yosys/techlibs/xilinx/abc_model.v

176 lines
6.2 KiB
Verilog

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// ============================================================================
// Box containing MUXF7.[AB] + MUXF8,
// Necessary to make these an atomic unit so that
// ABC cannot optimise just one of the MUXF7 away
// and expect to save on its delay
(* abc_box_id = 3, lib_whitebox *)
module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1);
assign O = S1 ? (S0 ? I3 : I2)
: (S0 ? I1 : I0);
endmodule
// Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
// Necessary since RAMD* and SRL* have both combinatorial (i.e.
// same-cycle read operation) and sequential (write operation
// is only committed on the next clock edge).
// To model the combinatorial path, such cells have to be split
// into comb and seq parts, with this box modelling only the former.
(* abc_box_id=2000 *)
module \$__ABC_LUT6 (input A, input [5:0] S, output Y);
endmodule
// Box to emulate comb/seq behaviour of RAMD128
(* abc_box_id=2001 *)
module \$__ABC_LUT7 (input A, input [6:0] S, output Y);
endmodule
// Boxes used to represent the comb/seq behaviour of DSP48E1
// With abc_map.v responsible for disconnecting inputs to
// the combinatorial DSP48E1 model by a register (e.g.
// disconnecting A when AREG, MREG or PREG is enabled)
// this blackbox captures the existence of a replacement
// path between AREG/BREG/CREG/etc. and P/PCOUT.
// Since the Aq/ADq/Bq/etc. inputs are assumed to arrive at
// the box at zero time, the combinatorial delay through
// these boxes thus represents the clock-to-q delay
// (arrival time) at P/PCOUT.
// Doing so should means that ABC is able to analyse the
// worst-case delay through to P, regardless of if it was
// through any combinatorial paths (e.g. B, below) or an
// internal register (A2REG).
// However, the true value of being as complete as this is
// questionable since if AREG=1 and BREG=0 (as below)
// then the worse-case path would very likely be through B
// and very unlikely to be through AREG.Q...?
//
// In graphical form:
//
// NEW "PI" >>---+
// for AREG.Q |
// |
// +---------+ | __
// A >>--X X-| | +--| \
// | DSP48E1 |P | |--->> P
// | AREG=1 |-------|__/
// B >>------| |
// +---------+
//
`define ABC_DSP48E1_MUX(__NAME__) """
module __NAME__ (input Aq, ADq, Bq, Cq, Dq, Mq, input [47:0] P, input Pq, output [47:0] O);
endmodule
"""
(* abc_box_id=2100 *) `ABC_DSP48E1_MUX(\$__ABC_DSP48E1_MULT_P_MUX )
(* abc_box_id=2101 *) `ABC_DSP48E1_MUX(\$__ABC_DSP48E1_MULT_PCOUT_MUX )
(* abc_box_id=2102 *) `ABC_DSP48E1_MUX(\$__ABC_DSP48E1_MULT_DPORT_P_MUX )
(* abc_box_id=2103 *) `ABC_DSP48E1_MUX(\$__ABC_DSP48E1_MULT_DPORT_PCOUT_MUX )
(* abc_box_id=2104 *) `ABC_DSP48E1_MUX(\$__ABC_DSP48E1_P_MUX )
(* abc_box_id=2105 *) `ABC_DSP48E1_MUX(\$__ABC_DSP48E1_PCOUT_MUX )
`define ABC_DSP48E1(__NAME__) """
module \$__ABC_DSP48E1_MULT (
output [29:0] ACOUT,
output [17:0] BCOUT,
output reg CARRYCASCOUT,
output reg [3:0] CARRYOUT,
output reg MULTSIGNOUT,
output OVERFLOW,
output reg signed [47:0] P,
output PATTERNBDETECT,
output PATTERNDETECT,
output [47:0] PCOUT,
output UNDERFLOW,
input signed [29:0] A,
input [29:0] ACIN,
input [3:0] ALUMODE,
input signed [17:0] B,
input [17:0] BCIN,
input [47:0] C,
input CARRYCASCIN,
input CARRYIN,
input [2:0] CARRYINSEL,
input CEA1,
input CEA2,
input CEAD,
input CEALUMODE,
input CEB1,
input CEB2,
input CEC,
input CECARRYIN,
input CECTRL,
input CED,
input CEINMODE,
input CEM,
input CEP,
input CLK,
input [24:0] D,
input [4:0] INMODE,
input MULTSIGNIN,
input [6:0] OPMODE,
input [47:0] PCIN,
input RSTA,
input RSTALLCARRYIN,
input RSTALUMODE,
input RSTB,
input RSTC,
input RSTCTRL,
input RSTD,
input RSTINMODE,
input RSTM,
input RSTP
);
parameter integer ACASCREG = 1;
parameter integer ADREG = 1;
parameter integer ALUMODEREG = 1;
parameter integer AREG = 1;
parameter AUTORESET_PATDET = "NO_RESET";
parameter A_INPUT = "DIRECT";
parameter integer BCASCREG = 1;
parameter integer BREG = 1;
parameter B_INPUT = "DIRECT";
parameter integer CARRYINREG = 1;
parameter integer CARRYINSELREG = 1;
parameter integer CREG = 1;
parameter integer DREG = 1;
parameter integer INMODEREG = 1;
parameter integer MREG = 1;
parameter integer OPMODEREG = 1;
parameter integer PREG = 1;
parameter SEL_MASK = "MASK";
parameter SEL_PATTERN = "PATTERN";
parameter USE_DPORT = "FALSE";
parameter USE_MULT = "MULTIPLY";
parameter USE_PATTERN_DETECT = "NO_PATDET";
parameter USE_SIMD = "ONE48";
parameter [47:0] MASK = 48'h3FFFFFFFFFFF;
parameter [47:0] PATTERN = 48'h000000000000;
parameter [3:0] IS_ALUMODE_INVERTED = 4'b0;
parameter [0:0] IS_CARRYIN_INVERTED = 1'b0;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
parameter [4:0] IS_INMODE_INVERTED = 5'b0;
parameter [6:0] IS_OPMODE_INVERTED = 7'b0;
endmodule
"""
(* abc_box_id=3000 *) `ABC_DSP48E1(\$__ABC_DSP48E1_MULT )
(* abc_box_id=3001 *) `ABC_DSP48E1(\$__ABC_DSP48E1_MULT_DPORT )
(* abc_box_id=3002 *) `ABC_DSP48E1(\$__ABC_DSP48E1 )