yosys/passes/techmap/dff2dffe.cc

370 lines
13 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "passes/techmap/simplemap.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct Dff2dffeWorker
{
const dict<IdString, IdString> &direct_dict;
RTLIL::Module *module;
SigMap sigmap;
CellTypes ct;
typedef std::pair<RTLIL::Cell*, int> cell_int_t;
std::map<RTLIL::SigBit, cell_int_t> bit2mux;
std::vector<RTLIL::Cell*> dff_cells;
std::map<RTLIL::SigBit, int> bitusers;
typedef std::map<RTLIL::SigBit, bool> pattern_t;
typedef std::set<pattern_t> patterns_t;
Dff2dffeWorker(RTLIL::Module *module, const dict<IdString, IdString> &direct_dict) :
direct_dict(direct_dict), module(module), sigmap(module), ct(module->design)
{
for (auto wire : module->wires()) {
if (wire->port_output)
for (auto bit : sigmap(wire))
bitusers[bit]++;
}
for (auto cell : module->cells()) {
if (cell->type == "$mux" || cell->type == "$pmux" || cell->type == "$_MUX_") {
RTLIL::SigSpec sig_y = sigmap(cell->getPort("\\Y"));
for (int i = 0; i < GetSize(sig_y); i++)
bit2mux[sig_y[i]] = cell_int_t(cell, i);
}
if (direct_dict.empty()) {
if (cell->type == "$dff" || cell->type == "$_DFF_N_" || cell->type == "$_DFF_P_")
dff_cells.push_back(cell);
} else {
if (direct_dict.count(cell->type))
dff_cells.push_back(cell);
}
for (auto conn : cell->connections()) {
if (ct.cell_output(cell->type, conn.first))
continue;
for (auto bit : sigmap(conn.second))
bitusers[bit]++;
}
}
}
patterns_t find_muxtree_feedback_patterns(RTLIL::SigBit d, RTLIL::SigBit q, pattern_t path)
{
patterns_t ret;
if (d == q) {
ret.insert(path);
return ret;
}
if (bit2mux.count(d) == 0 || bitusers[d] > 1)
return ret;
cell_int_t mux_cell_int = bit2mux.at(d);
RTLIL::SigSpec sig_a = sigmap(mux_cell_int.first->getPort("\\A"));
RTLIL::SigSpec sig_b = sigmap(mux_cell_int.first->getPort("\\B"));
RTLIL::SigSpec sig_s = sigmap(mux_cell_int.first->getPort("\\S"));
int width = GetSize(sig_a), index = mux_cell_int.second;
for (int i = 0; i < GetSize(sig_s); i++)
if (path.count(sig_s[i]) && path.at(sig_s[i]))
{
ret = find_muxtree_feedback_patterns(sig_b[i*width + index], q, path);
if (sig_b[i*width + index] == q) {
RTLIL::SigSpec s = mux_cell_int.first->getPort("\\B");
s[i*width + index] = RTLIL::Sx;
mux_cell_int.first->setPort("\\B", s);
}
return ret;
}
pattern_t path_else = path;
for (int i = 0; i < GetSize(sig_s); i++)
{
if (path.count(sig_s[i]))
continue;
pattern_t path_this = path;
path_else[sig_s[i]] = false;
path_this[sig_s[i]] = true;
for (auto &pat : find_muxtree_feedback_patterns(sig_b[i*width + index], q, path_this))
ret.insert(pat);
if (sig_b[i*width + index] == q) {
RTLIL::SigSpec s = mux_cell_int.first->getPort("\\B");
s[i*width + index] = RTLIL::Sx;
mux_cell_int.first->setPort("\\B", s);
}
}
for (auto &pat : find_muxtree_feedback_patterns(sig_a[index], q, path_else))
ret.insert(pat);
if (sig_a[index] == q) {
RTLIL::SigSpec s = mux_cell_int.first->getPort("\\A");
s[index] = RTLIL::Sx;
mux_cell_int.first->setPort("\\A", s);
}
return ret;
}
void simplify_patterns(patterns_t&)
{
// TBD
}
RTLIL::SigSpec make_patterns_logic(patterns_t patterns, bool make_gates)
{
RTLIL::SigSpec or_input;
for (auto pat : patterns)
{
RTLIL::SigSpec s1, s2;
for (auto it : pat) {
s1.append(it.first);
s2.append(it.second);
}
RTLIL::SigSpec y = module->addWire(NEW_ID);
RTLIL::Cell *c = module->addNe(NEW_ID, s1, s2, y);
if (make_gates) {
simplemap(module, c);
module->remove(c);
}
or_input.append(y);
}
if (GetSize(or_input) == 0)
return RTLIL::S1;
if (GetSize(or_input) == 1)
return or_input;
RTLIL::SigSpec y = module->addWire(NEW_ID);
