (size_t n = result.chunks; n > 0; n--) {
|
||
result.data[n - 1] = carry | (data[shift_chunks + n - 1] >> shift_bits);
|
||
carry = (shift_bits == 0) ? 0
|
||
: data[shift_chunks + n - 1] << (chunk::bits - shift_bits);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
template<size_t NewBits>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<NewBits> rzext() const {
|
||
static_assert(NewBits >= Bits, "rzext() may not decrease width");
|
||
value<NewBits> result;
|
||
constexpr size_t shift_chunks = (NewBits - Bits) / chunk::bits;
|
||
constexpr size_t shift_bits = (NewBits - Bits) % chunk::bits;
|
||
chunk::type carry = 0;
|
||
for (size_t n = 0; n < chunks; n++) {
|
||
result.data[shift_chunks + n] = (data[n] << shift_bits) | carry;
|
||
carry = (shift_bits == 0) ? 0
|
||
: data[n] >> (chunk::bits - shift_bits);
|
||
}
|
||
if (shift_chunks + chunks < result.chunks)
|
||
result.data[shift_chunks + chunks] = carry;
|
||
return result;
|
||
}
|
||
|
||
// Bit blit operation, i.e. a partial read-modify-write.
|
||
template<size_t Stop, size_t Start>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<Bits> blit(const value<Stop - Start + 1> &source) const {
|
||
static_assert(Stop >= Start, "blit() may not reverse bit order");
|
||
constexpr chunk::type start_mask = ~(chunk::mask << (Start % chunk::bits));
|
||
constexpr chunk::type stop_mask = (Stop % chunk::bits + 1 == chunk::bits) ? 0
|
||
: (chunk::mask << (Stop % chunk::bits + 1));
|
||
value<Bits> masked = *this;
|
||
if (Start / chunk::bits == Stop / chunk::bits) {
|
||
masked.data[Start / chunk::bits] &= stop_mask | start_mask;
|
||
} else {
|
||
masked.data[Start / chunk::bits] &= start_mask;
|
||
for (size_t n = Start / chunk::bits + 1; n < Stop / chunk::bits; n++)
|
||
masked.data[n] = 0;
|
||
masked.data[Stop / chunk::bits] &= stop_mask;
|
||
}
|
||
value<Bits> shifted = source
|
||
.template rzext<Stop + 1>()
|
||
.template zext<Bits>();
|
||
return masked.bit_or(shifted);
|
||
}
|
||
|
||
// Helpers for selecting extending or truncating operation depending on whether the result is wider or narrower
|
||
// than the operand. In C++17 these can be replaced with `if constexpr`.
|
||
template<size_t NewBits, typename = void>
|
||
struct zext_cast {
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<NewBits> operator()(const value<Bits> &val) {
|
||
return val.template zext<NewBits>();
|
||
}
|
||
};
|
||
|
||
template<size_t NewBits>
|
||
struct zext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<NewBits> operator()(const value<Bits> &val) {
|
||
return val.template trunc<NewBits>();
|
||
}
|
||
};
|
||
|
||
template<size_t NewBits, typename = void>
|
||
struct sext_cast {
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<NewBits> operator()(const value<Bits> &val) {
|
||
return val.template sext<NewBits>();
|
||
}
|
||
};
|
||
|
||
template<size_t NewBits>
|
||
struct sext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<NewBits> operator()(const value<Bits> &val) {
|
||
return val.template trunc<NewBits>();
|
||
}
|
||
};
|
||
|
||
template<size_t NewBits>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<NewBits> zcast() const {
|
||
return zext_cast<NewBits>()(*this);
|
||
}
|
||
|
||
template<size_t NewBits>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<NewBits> scast() const {
|
||
return sext_cast<NewBits>()(*this);
|
||
}
|
||
|
||
// Operations with run-time parameters (offsets, amounts, etc).
|
||
//
|
||
// These operations are used for computations.
|
||
bool bit(size_t offset) const {
|
||
return data[offset / chunk::bits] & (1 << (offset % chunk::bits));
|
||
}
|
||
|
||
void set_bit(size_t offset, bool value = true) {
|
||
size_t offset_chunks = offset / chunk::bits;
|
||
size_t offset_bits = offset % chunk::bits;
|
||
data[offset_chunks] &= ~(1 << offset_bits);
|
||
data[offset_chunks] |= value ? 1 << offset_bits : 0;
|
||
}
|
||
|
||
explicit operator bool() const {
|
||
return !is_zero();
|
||
}
|
||
|
||
bool is_zero() const {
|
||
for (size_t n = 0; n < chunks; n++)
|
||
if (data[n] != 0)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
bool is_neg() const {
|
||
return data[chunks - 1] & (1 << ((Bits - 1) % chunk::bits));
|
||
}
|
||
|
||
bool operator ==(const value<Bits> &other) const {
|
||
for (size_t n = 0; n < chunks; n++)
|
||
if (data[n] != other.data[n])
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
bool operator !=(const value<Bits> &other) const {
|
||
return !(*this == other);
|
||
}
|
||
|
||
value<Bits> bit_not() const {
|
||
value<Bits> result;
|
||
for (size_t n = 0; n < chunks; n++)
|
||
result.data[n] = ~data[n];
|
||
result.data[chunks - 1] &= msb_mask;
|
||
return result;
|
||
}
|
||
|
||
value<Bits> bit_and(const value<Bits> &other) const {
|
||
value<Bits> result;
|
||
for (size_t n = 0; n < chunks; n++)
|
||
result.data[n] = data[n] & other.data[n];
|
||
return result;
|
||
}
|
||
|
||
value<Bits> bit_or(const value<Bits> &other) const {
|
||
value<Bits> result;
|
||
for (size_t n = 0; n < chunks; n++)
|
||
result.data[n] = data[n] | other.data[n];
|
||
return result;
|
||
}
|
||
|
||
value<Bits> bit_xor(const value<Bits> &other) const {
|
||
value<Bits> result;
|
||
for (size_t n = 0; n < chunks; n++)
|
||
result.data[n] = data[n] ^ other.data[n];
|
||
return result;
|
||
}
|
||
|
||
value<Bits> update(const value<Bits> &val, const value<Bits> &mask) const {
|
||
return bit_and(mask.bit_not()).bit_or(val.bit_and(mask));
|
||
}
|
||
|
||
template<size_t AmountBits>
|
||
value<Bits> shl(const value<AmountBits> &amount) const {
|
||
// Ensure our early return is correct by prohibiting values larger than 4 Gbit.
