mirror of https://github.com/YosysHQ/yosys.git
919 lines
29 KiB
C++
919 lines
29 KiB
C++
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
|
|
* Copyright (C) 2020 Marcelina Kościelnicka <mwk@0x04.net>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "kernel/log.h"
|
|
#include "kernel/register.h"
|
|
#include "kernel/rtlil.h"
|
|
#include "kernel/qcsat.h"
|
|
#include "kernel/modtools.h"
|
|
#include "kernel/sigtools.h"
|
|
#include "kernel/ffinit.h"
|
|
#include "kernel/ff.h"
|
|
#include "passes/techmap/simplemap.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
USING_YOSYS_NAMESPACE
|
|
PRIVATE_NAMESPACE_BEGIN
|
|
|
|
struct OptDffOptions
|
|
{
|
|
bool nosdff;
|
|
bool nodffe;
|
|
bool simple_dffe;
|
|
bool sat;
|
|
bool keepdc;
|
|
};
|
|
|
|
struct OptDffWorker
|
|
{
|
|
const OptDffOptions &opt;
|
|
|
|
Module *module;
|
|
typedef std::pair<RTLIL::Cell*, int> cell_int_t;
|
|
SigMap sigmap;
|
|
FfInitVals initvals;
|
|
dict<SigBit, int> bitusers;
|
|
dict<SigBit, cell_int_t> bit2mux;
|
|
|
|
typedef std::map<RTLIL::SigBit, bool> pattern_t;
|
|
typedef std::set<pattern_t> patterns_t;
|
|
typedef std::pair<RTLIL::SigBit, bool> ctrl_t;
|
|
typedef std::set<ctrl_t> ctrls_t;
|
|
|
|
// Used as a queue.
|
|
std::vector<Cell *> dff_cells;
|
|
|
|
OptDffWorker(const OptDffOptions &opt, Module *mod) : opt(opt), module(mod), sigmap(mod), initvals(&sigmap, mod) {
|
|
// Gathering two kinds of information here for every sigmapped SigBit:
|
|
//
|
|
// - bitusers: how many users it has (muxes will only be merged into FFs if this is 1, making the FF the only user)
|
|
// - bit2mux: the mux cell and bit index that drives it, if any
|
|
|
|
for (auto wire : module->wires())
|
|
{
|
|
if (wire->port_output)
|
|
for (auto bit : sigmap(wire))
|
|
bitusers[bit]++;
|
|
}
|
|
|
|
for (auto cell : module->cells()) {
|
|
if (cell->type.in(ID($mux), ID($pmux), ID($_MUX_))) {
|
|
RTLIL::SigSpec sig_y = sigmap(cell->getPort(ID::Y));
|
|
for (int i = 0; i < GetSize(sig_y); i++)
|
|
bit2mux[sig_y[i]] = cell_int_t(cell, i);
|
|
}
|
|
|
|
for (auto conn : cell->connections()) {
|
|
bool is_output = cell->output(conn.first);
|
|
if (!is_output || !cell->known()) {
|
|
for (auto bit : sigmap(conn.second))
|
|
bitusers[bit]++;
|
|
}
|
|
}
|
|
|
|
if (module->design->selected(module, cell) && RTLIL::builtin_ff_cell_types().count(cell->type))
|
|
dff_cells.push_back(cell);
|
|
}
|
|
|
|
}
|
|
|
|
State combine_const(State a, State b) {
|
|
if (a == State::Sx && !opt.keepdc)
|
|
return b;
|
|
if (b == State::Sx && !opt.keepdc)
|
|
return a;
|
|
if (a == b)
|
|
return a;
|
|
return State::Sm;
|
|
}
|
|
|
|
patterns_t find_muxtree_feedback_patterns(RTLIL::SigBit d, RTLIL::SigBit q, pattern_t path)
|
|
{
|
|
patterns_t ret;
|
|
|
|
if (d == q) {
|
|
ret.insert(path);
|
|
return ret;
|
|
}
|
|
|
|
if (bit2mux.count(d) == 0 || bitusers[d] > 1)
|
|
return ret;
|
|
|
|
cell_int_t mbit = bit2mux.at(d);
|
|
RTLIL::SigSpec sig_a = sigmap(mbit.first->getPort(ID::A));
|
|
RTLIL::SigSpec sig_b = sigmap(mbit.first->getPort(ID::B));
|
|
RTLIL::SigSpec sig_s = sigmap(mbit.first->getPort(ID::S));
|
|
int width = GetSize(sig_a), index = mbit.second;
|
|
|
|
for (int i = 0; i < GetSize(sig_s); i++)
|
|
if (path.count(sig_s[i]) && path.at(sig_s[i]))
|
|
{
|
|
ret = find_muxtree_feedback_patterns(sig_b[i*width + index], q, path);
|
|
|
|
if (sig_b[i*width + index] == q) {
