yosys/passes/techmap/extract_reduce.cc

325 lines
9.3 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2017 Robert Ou <rqou@robertou.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include <deque>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct ExtractReducePass : public Pass
{
enum GateType {
And,
Or,
Xor
};
ExtractReducePass() : Pass("extract_reduce", "converts gate chains into $reduce_* cells") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" extract_reduce [options] [selection]\n");
log("\n");
log("converts gate chains into $reduce_* cells\n");
log("\n");
log("This command finds chains of $_AND_, $_OR_, and $_XOR_ cells and replaces them\n");
log("with their corresponding $reduce_* cells. Because this command only operates on\n");
log("these cell types, it is recommended to map the design to only these cell types\n");
log("using the `abc -g` command. Note that, in some cases, it may be more effective\n");
log("to map the design to only $_AND_ cells, run extract_reduce, map the remaining\n");
log("parts of the design to AND/OR/XOR cells, and run extract_reduce a second time.\n");
log("\n");
log(" -allow-off-chain\n");
log(" Allows matching of cells that have loads outside the chain. These cells\n");
log(" will be replicated and folded into the $reduce_* cell, but the original\n");
log(" cell will remain, driving its original loads.\n");
log("\n");
}
inline bool IsRightType(Cell* cell, GateType gt)
{
return (cell->type == ID($_AND_) && gt == GateType::And) ||
(cell->type == ID($_OR_) && gt == GateType::Or) ||
(cell->type == ID($_XOR_) && gt == GateType::Xor);
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing EXTRACT_REDUCE pass.\n");
log_push();
size_t argidx;
bool allow_off_chain = false;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-allow-off-chain")
{
allow_off_chain = true;
continue;
}
break;
}
extra_args(args, argidx, design);
for (auto module : design->selected_modules())
{
SigMap sigmap(module);
// Index all of the nets in the module
dict<SigBit, Cell*> sig_to_driver;
dict<SigBit, pool<Cell*>> sig_to_sink;
for (auto cell : module->selected_cells())
{
for (auto &conn : cell->connections())
{
if (cell->output(conn.first))
for (auto bit : sigmap(conn.second))
sig_to_driver[bit] = cell;
if (cell->input(conn.first))
{
for (auto bit : sigmap(conn.second))
{
if (sig_to_sink.count(bit) == 0)
sig_to_sink[bit] = pool<Cell*>();
sig_to_sink[bit].insert(cell);
}
}
}
}
// Need to check if any wires connect to module ports
pool<SigBit> port_sigs;
for (auto wire : module->selected_wires())
if (wire->port_input || wire->port_output)
for (auto bit : sigmap(wire))
port_sigs.insert(bit);
// Actual logic starts here
pool<Cell*> consumed_cells;
for (auto cell : module->selected_cells())
{
if (consumed_cells.count(cell))
continue;
GateType gt;
if (cell->type == ID($_AND_))
gt = GateType::And;
else if (cell->type == ID($_OR_))
gt = GateType::Or;
else if (cell->type == ID($_XOR_))
gt = GateType::Xor;
else
continue;
log("Working on cell %s...\n", cell->name.c_str());
// If looking for a single chain, follow linearly to the sink
pool<Cell*> sinks;
if(!allow_off_chain)
{
Cell* head_cell = cell;
Cell* x = cell;
while (true)
{
if(!IsRightType(x, gt))
break;
head_cell = x;
auto y = sigmap(x->getPort(ID(\\Y)));
log_assert(y.size() == 1);
// Should only continue if there is one fanout back into a cell (not to a port)
if (sig_to_sink[y[0]].size() != 1)
break;
x = *sig_to_sink[y[0]].begin();
}
sinks.insert(head_cell);
}
//If off-chain loads are allowed, we have to do a wider traversal to see what the longest chain is
else
{
//BFS, following all chains until they hit a cell of a different type
//Pick the longest one
auto y = sigmap(cell->getPort(ID(\\Y)));
pool<Cell*> current_loads = sig_to_sink[y];
pool<Cell*> next_loads;
while(!current_loads.empty())
{
//Find each sink and see what they are
for(auto x : current_loads)
{
//Not one of our gates? Don't follow any further
//(but add the originating cell to the list of sinks)
if(!IsRightType(x, gt))
{
sinks.insert(cell);
continue;
}
//If this signal drives a port, add it to the sinks
//(even though it may not be the end of a chain)
if(port_sigs.count(x) && !consumed_cells.count(x))
sinks.insert(x);
//It's a match, search everything out from it
auto& next = sig_to_sink[x];
for(auto z : next)
next_loads.insert(z);
}
//If we couldn't find any downstream loads, stop.