RTLIL::Cell *c = module->addReduceAnd(NEW_ID, or_input, y);
if (make_gates) {
simplemap(module, c);
module->remove(c);
}
return y;
}
void handle_dff_cell(RTLIL::Cell *dff_cell)
{
RTLIL::SigSpec sig_d = sigmap(dff_cell->getPort("\\D"));
RTLIL::SigSpec sig_q = sigmap(dff_cell->getPort("\\Q"));
std::map<patterns_t, std::set<int>> grouped_patterns;
std::set<int> remaining_indices;
for (int i = 0 ; i < GetSize(sig_d); i++) {
patterns_t patterns = find_muxtree_feedback_patterns(sig_d[i], sig_q[i], pattern_t());
if (!patterns.empty()) {
simplify_patterns(patterns);
grouped_patterns[patterns].insert(i);
} else
remaining_indices.insert(i);
}
for (auto &it : grouped_patterns) {
RTLIL::SigSpec new_sig_d, new_sig_q;
for (int i : it.second) {
new_sig_d.append(sig_d[i]);
new_sig_q.append(sig_q[i]);
}
if (!direct_dict.empty()) {
log(" converting %s cell %s to %s for %s -> %s.\n", log_id(dff_cell->type), log_id(dff_cell), log_id(direct_dict.at(dff_cell->type)), log_signal(new_sig_d), log_signal(new_sig_q));
dff_cell->setPort("\\E", make_patterns_logic(it.first, true));
dff_cell->type = direct_dict.at(dff_cell->type);
} else
if (dff_cell->type == "$dff") {
RTLIL::Cell *new_cell = module->addDffe(NEW_ID, dff_cell->getPort("\\CLK"), make_patterns_logic(it.first, false),
new_sig_d, new_sig_q, dff_cell->getParam("\\CLK_POLARITY").as_bool(), true);
log(" created $dffe cell %s for %s -> %s.\n", log_id(new_cell), log_signal(new_sig_d), log_signal(new_sig_q));
} else {
RTLIL::Cell *new_cell = module->addDffeGate(NEW_ID, dff_cell->getPort("\\C"), make_patterns_logic(it.first, true),
new_sig_d, new_sig_q, dff_cell->type == "$_DFF_P_", true);
log(" created %s cell %s for %s -> %s.\n", log_id(new_cell->type), log_id(new_cell), log_signal(new_sig_d), log_signal(new_sig_q));
}
}
if (!direct_dict.empty())
return;
if (remaining_indices.empty()) {
log(" removing now obsolete cell %s.\n", log_id(dff_cell));
module->remove(dff_cell);
} else if (GetSize(remaining_indices) != GetSize(sig_d)) {
log(" removing %d now obsolete bits from cell %s.\n", GetSize(sig_d) - GetSize(remaining_indices), log_id(dff_cell));
RTLIL::SigSpec new_sig_d, new_sig_q;
for (int i : remaining_indices) {
new_sig_d.append(sig_d[i]);
new_sig_q.append(sig_q[i]);
}
dff_cell->setPort("\\D", new_sig_d);
dff_cell->setPort("\\Q", new_sig_q);
dff_cell->setParam("\\WIDTH", GetSize(remaining_indices));
}
}
void run()
{
log("Transforming FF to FF+Enable cells in module %s:\n", log_id(module));
for (auto dff_cell : dff_cells) {
// log("Handling candidate %s:\n", log_id(dff_cell));
handle_dff_cell(dff_cell);
}
}
};
struct Dff2dffePass : public Pass {
Dff2dffePass() : Pass("dff2dffe", "transform $dff cells to $dffe cells") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" dff2dffe [options] [selection]\n");
log("\n");
log("This pass transforms $dff cells driven by a tree of multiplexers with one or\n");
log("more feedback paths to $dffe cells. It also works on gate-level cells such as\n");
log("$_DFF_P_, $_DFF_N_ and $_MUX_.\n");
log("\n");
log(" -unmap\n");
log(" operate in the opposite direction: replace $dffe cells with combinations\n");
log(" of $dff and $mux cells. the options below are ignore in unmap mode.\n");
log("\n");
log(" -direct <internal_gate_type> <external_gate_type>\n");
log(" map directly to external gate type. <internal_gate_type> can\n");
log(" be any internal gate-level FF cell (except $_DFFE_??_). the\n");
log(" <external_gate_type> is the cell type name for a cell with an\n");
log(" identical interface to the <internal_gate_type>, except it\n");
log(" also has an high-active enable port 'E'.\n");