|
|
RTLIL::SigSpec s = mbit.first->getPort(ID::B);
|
|
s[i*width + index] = RTLIL::Sx;
|
|
mbit.first->setPort(ID::B, s);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
pattern_t path_else = path;
|
|
|
|
for (int i = 0; i < GetSize(sig_s); i++)
|
|
{
|
|
if (path.count(sig_s[i]))
|
|
continue;
|
|
|
|
pattern_t path_this = path;
|
|
path_else[sig_s[i]] = false;
|
|
path_this[sig_s[i]] = true;
|
|
|
|
for (auto &pat : find_muxtree_feedback_patterns(sig_b[i*width + index], q, path_this))
|
|
ret.insert(pat);
|
|
|
|
if (sig_b[i*width + index] == q) {
|
|
RTLIL::SigSpec s = mbit.first->getPort(ID::B);
|
|
s[i*width + index] = RTLIL::Sx;
|
|
mbit.first->setPort(ID::B, s);
|
|
}
|
|
}
|
|
|
|
for (auto &pat : find_muxtree_feedback_patterns(sig_a[index], q, path_else))
|
|
ret.insert(pat);
|
|
|
|
if (sig_a[index] == q) {
|
|
RTLIL::SigSpec s = mbit.first->getPort(ID::A);
|
|
s[index] = RTLIL::Sx;
|
|
mbit.first->setPort(ID::A, s);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void simplify_patterns(patterns_t&)
|
|
{
|
|
// TBD
|
|
}
|
|
|
|
ctrl_t make_patterns_logic(const patterns_t &patterns, const ctrls_t &ctrls, bool make_gates)
|
|
{
|
|
if (patterns.empty() && GetSize(ctrls) == 1) {
|
|
return *ctrls.begin();
|
|
}
|
|
|
|
RTLIL::SigSpec or_input;
|
|
|
|
for (auto pat : patterns)
|
|
{
|
|
RTLIL::SigSpec s1, s2;
|
|
for (auto it : pat) {
|
|
s1.append(it.first);
|
|
s2.append(it.second);
|
|
}
|
|
|
|
RTLIL::SigSpec y = module->addWire(NEW_ID);
|
|
RTLIL::Cell *c = module->addNe(NEW_ID, s1, s2, y);
|
|
|
|
if (make_gates) {
|
|
simplemap(module, c);
|
|
module->remove(c);
|
|
}
|
|
|
|
or_input.append(y);
|
|
}
|
|
for (auto item : ctrls) {
|
|
if (item.second)
|
|
or_input.append(item.first);
|
|
else if (make_gates)
|
|
or_input.append(module->NotGate(NEW_ID, item.first));
|
|
else
|
|
or_input.append(module->Not(NEW_ID, item.first));
|
|
}
|
|
|
|
if (GetSize(or_input) == 0)
|
|
return ctrl_t(State::S1, true);
|
|
|
|
if (GetSize(or_input) == 1)
|
|
return ctrl_t(or_input, true);
|
|
|
|
RTLIL::SigSpec y = module->addWire(NEW_ID);
|
|
RTLIL::Cell *c = module->addReduceAnd(NEW_ID, or_input, y);
|
|
|
|
if (make_gates) {
|
|
simplemap(module, c);
|
|
module->remove(c);
|
|
}
|
|
|
|
return ctrl_t(y, true);
|
|
}
|
|
|
|
ctrl_t combine_resets(const ctrls_t &ctrls, bool make_gates)
|
|
{
|
|
if (GetSize(ctrls) == 1) {
|
|
return *ctrls.begin();
|
|
}
|
|
|
|
RTLIL::SigSpec or_input;
|
|
|
|
bool final_pol = false;
|
|
for (auto item : ctrls) {
|
|
if (item.second)
|
|
final_pol = true;
|
|
}
|
|
|
|
for (auto item : ctrls) {
|
|
if (item.second == final_pol)
|
|
or_input.append(item.first);
|
|
else if (make_gates)
|
|
or_input.append(module->NotGate(NEW_ID, item.first));
|
|
else
|
|
or_input.append(module->Not(NEW_ID, item.first));
|
|
}
|
|
|
|
RTLIL::SigSpec y = module->addWire(NEW_ID);
|
|
RTLIL::Cell *c = final_pol ? module->addReduceOr(NEW_ID, or_input, y) : module->addReduceAnd(NEW_ID, or_input, y);
|
|
|
|
if (make_gates) {
|
|
simplemap(module, c);
|
|
module->remove(c);
|
|
}
|
|
|
|
return ctrl_t(y, final_pol);
|
|
}
|
|
|
|
bool run() {
|
|
// We have all the information we need, and the list of FFs to process as well. Do it.
|
|
bool did_something = false;
|
|
while (!dff_cells.empty()) {
|
|
Cell *cell = dff_cells.back();
|
|
dff_cells.pop_back();
|
|
// Break down the FF into pieces.