|
||
static_assert(Bits <= chunk::mask, "shl() of unreasonably large values is not supported");
|
||
// Detect shifts definitely large than Bits early.
|
||
for (size_t n = 1; n < amount.chunks; n++)
|
||
if (amount.data[n] != 0)
|
||
return {};
|
||
// Past this point we can use the least significant chunk as the shift size.
|
||
size_t shift_chunks = amount.data[0] / chunk::bits;
|
||
size_t shift_bits = amount.data[0] % chunk::bits;
|
||
if (shift_chunks >= chunks)
|
||
return {};
|
||
value<Bits> result;
|
||
chunk::type carry = 0;
|
||
for (size_t n = 0; n < chunks - shift_chunks; n++) {
|
||
result.data[shift_chunks + n] = (data[n] << shift_bits) | carry;
|
||
carry = (shift_bits == 0) ? 0
|
||
: data[n] >> (chunk::bits - shift_bits);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
template<size_t AmountBits, bool Signed = false>
|
||
value<Bits> shr(const value<AmountBits> &amount) const {
|
||
// Ensure our early return is correct by prohibiting values larger than 4 Gbit.
|
||
static_assert(Bits <= chunk::mask, "shr() of unreasonably large values is not supported");
|
||
// Detect shifts definitely large than Bits early.
|
||
for (size_t n = 1; n < amount.chunks; n++)
|
||
if (amount.data[n] != 0)
|
||
return {};
|
||
// Past this point we can use the least significant chunk as the shift size.
|
||
size_t shift_chunks = amount.data[0] / chunk::bits;
|
||
size_t shift_bits = amount.data[0] % chunk::bits;
|
||
if (shift_chunks >= chunks)
|
||
return {};
|
||
value<Bits> result;
|
||
chunk::type carry = 0;
|
||
for (size_t n = 0; n < chunks - shift_chunks; n++) {
|
||
result.data[chunks - shift_chunks - 1 - n] = carry | (data[chunks - 1 - n] >> shift_bits);
|
||
carry = (shift_bits == 0) ? 0
|
||
: data[chunks - 1 - n] << (chunk::bits - shift_bits);
|
||
}
|
||
if (Signed && is_neg()) {
|
||
size_t top_chunk_idx = (Bits - shift_bits) / chunk::bits;
|
||
size_t top_chunk_bits = (Bits - shift_bits) % chunk::bits;
|
||
for (size_t n = top_chunk_idx + 1; n < chunks; n++)
|
||
result.data[n] = chunk::mask;
|
||
if (shift_bits != 0)
|
||
result.data[top_chunk_idx] |= chunk::mask << top_chunk_bits;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
template<size_t AmountBits>
|
||
value<Bits> sshr(const value<AmountBits> &amount) const {
|
||
return shr<AmountBits, /*Signed=*/true>(amount);
|
||
}
|
||
|
||
size_t ctpop() const {
|
||
size_t count = 0;
|
||
for (size_t n = 0; n < chunks; n++) {
|
||
// This loop implements the population count idiom as recognized by LLVM and GCC.
|
||
for (chunk::type x = data[n]; x != 0; count++)
|
||
x = x & (x - 1);
|
||
}
|
||
return count;
|
||
}
|
||
|
||
size_t ctlz() const {
|
||
size_t count = 0;
|
||
for (size_t n = 0; n < chunks; n++) {
|
||
chunk::type x = data[chunks - 1 - n];
|
||
if (x == 0) {
|
||
count += (n == 0 ? Bits % chunk::bits : chunk::bits);
|
||
} else {
|
||
// This loop implements the find first set idiom as recognized by LLVM.