log(" Usually <external_gate_type> is an intemediate cell type\n");
log(" that is then translated to the final type using 'techmap'.\n");
log("\n");
log(" -direct-match <pattern>\n");
log(" like -direct for all DFF cell types matching the expression.\n");
log(" this will use $__DFFE_* as <external_gate_type> matching the\n");
log(" internal gate type $_DFF_*_, except for $_DFF_[NP]_, which is\n");
log(" converted to $_DFFE_[NP]_.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
log_header("Executing DFF2DFFE pass (transform $dff to $dffe where applicable).\n");
bool unmap_mode = false;
dict<IdString, IdString> direct_dict;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-unmap") {
unmap_mode = true;
continue;
}
if (args[argidx] == "-direct" && argidx + 2 < args.size()) {
string direct_from = RTLIL::escape_id(args[++argidx]);
string direct_to = RTLIL::escape_id(args[++argidx]);
direct_dict[direct_from] = direct_to;
continue;
}
if (args[argidx] == "-direct-match" && argidx + 1 < args.size()) {
bool found_match = false;
const char *pattern = args[++argidx].c_str();
if (patmatch(pattern, "$_DFF_P_" )) found_match = true, direct_dict["$_DFF_P_" ] = "$_DFFE_PP_";
if (patmatch(pattern, "$_DFF_N_" )) found_match = true, direct_dict["$_DFF_N_" ] = "$_DFFE_NP_";
if (patmatch(pattern, "$_DFF_NN0_")) found_match = true, direct_dict["$_DFF_NN0_"] = "$__DFFE_NN0";
if (patmatch(pattern, "$_DFF_NN1_")) found_match = true, direct_dict["$_DFF_NN1_"] = "$__DFFE_NN1";
if (patmatch(pattern, "$_DFF_NP0_")) found_match = true, direct_dict["$_DFF_NP0_"] = "$__DFFE_NP0";
if (patmatch(pattern, "$_DFF_NP1_")) found_match = true, direct_dict["$_DFF_NP1_"] = "$__DFFE_NP1";
if (patmatch(pattern, "$_DFF_PN0_")) found_match = true, direct_dict["$_DFF_PN0_"] = "$__DFFE_PN0";
if (patmatch(pattern, "$_DFF_PN1_")) found_match = true, direct_dict["$_DFF_PN1_"] = "$__DFFE_PN1";
if (patmatch(pattern, "$_DFF_PP0_")) found_match = true, direct_dict["$_DFF_PP0_"] = "$__DFFE_PP0";
if (patmatch(pattern, "$_DFF_PP1_")) found_match = true, direct_dict["$_DFF_PP1_"] = "$__DFFE_PP1";
if (!found_match)
log_cmd_error("No cell types matched pattern '%s'.\n", pattern);
continue;
}
break;
}
extra_args(args, argidx, design);
if (!direct_dict.empty()) {
log("Selected cell types for direct conversion:\n");
for (auto &it : direct_dict)
log(" %s -> %s\n", log_id(it.first), log_id(it.second));
}
for (auto mod : design->selected_modules())
if (!mod->has_processes_warn())
{
if (unmap_mode) {
for (auto cell : mod->selected_cells()) {
if (cell->type == "$dffe") {
RTLIL::SigSpec tmp = mod->addWire(NEW_ID, GetSize(cell->getPort("\\D")));
mod->addDff(NEW_ID, cell->getPort("\\CLK"), tmp, cell->getPort("\\Q"), cell->getParam("\\CLK_POLARITY").as_bool());
if (cell->getParam("\\EN_POLARITY").as_bool())
mod->addMux(NEW_ID, cell->getPort("\\Q"), cell->getPort("\\D"), cell->getPort("\\EN"), tmp);
else
mod->addMux(NEW_ID, cell->getPort("\\D"), cell->getPort("\\Q"), cell->getPort("\\EN"), tmp);
mod->remove(cell);
continue;
}
if (cell->type.substr(0, 7) == "$_DFFE_") {
bool clk_pol = cell->type.substr(7, 1) == "P";
bool en_pol = cell->type.substr(8, 1) == "P";
RTLIL::SigSpec tmp = mod->addWire(NEW_ID);
mod->addDff(NEW_ID, cell->getPort("\\C"), tmp, cell->getPort("\\Q"), clk_pol);
if (en_pol)
mod->addMux(NEW_ID, cell->getPort("\\Q"), cell->getPort("\\D"), cell->getPort("\\E"), tmp);
else
mod->addMux(NEW_ID, cell->getPort("\\D"), cell->getPort("\\Q"), cell->getPort("\\E"), tmp);
mod->remove(cell);
continue;
}
}
continue;
}
Dff2dffeWorker worker(mod, direct_dict);
worker.run();
}
}
} Dff2dffePass;
PRIVATE_NAMESPACE_END