|
|
FfData ff(&initvals, cell);
|
|
bool changed = false;
|
|
|
|
if (!ff.width) {
|
|
ff.remove();
|
|
did_something = true;
|
|
continue;
|
|
}
|
|
|
|
if (ff.has_sr) {
|
|
bool sr_removed = false;
|
|
std::vector<int> keep_bits;
|
|
// Check for always-active S/R bits.
|
|
for (int i = 0; i < ff.width; i++) {
|
|
if (ff.sig_clr[i] == (ff.pol_clr ? State::S1 : State::S0) || (!opt.keepdc && ff.sig_clr[i] == State::Sx)) {
|
|
// Always-active clear — connect Q bit to 0.
|
|
initvals.remove_init(ff.sig_q[i]);
|
|
module->connect(ff.sig_q[i], State::S0);
|
|
log("Handling always-active CLR at position %d on %s (%s) from module %s (changing to const driver).\n",
|
|
i, log_id(cell), log_id(cell->type), log_id(module));
|
|
sr_removed = true;
|
|
} else if (ff.sig_set[i] == (ff.pol_set ? State::S1 : State::S0) || (!opt.keepdc && ff.sig_set[i] == State::Sx)) {
|
|
// Always-active set — connect Q bit to 1 if clear inactive, 0 if reset active.
|
|
initvals.remove_init(ff.sig_q[i]);
|
|
if (!ff.pol_clr) {
|
|
module->connect(ff.sig_q[i], ff.sig_clr[i]);
|
|
} else if (ff.is_fine) {
|
|
module->addNotGate(NEW_ID, ff.sig_clr[i], ff.sig_q[i]);
|
|
} else {
|
|
module->addNot(NEW_ID, ff.sig_clr[i], ff.sig_q[i]);
|
|
}
|
|
log("Handling always-active SET at position %d on %s (%s) from module %s (changing to combinatorial circuit).\n",
|
|
i, log_id(cell), log_id(cell->type), log_id(module));
|
|
sr_removed = true;
|
|
} else {
|
|
keep_bits.push_back(i);
|
|
}
|
|
}
|
|
if (sr_removed) {
|
|
if (keep_bits.empty()) {
|
|
module->remove(cell);
|
|
did_something = true;
|
|
continue;
|
|
}
|
|
ff = ff.slice(keep_bits);
|
|
ff.cell = cell;
|
|
changed = true;
|
|
}
|
|
|
|
if (ff.pol_clr ? ff.sig_clr.is_fully_zero() : ff.sig_clr.is_fully_ones()) {
|
|
// CLR is useless, try to kill it.
|
|
bool failed = false;
|
|
for (int i = 0; i < ff.width; i++)
|
|
if (ff.sig_set[i] != ff.sig_set[0])
|
|
failed = true;
|
|
if (!failed) {
|
|
log("Removing never-active CLR on %s (%s) from module %s.\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.has_sr = false;
|
|
ff.has_arst = true;
|
|
ff.pol_arst = ff.pol_set;
|
|
ff.sig_arst = ff.sig_set[0];
|
|
ff.val_arst = Const(State::S1, ff.width);
|
|
changed = true;
|
|
}
|
|
} else if (ff.pol_set ? ff.sig_set.is_fully_zero() : ff.sig_set.is_fully_ones()) {
|
|
// SET is useless, try to kill it.
|
|
bool failed = false;
|
|
for (int i = 0; i < ff.width; i++)
|
|
if (ff.sig_clr[i] != ff.sig_clr[0])
|
|
failed = true;
|
|
if (!failed) {
|
|
log("Removing never-active SET on %s (%s) from module %s.\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.has_sr = false;
|
|
ff.has_arst = true;
|
|
ff.pol_arst = ff.pol_clr;
|
|
ff.sig_arst = ff.sig_clr[0];
|
|
ff.val_arst = Const(State::S0, ff.width);
|
|
changed = true;
|
|
}
|
|
} else if (ff.pol_clr == ff.pol_set) {
|
|
// Try a more complex conversion to plain async reset.
|
|
State val_neutral = ff.pol_set ? State::S0 : State::S1;
|
|
Const val_arst;
|
|
SigSpec sig_arst;
|
|
if (ff.sig_clr[0] == val_neutral)
|
|
sig_arst = ff.sig_set[0];
|
|
else
|
|
sig_arst = ff.sig_clr[0];
|
|
bool failed = false;
|
|
for (int i = 0; i < ff.width; i++) {
|
|
if (ff.sig_clr[i] == sig_arst && ff.sig_set[i] == val_neutral)
|
|
val_arst.bits.push_back(State::S0);
|
|
else if (ff.sig_set[i] == sig_arst && ff.sig_clr[i] == val_neutral)
|
|
val_arst.bits.push_back(State::S1);
|
|
else
|
|
failed = true;
|
|
}
|
|
if (!failed) {
|
|
log("Converting CLR/SET to ARST on %s (%s) from module %s.\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.has_sr = false;
|
|
ff.has_arst = true;
|
|
ff.val_arst = val_arst;
|
|
ff.sig_arst = sig_arst;
|
|
ff.pol_arst = ff.pol_clr;
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ff.has_aload) {
|
|
if (ff.sig_aload == (ff.pol_aload ? State::S0 : State::S1) || (!opt.keepdc && ff.sig_aload == State::Sx)) {
|
|
// Always-inactive enable — remove.