|
||
for (; x != 0; count++)
|
||
x >>= 1;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
|
||
template<bool Invert, bool CarryIn>
|
||
std::pair<value<Bits>, bool /*CarryOut*/> alu(const value<Bits> &other) const {
|
||
value<Bits> result;
|
||
bool carry = CarryIn;
|
||
for (size_t n = 0; n < result.chunks; n++) {
|
||
result.data[n] = data[n] + (Invert ? ~other.data[n] : other.data[n]) + carry;
|
||
carry = (result.data[n] < data[n]) ||
|
||
(result.data[n] == data[n] && carry);
|
||
}
|
||
result.data[result.chunks - 1] &= result.msb_mask;
|
||
return {result, carry};
|
||
}
|
||
|
||
value<Bits> add(const value<Bits> &other) const {
|
||
return alu</*Invert=*/false, /*CarryIn=*/false>(other).first;
|
||
}
|
||
|
||
value<Bits> sub(const value<Bits> &other) const {
|
||
return alu</*Invert=*/true, /*CarryIn=*/true>(other).first;
|
||
}
|
||
|
||
value<Bits> neg() const {
|
||
return value<Bits> { 0u }.sub(*this);
|
||
}
|
||
|
||
bool ucmp(const value<Bits> &other) const {
|
||
bool carry;
|
||
std::tie(std::ignore, carry) = alu</*Invert=*/true, /*CarryIn=*/true>(other);
|
||
return !carry; // a.ucmp(b) ≡ a u< b
|
||
}
|
||
|
||
bool scmp(const value<Bits> &other) const {
|
||
value<Bits> result;
|
||
bool carry;
|
||
std::tie(result, carry) = alu</*Invert=*/true, /*CarryIn=*/true>(other);
|
||
bool overflow = (is_neg() == !other.is_neg()) && (is_neg() != result.is_neg());
|
||
return result.is_neg() ^ overflow; // a.scmp(b) ≡ a s< b
|
||
}
|
||
|
||
template<size_t ResultBits>
|
||
value<ResultBits> mul(const value<Bits> &other) const {
|
||
value<ResultBits> result;
|
||
wide_chunk_t wide_result[result.chunks + 1] = {};
|
||
for (size_t n = 0; n < chunks; n++) {
|
||
for (size_t m = 0; m < chunks && n + m < result.chunks; m++) {
|
||
wide_result[n + m] += wide_chunk_t(data[n]) * wide_chunk_t(other.data[m]);
|
||
wide_result[n + m + 1] += wide_result[n + m] >> chunk::bits;
|
||
wide_result[n + m] &= chunk::mask;
|
||
}
|
||
}
|
||
for (size_t n = 0; n < result.chunks; n++) {
|
||
result.data[n] = wide_result[n];
|
||
}
|
||
result.data[result.chunks - 1] &= result.msb_mask;
|
||
return result;
|
||
}
|
||
};
|
||
|
||
// Expression template for a slice, usable as lvalue or rvalue, and composable with other expression templates here.
|
||
template<class T, size_t Stop, size_t Start>
|
||
struct slice_expr : public expr_base<slice_expr<T, Stop, Start>> {
|
||
static_assert(Stop >= Start, "slice_expr() may not reverse bit order");
|
||
static_assert(Start < T::bits && Stop < T::bits, "slice_expr() must be within bounds");
|
||
static constexpr size_t bits = Stop - Start + 1;
|
||
|
||
T &expr;
|
||
|
||
slice_expr(T &expr) : expr(expr) {}
|
||
slice_expr(const slice_expr<T, Stop, Start> &) = delete;
|
||
|
||
CXXRTL_ALWAYS_INLINE
|
||
operator value<bits>() const {
|
||
return static_cast<const value<T::bits> &>(expr)
|
||
.template rtrunc<T::bits - Start>()
|
||
.template trunc<bits>();
|
||
}
|
||
|
||
CXXRTL_ALWAYS_INLINE
|
||
slice_expr<T, Stop, Start> &operator=(const value<bits> &rhs) {
|
||
// Generic partial assignment implemented using a read-modify-write operation on the sliced expression.
|
||
expr = static_cast<const value<T::bits> &>(expr)
|
||
.template blit<Stop, Start>(rhs);
|
||
return *this;
|
||
}
|
||
|
||
// A helper that forces the cast to value<>, which allows deduction to work.
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<bits> val() const {
|
||
return static_cast<const value<bits> &>(*this);
|
||
}
|
||
};
|
||
|
||
// Expression template for a concatenation, usable as lvalue or rvalue, and composable with other expression templates here.
|
||
template<class T, class U>
|
||
struct concat_expr : public expr_base<concat_expr<T, U>> {
|
||
static constexpr size_t bits = T::bits + U::bits;
|
||
|
||
T &ms_expr;
|
||
U &ls_expr;
|
||
|
||
concat_expr(T &ms_expr, U &ls_expr) : ms_expr(ms_expr), ls_expr(ls_expr) {}
|
||
concat_expr(const concat_expr<T, U> &) = delete;
|
||
|
||
CXXRTL_ALWAYS_INLINE
|
||
operator value<bits>() const {
|
||
value<bits> ms_shifted = static_cast<const value<T::bits> &>(ms_expr)
|
||
.template rzext<bits>();
|
||
value<bits> ls_extended = static_cast<const value<U::bits> &>(ls_expr)
|
||
.template zext<bits>();
|
||
return ms_shifted.bit_or(ls_extended);
|
||
}
|
||
|
||
CXXRTL_ALWAYS_INLINE
|
||
concat_expr<T, U> &operator=(const value<bits> &rhs) {
|
||
ms_expr = rhs.template rtrunc<T::bits>();
|
||
ls_expr = rhs.template trunc<U::bits>();
|
||
return *this;
|
||
}
|
||
|
||
// A helper that forces the cast to value<>, which allows deduction to work.
