yosys/techlibs/coolrunner2/coolrunner2_sop.cc

235 lines
8.0 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2017 Robert Ou <rqou@robertou.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct Coolrunner2SopPass : public Pass {
Coolrunner2SopPass() : Pass("coolrunner2_sop", "break $sop cells into ANDTERM/ORTERM cells") { }
void help() override
{
log("\n");
log(" coolrunner2_sop [options] [selection]\n");
log("\n");
log("Break $sop cells into ANDTERM/ORTERM cells.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing COOLRUNNER2_SOP pass (break $sop cells into ANDTERM/ORTERM cells).\n");
extra_args(args, 1, design);
for (auto module : design->selected_modules())
{
pool<Cell*> cells_to_remove;
SigMap sigmap(module);
// Find all the $_NOT_ cells
dict<SigBit, tuple<SigBit, Cell*>> not_cells;
for (auto cell : module->selected_cells())
{
if (cell->type == ID($_NOT_))
{
auto not_input = sigmap(cell->getPort(ID::A)[0]);
auto not_output = sigmap(cell->getPort(ID::Y)[0]);
not_cells[not_input] = tuple<SigBit, Cell*>(not_output, cell);
}
}
// Find wires that need to become special product terms
dict<SigBit, pool<tuple<Cell*, IdString>>> special_pterms_no_inv;
dict<SigBit, pool<tuple<Cell*, IdString>>> special_pterms_inv;
for (auto cell : module->selected_cells())
{
if (cell->type.in(ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(FTCP), ID(FTCP_N), ID(FTDCP),
ID(FDCPE), ID(FDCPE_N), ID(FDDCPE), ID(LDCP), ID(LDCP_N)))
{
if (cell->hasPort(ID(PRE)))
special_pterms_no_inv[sigmap(cell->getPort(ID(PRE))[0])].insert(
make_tuple(cell, ID(PRE)));
if (cell->hasPort(ID::CLR))
special_pterms_no_inv[sigmap(cell->getPort(ID::CLR)[0])].insert(
make_tuple(cell, ID::CLR));
if (cell->hasPort(ID(CE)))
special_pterms_no_inv[sigmap(cell->getPort(ID(CE))[0])].insert(
make_tuple(cell, ID(CE)));
if (cell->hasPort(ID::C))
special_pterms_inv[sigmap(cell->getPort(ID::C)[0])].insert(
make_tuple(cell, ID::C));
if (cell->hasPort(ID::G))
special_pterms_inv[sigmap(cell->getPort(ID::G)[0])].insert(
make_tuple(cell, ID::G));
}
}
// Process $sop cells
for (auto cell : module->selected_cells())
{
if (cell->type == ID($sop))
{
// Read the inputs/outputs/parameters of the $sop cell
auto sop_inputs = sigmap(cell->getPort(ID::A));
auto sop_output = sigmap(cell->getPort(ID::Y))[0];
auto sop_depth = cell->getParam(ID::DEPTH).as_int();
auto sop_width = cell->getParam(ID::WIDTH).as_int();
auto sop_table = cell->getParam(ID::TABLE);
auto sop_output_wire_name = sop_output.wire->name.c_str();
// Check for a $_NOT_ at the output
bool has_invert = false;
if (not_cells.count(sop_output))
{
auto not_cell = not_cells.at(sop_output);
has_invert = true;
sop_output = std::get<0>(not_cell);
// remove the $_NOT_ cell because it gets folded into the xor
cells_to_remove.insert(std::get<1>(not_cell));
}
// Check for special P-term usage
bool is_special_pterm =
special_pterms_no_inv.count(sop_output) || special_pterms_inv.count(sop_output);
// Construct AND cells
pool<SigBit> intermed_wires;
for (int i = 0; i < sop_depth; i++) {
// Wire for the output
auto and_out = module->addWire(
module->uniquify(stringf("$xc2sop$%s_AND%d_OUT", sop_output_wire_name, i)));
intermed_wires.insert(and_out);