|
|
log("Removing never-active async load on %s (%s) from module %s.\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.has_aload = false;
|
|
changed = true;
|
|
} else if (ff.sig_aload == (ff.pol_aload ? State::S1 : State::S0)) {
|
|
// Always-active enable. Make a comb circuit, nuke the FF/latch.
|
|
log("Handling always-active async load on %s (%s) from module %s (changing to combinatorial circuit).\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.remove();
|
|
if (ff.has_sr) {
|
|
SigSpec tmp;
|
|
if (ff.is_fine) {
|
|
if (ff.pol_set)
|
|
tmp = module->MuxGate(NEW_ID, ff.sig_ad, State::S1, ff.sig_set);
|
|
else
|
|
tmp = module->MuxGate(NEW_ID, State::S1, ff.sig_ad, ff.sig_set);
|
|
if (ff.pol_clr)
|
|
module->addMuxGate(NEW_ID, tmp, State::S0, ff.sig_clr, ff.sig_q);
|
|
else
|
|
module->addMuxGate(NEW_ID, State::S0, tmp, ff.sig_clr, ff.sig_q);
|
|
} else {
|
|
if (ff.pol_set)
|
|
tmp = module->Or(NEW_ID, ff.sig_ad, ff.sig_set);
|
|
else
|
|
tmp = module->Or(NEW_ID, ff.sig_ad, module->Not(NEW_ID, ff.sig_set));
|
|
if (ff.pol_clr)
|
|
module->addAnd(NEW_ID, tmp, module->Not(NEW_ID, ff.sig_clr), ff.sig_q);
|
|
else
|
|
module->addAnd(NEW_ID, tmp, ff.sig_clr, ff.sig_q);
|
|
}
|
|
} else if (ff.has_arst) {
|
|
if (ff.is_fine) {
|
|
if (ff.pol_arst)
|
|
module->addMuxGate(NEW_ID, ff.sig_ad, ff.val_arst[0], ff.sig_arst, ff.sig_q);
|
|
else
|
|
module->addMuxGate(NEW_ID, ff.val_arst[0], ff.sig_ad, ff.sig_arst, ff.sig_q);
|
|
} else {
|
|
if (ff.pol_arst)
|
|
module->addMux(NEW_ID, ff.sig_ad, ff.val_arst, ff.sig_arst, ff.sig_q);
|
|
else
|
|
module->addMux(NEW_ID, ff.val_arst, ff.sig_ad, ff.sig_arst, ff.sig_q);
|
|
}
|
|
} else {
|
|
module->connect(ff.sig_q, ff.sig_ad);
|
|
}
|
|
did_something = true;
|
|
continue;
|
|
} else if (ff.sig_ad.is_fully_const() && !ff.has_arst && !ff.has_sr) {
|
|
log("Changing const-value async load to async reset on %s (%s) from module %s.\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.has_arst = true;
|
|
ff.has_aload = false;
|
|
ff.sig_arst = ff.sig_aload;
|
|
ff.pol_arst = ff.pol_aload;
|
|
ff.val_arst = ff.sig_ad.as_const();
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
if (ff.has_arst) {
|
|
if (ff.sig_arst == (ff.pol_arst ? State::S0 : State::S1)) {
|
|
// Always-inactive reset — remove.
|
|
log("Removing never-active ARST on %s (%s) from module %s.\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.has_arst = false;
|
|
changed = true;
|
|
} else if (ff.sig_arst == (ff.pol_arst ? State::S1 : State::S0) || (!opt.keepdc && ff.sig_arst == State::Sx)) {
|
|
// Always-active async reset — change to const driver.
|
|
log("Handling always-active ARST on %s (%s) from module %s (changing to const driver).\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.remove();
|
|
module->connect(ff.sig_q, ff.val_arst);
|
|
did_something = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (ff.has_srst) {
|
|
if (ff.sig_srst == (ff.pol_srst ? State::S0 : State::S1)) {
|
|
// Always-inactive reset — remove.
|
|
log("Removing never-active SRST on %s (%s) from module %s.\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.has_srst = false;
|
|
changed = true;
|
|
} else if (ff.sig_srst == (ff.pol_srst ? State::S1 : State::S0) || (!opt.keepdc && ff.sig_srst == State::Sx)) {
|
|
// Always-active sync reset — connect to D instead.