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<bits> val() const {
|
||
return static_cast<const value<bits> &>(*this);
|
||
}
|
||
};
|
||
|
||
// Base class for expression templates, providing helper methods for operations that are valid on both rvalues and lvalues.
|
||
//
|
||
// Note that expression objects (slices and concatenations) constructed in this way should NEVER be captured because
|
||
// they refer to temporaries that will, in general, only live until the end of the statement. For example, both of
|
||
// these snippets perform use-after-free:
|
||
//
|
||
// const auto &a = val.slice<7,0>().slice<1>();
|
||
// value<1> b = a;
|
||
//
|
||
// auto &&c = val.slice<7,0>().slice<1>();
|
||
// c = value<1>{1u};
|
||
//
|
||
// An easy way to write code using slices and concatenations safely is to follow two simple rules:
|
||
// * Never explicitly name any type except `value<W>` or `const value<W> &`.
|
||
// * Never use a `const auto &` or `auto &&` in any such expression.
|
||
// Then, any code that compiles will be well-defined.
|
||
template<class T>
|
||
struct expr_base {
|
||
template<size_t Stop, size_t Start = Stop>
|
||
CXXRTL_ALWAYS_INLINE
|
||
slice_expr<const T, Stop, Start> slice() const {
|
||
return {*static_cast<const T *>(this)};
|
||
}
|
||
|
||
template<size_t Stop, size_t Start = Stop>
|
||
CXXRTL_ALWAYS_INLINE
|
||
slice_expr<T, Stop, Start> slice() {
|
||
return {*static_cast<T *>(this)};
|
||
}
|
||
|
||
template<class U>
|
||
CXXRTL_ALWAYS_INLINE
|
||
concat_expr<const T, typename std::remove_reference<const U>::type> concat(const U &other) const {
|
||
return {*static_cast<const T *>(this), other};
|
||
}
|
||
|
||
template<class U>
|
||
CXXRTL_ALWAYS_INLINE
|
||
concat_expr<T, typename std::remove_reference<U>::type> concat(U &&other) {
|
||
return {*static_cast<T *>(this), other};
|
||
}
|
||
};
|
||
|
||
template<size_t Bits>
|
||
std::ostream &operator<<(std::ostream &os, const value<Bits> &val) {
|
||
auto old_flags = os.flags(std::ios::right);
|
||
auto old_width = os.width(0);
|
||
auto old_fill = os.fill('0');
|
||
os << val.bits << '\'' << std::hex;
|
||
for (size_t n = val.chunks - 1; n != (size_t)-1; n--) {
|
||
if (n == val.chunks - 1 && Bits % value<Bits>::chunk::bits != 0)
|
||
os.width((Bits % value<Bits>::chunk::bits + 3) / 4);
|
||
else
|
||
os.width((value<Bits>::chunk::bits + 3) / 4);
|
||
os << val.data[n];
|
||
}
|
||
os.fill(old_fill);
|
||
os.width(old_width);
|
||
os.flags(old_flags);
|
||
return os;
|
||
}
|
||
|
||
template<size_t Bits>
|
||
struct wire {
|
||
static constexpr size_t bits = Bits;
|
||
|
||
value<Bits> curr;
|
||
value<Bits> next;
|
||
|
||
wire() = default;
|
||
constexpr wire(const value<Bits> &init) : curr(init), next(init) {}
|
||
template<typename... Init>
|
||
explicit constexpr wire(Init ...init) : curr{init...}, next{init...} {}
|
||
|
||
wire(const wire<Bits> &) = delete;
|
||
wire(wire<Bits> &&) = default;
|
||
wire<Bits> &operator=(const wire<Bits> &) = delete;
|
||
|
||
template<class IntegerT>
|
||
CXXRTL_ALWAYS_INLINE
|
||
IntegerT get() const {
|
||
return curr.template get<IntegerT>();
|
||
}
|
||
|
||
template<class IntegerT>
|
||
CXXRTL_ALWAYS_INLINE
|
||
void set(IntegerT other) {
|
||
next.template set<IntegerT>(other);
|
||
}
|
||
|
||
bool commit() {
|
||
if (curr != next) {
|
||
curr = next;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
};
|
||
|
||
template<size_t Bits>
|
||
std::ostream &operator<<(std::ostream &os, const wire<Bits> &val) {
|
||
os << val.curr;
|
||
return os;
|
||
}
|
||
|
||
template<size_t Width>
|
||
struct memory {
|
||
std::vector<value<Width>> data;
|
||
|
||
size_t depth() const {
|
||
return data.size();
|
||
}
|
||
|
||
memory() = delete;
|
||
explicit memory(size_t depth) : data(depth) {}
|
||
|
||
memory(const memory<Width> &) = delete;
|
||
memory<Width> &operator=(const memory<Width> &) = delete;
|
||
|
||
// The only way to get the compiler to put the initializer in .rodata and do not copy it on stack is to stuff it
|
||
// into a plain array. You'd think an std::initializer_list would work here, but it doesn't, because you can't
|
||
// construct an initializer_list in a constexpr (or something) and so if you try to do that the whole thing is
|
||
// first copied on the stack (probably overflowing it) and then again into `data`.