// Signals for the inputs
pool<SigBit> and_in_true;
pool<SigBit> and_in_comp;
for (int j = 0; j < sop_width; j++)
{
if (sop_table[2 * (i * sop_width + j) + 0])
{
and_in_comp.insert(sop_inputs[j]);
}
if (sop_table[2 * (i * sop_width + j) + 1])
{
and_in_true.insert(sop_inputs[j]);
}
}
// Construct the cell
auto and_cell = module->addCell(
module->uniquify(stringf("$xc2sop$%s_AND%d", sop_output_wire_name, i)),
ID(ANDTERM));
and_cell->setParam(ID(TRUE_INP), GetSize(and_in_true));
and_cell->setParam(ID(COMP_INP), GetSize(and_in_comp));
and_cell->setPort(ID(OUT), and_out);
and_cell->setPort(ID(IN), and_in_true);
and_cell->setPort(ID(IN_B), and_in_comp);
}
if (sop_depth == 1)
{
// If there is only one term, don't construct an OR cell. Directly construct the XOR gate
auto xor_cell = module->addCell(
module->uniquify(stringf("$xc2sop$%s_XOR", sop_output_wire_name)),
ID(MACROCELL_XOR));
xor_cell->setParam(ID(INVERT_OUT), has_invert);
xor_cell->setPort(ID(IN_PTC), *intermed_wires.begin());
xor_cell->setPort(ID(OUT), sop_output);
// Special P-term handling
if (is_special_pterm)
{
// Can always connect the P-term directly if it's going
// into something invert-capable
for (const auto &x : special_pterms_inv[sop_output])
{
std::get<0>(x)->setPort(std::get<1>(x), *intermed_wires.begin());
// If this signal is indeed inverted, flip the cell polarity
if (has_invert)
{
auto cell = std::get<0>(x);
if (cell->type == ID(FDCP)) cell->type = ID(FDCP_N);
else if (cell->type == ID(FDCP_N)) cell->type = ID(FDCP);
else if (cell->type == ID(FTCP)) cell->type = ID(FTCP_N);
else if (cell->type == ID(FTCP_N)) cell->type = ID(FTCP);
else if (cell->type == ID(FDCPE)) cell->type = ID(FDCPE_N);
else if (cell->type == ID(FDCPE_N)) cell->type = ID(FDCPE);
else if (cell->type == ID(LDCP)) cell->type = ID(LDCP_N);
else if (cell->type == ID(LDCP_N)) cell->type = ID(LDCP);
else log_assert(!"Internal error! Bad cell type!");
}
}
// If it's going into something that's not invert-capable,
// connect it directly only if this signal isn't inverted
if (!has_invert)
{
for (auto x : special_pterms_no_inv[sop_output])
std::get<0>(x)->setPort(std::get<1>(x), *intermed_wires.begin());
}
// Otherwise, a feedthrough P-term has to be created. Leave that to happen
// in the coolrunner2_fixup pass.
}
}
else
{
// Wire from OR to XOR
auto or_to_xor_wire = module->addWire(
module->uniquify(stringf("$xc2sop$%s_OR_OUT", sop_output_wire_name)));
// Construct the OR cell
auto or_cell = module->addCell(
module->uniquify(stringf("$xc2sop$%s_OR", sop_output_wire_name)),
ID(ORTERM));
or_cell->setParam(ID::WIDTH, sop_depth);
or_cell->setPort(ID(IN), intermed_wires);
or_cell->setPort(ID(OUT), or_to_xor_wire);
// Construct the XOR cell
auto xor_cell = module->addCell(
module->uniquify(stringf("$xc2sop$%s_XOR", sop_output_wire_name)),
ID(MACROCELL_XOR));
xor_cell->setParam(ID(INVERT_OUT), has_invert);
xor_cell->setPort(ID(IN_ORTERM), or_to_xor_wire);
xor_cell->setPort(ID(OUT), sop_output);
}
// Finally, remove the $sop cell
cells_to_remove.insert(cell);
}
}
// Actually do the removal now that we aren't iterating
for (auto cell : cells_to_remove)
{
module->remove(cell);
}
}
}
} Coolrunner2SopPass;
PRIVATE_NAMESPACE_END