|
|
log("Handling always-active SRST on %s (%s) from module %s (changing to const D).\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.has_srst = false;
|
|
if (!ff.ce_over_srst)
|
|
ff.has_ce = false;
|
|
ff.sig_d = ff.val_srst;
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
if (ff.has_ce) {
|
|
if (ff.sig_ce == (ff.pol_ce ? State::S0 : State::S1) || (!opt.keepdc && ff.sig_ce == State::Sx)) {
|
|
// Always-inactive enable — remove.
|
|
if (ff.has_srst && !ff.ce_over_srst) {
|
|
log("Handling never-active EN on %s (%s) from module %s (connecting SRST instead).\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
// FF with sync reset — connect the sync reset to D instead.
|
|
ff.pol_ce = ff.pol_srst;
|
|
ff.sig_ce = ff.sig_srst;
|
|
ff.has_srst = false;
|
|
ff.sig_d = ff.val_srst;
|
|
changed = true;
|
|
} else {
|
|
log("Handling never-active EN on %s (%s) from module %s (removing D path).\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
// The D input path is effectively useless, so remove it (this will be a D latch, SR latch, or a const driver).
|
|
ff.has_ce = ff.has_clk = ff.has_srst = false;
|
|
changed = true;
|
|
}
|
|
} else if (ff.sig_ce == (ff.pol_ce ? State::S1 : State::S0)) {
|
|
// Always-active enable. Just remove it.
|
|
// For FF, just remove the useless enable.
|
|
log("Removing always-active EN on %s (%s) from module %s.\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.has_ce = false;
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
if (ff.has_clk) {
|
|
if (ff.sig_clk.is_fully_const()) {
|
|
// Const clock — the D input path is effectively useless, so remove it (this will be a D latch, SR latch, or a const driver).
|
|
log("Handling const CLK on %s (%s) from module %s (removing D path).\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.has_ce = ff.has_clk = ff.has_srst = false;
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
if ((ff.has_clk || ff.has_gclk) && ff.sig_d == ff.sig_q) {
|
|
// Q wrapped back to D, can be removed.
|
|
if (ff.has_clk && ff.has_srst) {
|
|
// FF with sync reset — connect the sync reset to D instead.
|
|
log("Handling D = Q on %s (%s) from module %s (conecting SRST instead).\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
if (ff.has_ce && ff.ce_over_srst) {
|
|
if (!ff.pol_ce) {
|
|
if (ff.is_fine)
|
|
ff.sig_ce = module->NotGate(NEW_ID, ff.sig_ce);
|
|
else
|
|
ff.sig_ce = module->Not(NEW_ID, ff.sig_ce);
|
|
}
|
|
if (!ff.pol_srst) {
|
|
if (ff.is_fine)
|
|
ff.sig_srst = module->NotGate(NEW_ID, ff.sig_srst);
|
|
else
|
|
ff.sig_srst = module->Not(NEW_ID, ff.sig_srst);
|
|
}
|
|
if (ff.is_fine)
|
|
ff.sig_ce = module->AndGate(NEW_ID, ff.sig_ce, ff.sig_srst);
|
|
else
|
|
ff.sig_ce = module->And(NEW_ID, ff.sig_ce, ff.sig_srst);
|
|
ff.pol_ce = true;
|
|
} else {
|
|
ff.pol_ce = ff.pol_srst;
|
|
ff.sig_ce = ff.sig_srst;
|
|
}
|
|
ff.has_ce = true;
|
|
ff.has_srst = false;
|
|
ff.sig_d = ff.val_srst;
|
|
changed = true;
|
|
} else {
|
|
// The D input path is effectively useless, so remove it (this will be a const-input D latch, SR latch, or a const driver).
|
|
log("Handling D = Q on %s (%s) from module %s (removing D path).\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.has_gclk = ff.has_clk = ff.has_ce = false;
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
if (ff.has_aload && !ff.has_clk && ff.sig_ad == ff.sig_q) {
|
|
log("Handling AD = Q on %s (%s) from module %s (removing async load path).\n",
|
|
log_id(cell), log_id(cell->type), log_id(module));
|
|
ff.has_aload = false;
|
|
changed = true;
|
|
}
|
|
|
|
// The cell has been simplified as much as possible already. Now try to spice it up with enables / sync resets.
|
|
if (ff.has_clk) {
|
|
if (!ff.has_arst && !ff.has_sr && (!ff.has_srst || !ff.has_ce || ff.ce_over_srst) && !opt.nosdff) {
|
|
// Try to merge sync resets.