|
||
template<size_t Size>
|
||
struct init {
|
||
size_t offset;
|
||
value<Width> data[Size];
|
||
};
|
||
|
||
template<size_t... InitSize>
|
||
explicit memory(size_t depth, const init<InitSize> &...init) : data(depth) {
|
||
data.resize(depth);
|
||
// This utterly reprehensible construct is the most reasonable way to apply a function to every element
|
||
// of a parameter pack, if the elements all have different types and so cannot be cast to an initializer list.
|
||
auto _ = {std::move(std::begin(init.data), std::end(init.data), data.begin() + init.offset)...};
|
||
(void)_;
|
||
}
|
||
|
||
// An operator for direct memory reads. May be used at any time during the simulation.
|
||
const value<Width> &operator [](size_t index) const {
|
||
assert(index < data.size());
|
||
return data[index];
|
||
}
|
||
|
||
// An operator for direct memory writes. May only be used before the simulation is started. If used
|
||
// after the simulation is started, the design may malfunction.
|
||
value<Width> &operator [](size_t index) {
|
||
assert(index < data.size());
|
||
return data[index];
|
||
}
|
||
|
||
// A simple way to make a writable memory would be to use an array of wires instead of an array of values.
|
||
// However, there are two significant downsides to this approach: first, it has large overhead (2× space
|
||
// overhead, and O(depth) time overhead during commit); second, it does not simplify handling write port
|
||
// priorities. Although in principle write ports could be ordered or conditionally enabled in generated
|
||
// code based on their priorities and selected addresses, the feedback arc set problem is computationally
|
||
// expensive, and the heuristic based algorithms are not easily modified to guarantee (rather than prefer)
|
||
// a particular write port evaluation order.
|
||
//
|
||
// The approach used here instead is to queue writes into a buffer during the eval phase, then perform
|
||
// the writes during the commit phase in the priority order. This approach has low overhead, with both space
|
||
// and time proportional to the amount of write ports. Because virtually every memory in a practical design
|
||
// has at most two write ports, linear search is used on every write, being the fastest and simplest approach.
|
||
struct write {
|
||
size_t index;
|
||
value<Width> val;
|
||
value<Width> mask;
|
||
int priority;
|
||
};
|
||
std::vector<write> write_queue;
|
||
|
||
void update(size_t index, const value<Width> &val, const value<Width> &mask, int priority = 0) {
|
||
assert(index < data.size());
|
||
// Queue up the write while keeping the queue sorted by priority.
|
||
write_queue.insert(
|
||
std::upper_bound(write_queue.begin(), write_queue.end(), priority,
|
||
[](const int a, const write& b) { return a < b.priority; }),
|
||
write { index, val, mask, priority });
|
||
}
|
||
|
||
bool commit() {
|
||
bool changed = false;
|
||
for (const write &entry : write_queue) {
|
||
value<Width> elem = data[entry.index];
|
||
elem = elem.update(entry.val, entry.mask);
|
||
changed |= (data[entry.index] != elem);
|
||
data[entry.index] = elem;
|
||
}
|
||
write_queue.clear();
|
||
return changed;
|
||
}
|
||
};
|
||
|
||
struct metadata {
|
||
const enum {
|
||
MISSING = 0,
|
||
UINT = 1,
|
||
SINT = 2,
|
||
STRING = 3,
|
||
DOUBLE = 4,
|
||
} value_type;
|
||
|
||
// In debug mode, using the wrong .as_*() function will assert.
|
||
// In release mode, using the wrong .as_*() function will safely return a default value.
|
||
const unsigned uint_value = 0;
|
||
const signed sint_value = 0;
|
||
const std::string string_value = "";
|
||
const double double_value = 0.0;
|
||
|
||
metadata() : value_type(MISSING) {}
|
||
metadata(unsigned value) : value_type(UINT), uint_value(value) {}
|
||
metadata(signed value) : value_type(SINT), sint_value(value) {}
|
||
metadata(const std::string &value) : value_type(STRING), string_value(value) {}
|
||
metadata(const char *value) : value_type(STRING), string_value(value) {}
|
||
metadata(double value) : value_type(DOUBLE), double_value(value) {}
|
||
|
||
metadata(const metadata &) = default;
|
||
metadata &operator=(const metadata &) = delete;
|
||
|
||
unsigned as_uint() const {
|
||
assert(value_type == UINT);
|
||
return uint_value;
|
||
}
|
||
|
||
signed as_sint() const {
|
||
assert(value_type == SINT);
|
||
return sint_value;
|
||
}
|
||
|
||
const std::string &as_string() const {
|
||
assert(value_type == STRING);
|
||
return string_value;
|
||
}
|
||
|
||
double as_double() const {
|
||
assert(value_type == DOUBLE);
|
||
return double_value;
|
||
}
|
||
};
|
||
|
||
typedef std::map<std::string, metadata> metadata_map;
|
||
|
||
// Helper class to disambiguate values/wires and their aliases.
|
||
struct debug_alias {};
|
||
|
||
// This structure is intended for consumption via foreign function interfaces, like Python's ctypes.
|
||
// Because of this it uses a C-style layout that is easy to parse rather than more idiomatic C++.