//Create a reduction for each of the max-length chains we found
if(next_loads.empty())
{
for(auto s : current_loads)
{
//Not one of our gates? Don't follow any further
if(!IsRightType(s, gt))
continue;
sinks.insert(s);
}
break;
}
//Otherwise, continue down the chain
current_loads = next_loads;
next_loads.clear();
}
}
//We have our list, go act on it
for(auto head_cell : sinks)
{
log(" Head cell is %s\n", head_cell->name.c_str());
//Avoid duplication if we already were covered
if(consumed_cells.count(head_cell))
continue;
pool<Cell*> cur_supercell;
std::deque<Cell*> bfs_queue = {head_cell};
while (bfs_queue.size())
{
Cell* x = bfs_queue.front();
bfs_queue.pop_front();
cur_supercell.insert(x);
auto a = sigmap(x->getPort(ID(\\A)));
log_assert(a.size() == 1);
// Must have only one sink unless we're going off chain
// XXX: Check that it is indeed this node?
if( allow_off_chain || (sig_to_sink[a[0]].size() + port_sigs.count(a[0]) == 1) )
{
Cell* cell_a = sig_to_driver[a[0]];
if(cell_a && IsRightType(cell_a, gt))
{
// The cell here is the correct type, and it's definitely driving
// this current cell.
bfs_queue.push_back(cell_a);
}
}
auto b = sigmap(x->getPort(ID(\\B)));
log_assert(b.size() == 1);
// Must have only one sink
// XXX: Check that it is indeed this node?
if( allow_off_chain || (sig_to_sink[b[0]].size() + port_sigs.count(b[0]) == 1) )
{
Cell* cell_b = sig_to_driver[b[0]];
if(cell_b && IsRightType(cell_b, gt))
{
// The cell here is the correct type, and it's definitely driving only
// this current cell.
bfs_queue.push_back(cell_b);
}
}
}
log(" Cells:\n");
for (auto x : cur_supercell)
log(" %s\n", x->name.c_str());
if (cur_supercell.size() > 1)
{
// Worth it to create reduce cell
log(" Creating $reduce_* cell!\n");
pool<SigBit> input_pool;
pool<SigBit> input_pool_intermed;
for (auto x : cur_supercell)
{
input_pool.insert(sigmap(x->getPort(ID(\\A)))[0]);
input_pool.insert(sigmap(x->getPort(ID(\\B)))[0]);
input_pool_intermed.insert(sigmap(x->getPort(ID(\\Y)))[0]);
}
SigSpec input;
for (auto b : input_pool)
if (input_pool_intermed.count(b) == 0)
input.append_bit(b);
SigBit output = sigmap(head_cell->getPort(ID(\\Y))[0]);
auto new_reduce_cell = module->addCell(NEW_ID,
gt == GateType::And ? ID($reduce_and) :
gt == GateType::Or ? ID($reduce_or) :
gt == GateType::Xor ? ID($reduce_xor) : "");
new_reduce_cell->setParam(ID(\\A_SIGNED), 0);
new_reduce_cell->setParam(ID(\\A_WIDTH), input.size());
new_reduce_cell->setParam(ID(\\Y_WIDTH), 1);
new_reduce_cell->setPort(ID(\\A), input);
new_reduce_cell->setPort(ID(\\Y), output);
if(allow_off_chain)
consumed_cells.insert(head_cell);
else
{
for (auto x : cur_supercell)
consumed_cells.insert(x);
}
}
}
}
// Remove all of the head cells, since we supplant them.
// Do not remove the upstream cells since some might still be in use ("clean" will get rid of unused ones)
for (auto cell : consumed_cells)
module->remove(cell);
}
log_pop();
}
} ExtractReducePass;
PRIVATE_NAMESPACE_END