|
|
std::map<ctrls_t, std::vector<int>> groups;
|
|
std::vector<int> remaining_indices;
|
|
Const val_srst;
|
|
|
|
for (int i = 0 ; i < ff.width; i++) {
|
|
ctrls_t resets;
|
|
State reset_val = State::Sx;
|
|
if (ff.has_srst)
|
|
reset_val = ff.val_srst[i];
|
|
while (bit2mux.count(ff.sig_d[i]) && bitusers[ff.sig_d[i]] == 1) {
|
|
cell_int_t mbit = bit2mux.at(ff.sig_d[i]);
|
|
if (GetSize(mbit.first->getPort(ID::S)) != 1)
|
|
break;
|
|
SigBit s = mbit.first->getPort(ID::S);
|
|
SigBit a = mbit.first->getPort(ID::A)[mbit.second];
|
|
SigBit b = mbit.first->getPort(ID::B)[mbit.second];
|
|
// Workaround for funny memory WE pattern.
|
|
if ((a == State::S0 || a == State::S1) && (b == State::S0 || b == State::S1))
|
|
break;
|
|
if ((b == State::S0 || b == State::S1) && (b == reset_val || reset_val == State::Sx)) {
|
|
// This is better handled by CE pattern.
|
|
if (a == ff.sig_q[i])
|
|
break;
|
|
reset_val = b.data;
|
|
resets.insert(ctrl_t(s, true));
|
|
ff.sig_d[i] = a;
|
|
} else if ((a == State::S0 || a == State::S1) && (a == reset_val || reset_val == State::Sx)) {
|
|
// This is better handled by CE pattern.
|
|
if (b == ff.sig_q[i])
|
|
break;
|
|
reset_val = a.data;
|
|
resets.insert(ctrl_t(s, false));
|
|
ff.sig_d[i] = b;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!resets.empty()) {
|
|
if (ff.has_srst)
|
|
resets.insert(ctrl_t(ff.sig_srst, ff.pol_srst));
|
|
groups[resets].push_back(i);
|
|
} else
|
|
remaining_indices.push_back(i);
|
|
val_srst.bits.push_back(reset_val);
|
|
}
|
|
|
|
for (auto &it : groups) {
|
|
FfData new_ff = ff.slice(it.second);
|
|
new_ff.val_srst = Const();
|
|
for (int i = 0; i < new_ff.width; i++) {
|
|
int j = it.second[i];
|
|
new_ff.val_srst.bits.push_back(val_srst[j]);
|
|
}
|
|
ctrl_t srst = combine_resets(it.first, ff.is_fine);
|
|
|
|
new_ff.has_srst = true;
|
|
new_ff.sig_srst = srst.first;
|
|
new_ff.pol_srst = srst.second;
|
|
if (new_ff.has_ce)
|
|
new_ff.ce_over_srst = true;
|
|
Cell *new_cell = new_ff.emit();
|
|
if (new_cell)
|
|
dff_cells.push_back(new_cell);
|
|
log("Adding SRST signal on %s (%s) from module %s (D = %s, Q = %s, rval = %s).\n",
|
|
log_id(cell), log_id(cell->type), log_id(module), log_signal(new_ff.sig_d), log_signal(new_ff.sig_q), log_signal(new_ff.val_srst));
|
|
}
|
|
|
|
if (remaining_indices.empty()) {
|
|
module->remove(cell);
|
|
did_something = true;
|
|
continue;
|
|
} else if (GetSize(remaining_indices) != ff.width) {
|
|
ff = ff.slice(remaining_indices);
|
|
ff.cell = cell;
|
|
changed = true;
|
|
}
|
|
}
|
|
if ((!ff.has_srst || !ff.has_ce || !ff.ce_over_srst) && !opt.nodffe) {
|
|
// Try to merge enables.
|
|
std::map<std::pair<patterns_t, ctrls_t>, std::vector<int>> groups;
|
|
std::vector<int> remaining_indices;
|
|
|
|
for (int i = 0 ; i < ff.width; i++) {
|
|
// First, eat up as many simple muxes as possible.