|
||
//
|
||
// To avoid violating strict aliasing rules, this structure has to be a subclass of the one used
|
||
// in the C API, or it would not be possible to cast between the pointers to these.
|
||
struct debug_item : ::cxxrtl_object {
|
||
enum : uint32_t {
|
||
VALUE = CXXRTL_VALUE,
|
||
WIRE = CXXRTL_WIRE,
|
||
MEMORY = CXXRTL_MEMORY,
|
||
ALIAS = CXXRTL_ALIAS,
|
||
};
|
||
|
||
debug_item(const ::cxxrtl_object &object) : cxxrtl_object(object) {}
|
||
|
||
template<size_t Bits>
|
||
debug_item(value<Bits> &item, size_t lsb_offset = 0) {
|
||
static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
|
||
"value<Bits> is not compatible with C layout");
|
||
type = VALUE;
|
||
width = Bits;
|
||
lsb_at = lsb_offset;
|
||
depth = 1;
|
||
zero_at = 0;
|
||
curr = item.data;
|
||
next = item.data;
|
||
}
|
||
|
||
template<size_t Bits>
|
||
debug_item(const value<Bits> &item, size_t lsb_offset = 0) {
|
||
static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
|
||
"value<Bits> is not compatible with C layout");
|
||
type = VALUE;
|
||
width = Bits;
|
||
lsb_at = lsb_offset;
|
||
depth = 1;
|
||
zero_at = 0;
|
||
curr = const_cast<chunk_t*>(item.data);
|
||
next = nullptr;
|
||
}
|
||
|
||
template<size_t Bits>
|
||
debug_item(wire<Bits> &item, size_t lsb_offset = 0) {
|
||
static_assert(sizeof(item.curr) == value<Bits>::chunks * sizeof(chunk_t) &&
|
||
sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t),
|
||
"wire<Bits> is not compatible with C layout");
|
||
type = WIRE;
|
||
width = Bits;
|
||
lsb_at = lsb_offset;
|
||
depth = 1;
|
||
zero_at = 0;
|
||
curr = item.curr.data;
|
||
next = item.next.data;
|
||
}
|
||
|
||
template<size_t Width>
|
||
debug_item(memory<Width> &item, size_t zero_offset = 0) {
|
||
static_assert(sizeof(item.data[0]) == value<Width>::chunks * sizeof(chunk_t),
|
||
"memory<Width> is not compatible with C layout");
|
||
type = MEMORY;
|
||
width = Width;
|
||
lsb_at = 0;
|
||
depth = item.data.size();
|
||
zero_at = zero_offset;
|
||
curr = item.data.empty() ? nullptr : item.data[0].data;
|
||
next = nullptr;
|
||
}
|
||
|
||
template<size_t Bits>
|
||
debug_item(debug_alias, const value<Bits> &item, size_t lsb_offset = 0) {
|
||
static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
|
||
"value<Bits> is not compatible with C layout");
|
||
type = ALIAS;
|
||
width = Bits;
|
||
lsb_at = lsb_offset;
|
||
depth = 1;
|
||
zero_at = 0;
|
||
curr = const_cast<chunk_t*>(item.data);
|
||
next = nullptr;
|
||
}
|
||
|
||
template<size_t Bits>
|
||
debug_item(debug_alias, const wire<Bits> &item, size_t lsb_offset = 0) {
|
||
static_assert(sizeof(item.curr) == value<Bits>::chunks * sizeof(chunk_t) &&
|
||
sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t),
|
||
"wire<Bits> is not compatible with C layout");
|
||
type = ALIAS;
|
||
width = Bits;
|
||
lsb_at = lsb_offset;
|
||
depth = 1;
|
||
zero_at = 0;
|
||
curr = const_cast<chunk_t*>(item.curr.data);
|
||
next = nullptr;
|
||
}
|
||
};
|
||
static_assert(std::is_standard_layout<debug_item>::value, "debug_item is not compatible with C layout");
|
||
|
||
struct debug_items {
|
||
std::map<std::string, std::vector<debug_item>> table;
|
||
|
||
void add(const std::string &name, debug_item &&item) {
|
||
std::vector<debug_item> &parts = table[name];
|
||
parts.emplace_back(item);
|
||
std::sort(parts.begin(), parts.end(),
|
||
[](const debug_item &a, const debug_item &b) {
|
||
return a.lsb_at < b.lsb_at;
|
||
});
|
||
}
|
||
|
||
size_t count(const std::string &name) const {
|
||
if (table.count(name) == 0)
|
||
return 0;
|
||
return table.at(name).size();
|
||
}
|
||
|
||
const std::vector<debug_item> &parts_at(const std::string &name) const {
|
||
return table.at(name);
|
||
}
|
||
|
||
const debug_item &at(const std::string &name) const {
|
||
const std::vector<debug_item> &parts = table.at(name);
|
||
assert(parts.size() == 1);
|
||
return parts.at(0);
|
||
}
|
||
|
||
const debug_item &operator [](const std::string &name) const {
|
||
return at(name);
|
||
}
|
||
};
|
||
|
||
struct module {
|
||
module() {}
|
||
virtual ~module() {}
|
||
|
||
module(const module &) = delete;
|
||
module &operator=(const module &) = delete;
|
||
|
||
virtual bool eval() = 0;
|
||
virtual bool commit() = 0;
|
||
|
||
size_t step() {
|
||
size_t deltas = 0;
|
||
bool converged = false;
|
||
do {
|
||
converged = eval();
|
||
deltas++;
|
||
} while (commit() && !converged);
|
||
return deltas;
|
||
}
|
||
|
||
virtual void debug_info(debug_items &items, std::string path = "") {
|
||
(void)items, (void)path;
|
||
}
|
||
};
|
||
|
||
} // namespace cxxrtl
|
||
|
||
// Internal structure used to communicate with the implementation of the C interface.
|
||
typedef struct _cxxrtl_toplevel {
|
||
std::unique_ptr<cxxrtl::module> module;
|
||
} *cxxrtl_toplevel;
|
||
|
||
// Definitions of internal Yosys cells. Other than the functions in this namespace, CXXRTL is fully generic
|
||
// and indepenent of Yosys implementation details.
|
||
//
|
||
// The `write_cxxrtl` pass translates internal cells (cells with names that start with `$`) to calls of these
|
||
// functions. All of Yosys arithmetic and logical cells perform sign or zero extension on their operands,
|
||
// whereas basic operations on arbitrary width values require operands to be of the same width. These functions
|
||
// bridge the gap by performing the necessary casts. They are named similar to `cell_A[B]`, where A and B are `u`
|
||
// if the corresponding operand is unsigned, and `s` if it is signed.
|
||
namespace cxxrtl_yosys {
|
||
|
||
using namespace cxxrtl;
|
||
|
||
// std::max isn't constexpr until C++14 for no particular reason (it's an oversight), so we define our own.
|
||
template<class T>
|
||
CXXRTL_ALWAYS_INLINE
|
||
constexpr T max(const T &a, const T &b) {
|
||
return a > b ? a : b;
|
||
}
|
||
|
||
// Logic operations
|
||
template<size_t BitsY, size_t BitsA>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> logic_not(const value<BitsA> &a) {
|
||
return value<BitsY> { a ? 0u : 1u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> logic_and(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return value<BitsY> { (bool(a) && bool(b)) ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> logic_or(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return value<BitsY> { (bool(a) || bool(b)) ? 1u : 0u };
|
||
}
|
||
|
||
// Reduction operations
|
||
template<size_t BitsY, size_t BitsA>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> reduce_and(const value<BitsA> &a) {
|
||
return value<BitsY> { a.bit_not().is_zero() ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> reduce_or(const value<BitsA> &a) {
|
||
return value<BitsY> { a ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> reduce_xor(const value<BitsA> &a) {
|
||
return value<BitsY> { (a.ctpop() % 2) ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> reduce_xnor(const value<BitsA> &a) {
|
||
return value<BitsY> { (a.ctpop() % 2) ? 0u : 1u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> reduce_bool(const value<BitsA> &a) {
|
||
return value<BitsY> { a ? 1u : 0u };
|
||
}
|
||
|
||
// Bitwise operations
|
||
template<size_t BitsY, size_t BitsA>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> not_u(const value<BitsA> &a) {
|
||
return a.template zcast<BitsY>().bit_not();
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> not_s(const value<BitsA> &a) {
|
||
return a.template scast<BitsY>().bit_not();
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> and_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template zcast<BitsY>().bit_and(b.template zcast<BitsY>());
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> and_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template scast<BitsY>().bit_and(b.template scast<BitsY>());
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> or_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template zcast<BitsY>().bit_or(b.template zcast<BitsY>());
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> or_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template scast<BitsY>().bit_or(b.template scast<BitsY>());
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> xor_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>());
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> xor_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>());
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> xnor_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>()).bit_not();
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> xnor_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>()).bit_not();
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> shl_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template zcast<BitsY>().template shl(b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> shl_su(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template scast<BitsY>().template shl(b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> sshl_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template zcast<BitsY>().template shl(b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> sshl_su(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template scast<BitsY>().template shl(b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> shr_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template shr(b).template zcast<BitsY>();
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> shr_su(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template shr(b).template scast<BitsY>();
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> sshr_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template shr(b).template zcast<BitsY>();
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> sshr_su(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template sshr(b).template scast<BitsY>();
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> shift_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return shr_uu<BitsY>(a, b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> shift_su(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return shr_su<BitsY>(a, b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> shift_us(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return b.is_neg() ? shl_uu<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_uu<BitsY>(a, b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> shift_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return b.is_neg() ? shl_su<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_su<BitsY>(a, b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> shiftx_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return shift_uu<BitsY>(a, b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> shiftx_su(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return shift_su<BitsY>(a, b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> shiftx_us(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return shift_us<BitsY>(a, b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> shiftx_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return shift_ss<BitsY>(a, b);
|
||
}
|
||
|
||
// Comparison operations
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> eq_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t BitsExt = max(BitsA, BitsB);
|
||
return value<BitsY>{ a.template zext<BitsExt>() == b.template zext<BitsExt>() ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> eq_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t BitsExt = max(BitsA, BitsB);