|
|
ctrls_t enables;
|
|
while (bit2mux.count(ff.sig_d[i]) && bitusers[ff.sig_d[i]] == 1) {
|
|
cell_int_t mbit = bit2mux.at(ff.sig_d[i]);
|
|
if (GetSize(mbit.first->getPort(ID::S)) != 1)
|
|
break;
|
|
SigBit s = mbit.first->getPort(ID::S);
|
|
SigBit a = mbit.first->getPort(ID::A)[mbit.second];
|
|
SigBit b = mbit.first->getPort(ID::B)[mbit.second];
|
|
if (a == ff.sig_q[i]) {
|
|
enables.insert(ctrl_t(s, true));
|
|
ff.sig_d[i] = b;
|
|
} else if (b == ff.sig_q[i]) {
|
|
enables.insert(ctrl_t(s, false));
|
|
ff.sig_d[i] = a;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
patterns_t patterns;
|
|
if (!opt.simple_dffe)
|
|
patterns = find_muxtree_feedback_patterns(ff.sig_d[i], ff.sig_q[i], pattern_t());
|
|
if (!patterns.empty() || !enables.empty()) {
|
|
if (ff.has_ce)
|
|
enables.insert(ctrl_t(ff.sig_ce, ff.pol_ce));
|
|
simplify_patterns(patterns);
|
|
groups[std::make_pair(patterns, enables)].push_back(i);
|
|
} else
|
|
remaining_indices.push_back(i);
|
|
}
|
|
|
|
for (auto &it : groups) {
|
|
FfData new_ff = ff.slice(it.second);
|
|
ctrl_t en = make_patterns_logic(it.first.first, it.first.second, ff.is_fine);
|
|
|
|
new_ff.has_ce = true;
|
|
new_ff.sig_ce = en.first;
|
|
new_ff.pol_ce = en.second;
|
|
new_ff.ce_over_srst = false;
|
|
Cell *new_cell = new_ff.emit();
|
|
if (new_cell)
|
|
dff_cells.push_back(new_cell);
|
|
log("Adding EN signal on %s (%s) from module %s (D = %s, Q = %s).\n",
|
|
log_id(cell), log_id(cell->type), log_id(module), log_signal(new_ff.sig_d), log_signal(new_ff.sig_q));
|
|
}
|
|
|
|
if (remaining_indices.empty()) {
|
|
module->remove(cell);
|
|
did_something = true;
|
|
continue;
|
|
} else if (GetSize(remaining_indices) != ff.width) {
|
|
ff = ff.slice(remaining_indices);
|
|
ff.cell = cell;
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (changed) {
|
|
// Rebuild the FF.
|
|
ff.emit();
|
|
did_something = true;
|
|
}
|
|
}
|
|
return did_something;
|
|
}
|
|
|
|
bool run_constbits() {
|
|
ModWalker modwalker(module->design, module);
|
|
QuickConeSat qcsat(modwalker);
|
|
|
|
// Run as a separate sub-pass, so that we don't mutate (non-FF) cells under ModWalker.
|
|
bool did_something = false;
|
|
for (auto cell : module->selected_cells()) {
|
|
if (!RTLIL::builtin_ff_cell_types().count(cell->type))
|
|
continue;
|
|
FfData ff(&initvals, cell);
|
|
|
|
// Now check if any bit can be replaced by a constant.
|
|
pool<int> removed_sigbits;
|
|
for (int i = 0; i < ff.width; i++) {
|
|
State val = ff.val_init[i];
|
|
if (ff.has_arst)
|
|
val = combine_const(val, ff.val_arst[i]);
|
|
if (ff.has_srst)
|
|
val = combine_const(val, ff.val_srst[i]);
|
|
if (ff.has_sr) {
|
|
if (ff.sig_clr[i] != (ff.pol_clr ? State::S0 : State::S1))
|
|
val = combine_const(val, State::S0);
|
|
if (ff.sig_set[i] != (ff.pol_set ? State::S0 : State::S1))
|
|
val = combine_const(val, State::S1);
|
|
}
|
|
if (val == State::Sm)
|
|
continue;
|
|
if (ff.has_clk || ff.has_gclk) {
|
|
if (!ff.sig_d[i].wire) {
|
|
val = combine_const(val, ff.sig_d[i].data);
|
|
if (val == State::Sm)
|
|
continue;
|
|
} else {
|
|
if (!opt.sat)
|
|
continue;
|
|
// For each register bit, try to prove that it cannot change from the initial value. If so, remove it
|
|
if (!modwalker.has_drivers(ff.sig_d.extract(i)))
|
|
continue;
|
|
if (val != State::S0 && val != State::S1)
|
|
continue;
|
|
|
|
int init_sat_pi = qcsat.importSigBit(val);
|
|
int q_sat_pi = qcsat.importSigBit(ff.sig_q[i]);
|
|
int d_sat_pi = qcsat.importSigBit(ff.sig_d[i]);
|
|
|
|
qcsat.prepare();
|
|
|
|
// Try to find out whether the register bit can change under some circumstances
|
|
bool counter_example_found = qcsat.ez->solve(qcsat.ez->IFF(q_sat_pi, init_sat_pi), qcsat.ez->NOT(qcsat.ez->IFF(d_sat_pi, init_sat_pi)));
|
|
|
|
// If the register bit cannot change, we can replace it with a constant
|
|
if (counter_example_found)
|
|
continue;
|
|
}
|
|
}
|
|
if (ff.has_aload) {
|
|
if (!ff.sig_ad[i].wire) {
|
|
val = combine_const(val, ff.sig_ad[i].data);
|
|
if (val == State::Sm)
|
|
continue;
|
|
} else {
|
|
if (!opt.sat)
|
|
continue;
|
|
// For each register bit, try to prove that it cannot change from the initial value. If so, remove it