|
||
return value<BitsY>{ a.template sext<BitsExt>() == b.template sext<BitsExt>() ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> ne_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t BitsExt = max(BitsA, BitsB);
|
||
return value<BitsY>{ a.template zext<BitsExt>() != b.template zext<BitsExt>() ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> ne_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t BitsExt = max(BitsA, BitsB);
|
||
return value<BitsY>{ a.template sext<BitsExt>() != b.template sext<BitsExt>() ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> eqx_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return eq_uu<BitsY>(a, b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> eqx_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return eq_ss<BitsY>(a, b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> nex_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return ne_uu<BitsY>(a, b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> nex_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return ne_ss<BitsY>(a, b);
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> gt_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t BitsExt = max(BitsA, BitsB);
|
||
return value<BitsY> { b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> gt_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t BitsExt = max(BitsA, BitsB);
|
||
return value<BitsY> { b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> ge_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t BitsExt = max(BitsA, BitsB);
|
||
return value<BitsY> { !a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> ge_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t BitsExt = max(BitsA, BitsB);
|
||
return value<BitsY> { !a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> lt_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t BitsExt = max(BitsA, BitsB);
|
||
return value<BitsY> { a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> lt_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t BitsExt = max(BitsA, BitsB);
|
||
return value<BitsY> { a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> le_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t BitsExt = max(BitsA, BitsB);
|
||
return value<BitsY> { !b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> le_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t BitsExt = max(BitsA, BitsB);
|
||
return value<BitsY> { !b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
|
||
}
|
||
|
||
// Arithmetic operations
|
||
template<size_t BitsY, size_t BitsA>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> pos_u(const value<BitsA> &a) {
|
||
return a.template zcast<BitsY>();
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> pos_s(const value<BitsA> &a) {
|
||
return a.template scast<BitsY>();
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> neg_u(const value<BitsA> &a) {
|
||
return a.template zcast<BitsY>().neg();
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> neg_s(const value<BitsA> &a) {
|
||
return a.template scast<BitsY>().neg();
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> add_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template zcast<BitsY>().add(b.template zcast<BitsY>());
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> add_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template scast<BitsY>().add(b.template scast<BitsY>());
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> sub_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template zcast<BitsY>().sub(b.template zcast<BitsY>());
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> sub_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template scast<BitsY>().sub(b.template scast<BitsY>());
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> mul_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t BitsM = BitsA >= BitsB ? BitsA : BitsB;
|
||
return a.template zcast<BitsM>().template mul<BitsY>(b.template zcast<BitsM>());
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> mul_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return a.template scast<BitsY>().template mul<BitsY>(b.template scast<BitsY>());
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
std::pair<value<BitsY>, value<BitsY>> divmod_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
constexpr size_t Bits = max(BitsY, max(BitsA, BitsB));
|
||
value<Bits> quotient;
|
||
value<Bits> dividend = a.template zext<Bits>();
|
||
value<Bits> divisor = b.template zext<Bits>();
|
||
if (dividend.ucmp(divisor))
|
||
return {/*quotient=*/value<BitsY> { 0u }, /*remainder=*/dividend.template trunc<BitsY>()};
|
||
uint32_t divisor_shift = dividend.ctlz() - divisor.ctlz();
|
||
divisor = divisor.shl(value<32> { divisor_shift });
|
||
for (size_t step = 0; step <= divisor_shift; step++) {
|
||
quotient = quotient.shl(value<1> { 1u });
|
||
if (!dividend.ucmp(divisor)) {
|
||
dividend = dividend.sub(divisor);
|
||
quotient.set_bit(0, true);
|
||
}
|
||
divisor = divisor.shr(value<1> { 1u });
|
||
}
|
||
return {quotient.template trunc<BitsY>(), /*remainder=*/dividend.template trunc<BitsY>()};
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
std::pair<value<BitsY>, value<BitsY>> divmod_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
value<BitsA + 1> ua = a.template sext<BitsA + 1>();
|
||
value<BitsB + 1> ub = b.template sext<BitsB + 1>();
|
||
if (ua.is_neg()) ua = ua.neg();
|
||
if (ub.is_neg()) ub = ub.neg();
|
||
value<BitsY> y, r;
|
||
std::tie(y, r) = divmod_uu<BitsY>(ua, ub);
|
||
if (a.is_neg() != b.is_neg()) y = y.neg();
|
||
if (a.is_neg()) r = r.neg();
|
||
return {y, r};
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> div_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return divmod_uu<BitsY>(a, b).first;
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> div_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return divmod_ss<BitsY>(a, b).first;
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> mod_uu(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return divmod_uu<BitsY>(a, b).second;
|
||
}
|
||
|
||
template<size_t BitsY, size_t BitsA, size_t BitsB>
|
||
CXXRTL_ALWAYS_INLINE
|
||
value<BitsY> mod_ss(const value<BitsA> &a, const value<BitsB> &b) {
|
||
return divmod_ss<BitsY>(a, b).second;
|
||
}
|
||
|
||
// Memory helper
|
||
struct memory_index {
|
||
bool valid;
|
||
size_t index;
|
||
|
||
template<size_t BitsAddr>
|
||
memory_index(const value<BitsAddr> &addr, size_t offset, size_t depth) {
|
||
static_assert(value<BitsAddr>::chunks <= 1, "memory address is too wide");
|
||
size_t offset_index = addr.data[0];
|
||
|
||
valid = (offset_index >= offset && offset_index < offset + depth);
|
||
index = offset_index - offset;
|
||
}
|
||
};
|
||
|
||
} // namespace cxxrtl_yosys
|
||
|
||
#endif
|