|
|
if (!modwalker.has_drivers(ff.sig_ad.extract(i)))
|
|
continue;
|
|
if (val != State::S0 && val != State::S1)
|
|
continue;
|
|
|
|
int init_sat_pi = qcsat.importSigBit(val);
|
|
int q_sat_pi = qcsat.importSigBit(ff.sig_q[i]);
|
|
int d_sat_pi = qcsat.importSigBit(ff.sig_ad[i]);
|
|
|
|
qcsat.prepare();
|
|
|
|
// Try to find out whether the register bit can change under some circumstances
|
|
bool counter_example_found = qcsat.ez->solve(qcsat.ez->IFF(q_sat_pi, init_sat_pi), qcsat.ez->NOT(qcsat.ez->IFF(d_sat_pi, init_sat_pi)));
|
|
|
|
// If the register bit cannot change, we can replace it with a constant
|
|
if (counter_example_found)
|
|
continue;
|
|
}
|
|
}
|
|
log("Setting constant %d-bit at position %d on %s (%s) from module %s.\n", val ? 1 : 0,
|
|
i, log_id(cell), log_id(cell->type), log_id(module));
|
|
|
|
initvals.remove_init(ff.sig_q[i]);
|
|
module->connect(ff.sig_q[i], val);
|
|
removed_sigbits.insert(i);
|
|
}
|
|
if (!removed_sigbits.empty()) {
|
|
std::vector<int> keep_bits;
|
|
for (int i = 0; i < ff.width; i++)
|
|
if (!removed_sigbits.count(i))
|
|
keep_bits.push_back(i);
|
|
if (keep_bits.empty()) {
|
|
module->remove(cell);
|
|
did_something = true;
|
|
continue;
|
|
}
|
|
ff = ff.slice(keep_bits);
|
|
ff.cell = cell;
|
|
ff.emit();
|
|
did_something = true;
|
|
}
|
|
}
|
|
return did_something;
|
|
}
|
|
};
|
|
|
|
struct OptDffPass : public Pass {
|
|
OptDffPass() : Pass("opt_dff", "perform DFF optimizations") { }
|
|
void help() override
|
|
{
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
log("\n");
|
|
log(" opt_dff [-nodffe] [-nosdff] [-keepdc] [-sat] [selection]\n");
|
|
log("\n");
|
|
log("This pass converts flip-flops to a more suitable type by merging clock enables\n");
|
|
log("and synchronous reset multiplexers, removing unused control inputs, or potentially\n");
|
|
log("removes the flip-flop altogether, converting it to a constant driver.\n");
|
|
log("\n");
|
|
log(" -nodffe\n");
|
|
log(" disables dff -> dffe conversion, and other transforms recognizing clock enable\n");
|
|
log("\n");
|
|
log(" -nosdff\n");
|
|
log(" disables dff -> sdff conversion, and other transforms recognizing sync resets\n");
|
|
log("\n");
|
|
log(" -simple-dffe\n");
|
|
log(" only enables clock enable recognition transform for obvious cases\n");
|
|
log("\n");
|
|
log(" -sat\n");
|
|
log(" additionally invoke SAT solver to detect and remove flip-flops (with\n");
|
|
log(" non-constant inputs) that can also be replaced with a constant driver\n");
|
|
log("\n");
|
|
log(" -keepdc\n");
|
|
log(" some optimizations change the behavior of the circuit with respect to\n");
|
|
log(" don't-care bits. for example in 'a+0' a single x-bit in 'a' will cause\n");
|
|
log(" all result bits to be set to x. this behavior changes when 'a+0' is\n");
|
|
log(" replaced by 'a'. the -keepdc option disables all such optimizations.\n");
|
|
log("\n");
|
|
}
|
|
|
|
void execute(std::vector<std::string> args, RTLIL::Design *design) override
|
|
{
|
|
log_header(design, "Executing OPT_DFF pass (perform DFF optimizations).\n");
|
|
OptDffOptions opt;
|
|
opt.nodffe = false;
|
|
opt.nosdff = false;
|
|
opt.simple_dffe = false;
|
|
opt.keepdc = false;
|
|
opt.sat = false;
|
|
|
|
size_t argidx;
|
|
for (argidx = 1; argidx < args.size(); argidx++) {
|
|
if (args[argidx] == "-nodffe") {
|
|
opt.nodffe = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-nosdff") {
|
|
opt.nosdff = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-simple-dffe") {
|
|
opt.simple_dffe = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-keepdc") {
|
|
opt.keepdc = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-sat") {
|
|
opt.sat = true;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
extra_args(args, argidx, design);
|
|
|
|
bool did_something = false;
|
|
for (auto mod : design->selected_modules()) {
|
|
OptDffWorker worker(opt, mod);
|
|
if (worker.run())
|
|
did_something = true;
|
|
if (worker.run_constbits())
|
|
did_something = true;
|
|
}
|
|
|
|
if (did_something)
|
|
design->scratchpad_set_bool("opt.did_something", true);
|
|
}
|
|
} OptDffPass;
|
|
|
|
PRIVATE_NAMESPACE_END
|