yosys/passes/fsm/fsm_extract.cc

373 lines
13 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]]
// Yiqiong Shi; Chan Wai Ting; Bah-Hwee Gwee; Ye Ren, "A highly efficient method for extracting FSMs from flattened gate-level netlist,"
// Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on , vol., no., pp.2610,2613, May 30 2010-June 2 2010
// doi: 10.1109/ISCAS.2010.5537093
#include "kernel/log.h"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/consteval.h"
#include "kernel/celltypes.h"
#include "fsmdata.h"
static RTLIL::Module *module;
static SigMap assign_map;
typedef std::pair<std::string, std::string> sig2driver_entry_t;
static SigSet<sig2driver_entry_t> sig2driver, sig2trigger;
static bool find_states(RTLIL::SigSpec sig, const RTLIL::SigSpec &dff_out, RTLIL::SigSpec &ctrl, std::map<RTLIL::Const, int> &states, RTLIL::Const *reset_state = NULL)
{
sig.extend(dff_out.size(), false);
if (sig == dff_out)
return true;
assign_map.apply(sig);
if (sig.is_fully_const()) {
if (states.count(sig.as_const()) == 0) {
log(" found state code: %s\n", log_signal(sig));
states[sig.as_const()] = -1;
}
return true;
}
std::set<sig2driver_entry_t> cellport_list;
sig2driver.find(sig, cellport_list);
for (auto &cellport : cellport_list) {
RTLIL::Cell *cell = module->cells_.at(cellport.first);
if ((cell->type != "$mux" && cell->type != "$pmux" && cell->type != "$safe_pmux") || cellport.second != "\\Y") {
log(" unexpected cell type %s (%s) found in state selection tree.\n", cell->type.c_str(), cell->name.c_str());
return false;
}
RTLIL::SigSpec sig_a = assign_map(cell->getPort("\\A"));
RTLIL::SigSpec sig_b = assign_map(cell->getPort("\\B"));
RTLIL::SigSpec sig_s = assign_map(cell->getPort("\\S"));
if (reset_state && RTLIL::SigSpec(*reset_state).is_fully_undef())
do {
if (sig_a.is_fully_def())
*reset_state = sig_a.as_const();
else if (sig_b.is_fully_def())
*reset_state = sig_b.as_const();
else
break;
log(" found reset state: %s (guessed from mux tree)\n", log_signal(*reset_state));
} while (0);
if (ctrl.extract(sig_s).size() == 0) {
log(" found ctrl input: %s\n", log_signal(sig_s));
ctrl.append(sig_s);
}
if (!find_states(sig_a, dff_out, ctrl, states))
return false;
for (int i = 0; i < sig_b.size()/sig_a.size(); i++) {
if (!find_states(sig_b.extract(i*sig_a.size(), sig_a.size()), dff_out, ctrl, states))
return false;
}
}
return true;
}
static RTLIL::Const sig2const(ConstEval &ce, RTLIL::SigSpec sig, RTLIL::State noconst_state, RTLIL::SigSpec dont_care = RTLIL::SigSpec())
{
if (dont_care.size() > 0) {
for (int i = 0; i < SIZE(sig); i++)
if (dont_care.extract(sig[i]).size() > 0)
sig[i] = noconst_state;
}
ce.assign_map.apply(sig);
ce.values_map.apply(sig);
for (int i = 0; i < SIZE(sig); i++)
if (sig[i].wire != NULL)
sig[i] = noconst_state;
return sig.as_const();
}
static void find_transitions(ConstEval &ce, ConstEval &ce_nostop, FsmData &fsm_data, std::map<RTLIL::Const, int> &states, int state_in, RTLIL::SigSpec ctrl_in, RTLIL::SigSpec ctrl_out, RTLIL::SigSpec dff_in, RTLIL::SigSpec dont_care)
{
RTLIL::SigSpec undef, constval;
if (ce.eval(ctrl_out, undef) && ce.eval(dff_in, undef)) {
log_assert(ctrl_out.is_fully_const() && dff_in.is_fully_const());
FsmData::transition_t tr;
tr.state_in = state_in;
tr.state_out = states[ce.values_map(ce.assign_map(dff_in)).as_const()];
tr.ctrl_in = sig2const(ce, ctrl_in, RTLIL::State::Sa, dont_care);
tr.ctrl_out = sig2const(ce, ctrl_out, RTLIL::State::Sx);
RTLIL::Const log_state_in = RTLIL::Const(RTLIL::State::Sx, fsm_data.state_bits);
if (state_in >= 0)
log_state_in = fsm_data.state_table[tr.state_in];
if (dff_in.is_fully_def()) {
fsm_data.transition_table.push_back(tr);
log(" transition: %10s %s -> %10s %s\n",
log_signal(log_state_in), log_signal(tr.ctrl_in),
log_signal(fsm_data.state_table[tr.state_out]), log_signal(tr.ctrl_out));
} else {
log(" transition: %10s %s -> %10s %s <ignored undef transistion!>\n",
log_signal(log_state_in), log_signal(tr.ctrl_in),
log_signal(fsm_data.state_table[tr.state_out]), log_signal(tr.ctrl_out));
}
return;
}
log_assert(undef.size() > 0);
log_assert(ce.stop_signals.check_all(undef));
undef = undef.extract(0, 1);
constval = undef;
if (ce_nostop.eval(constval))
{
ce.push();
dont_care.append(undef);
ce.set(undef, constval.as_const());
find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care);
ce.pop();
}
else
{
ce.push(), ce_nostop.push();
ce.set(undef, RTLIL::Const(0, 1));
ce_nostop.set(undef, RTLIL::Const(0, 1));
find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care);
ce.pop(), ce_nostop.pop();
ce.push(), ce_nostop.push();
ce.set(undef, RTLIL::Const(1, 1));
ce_nostop.set(undef, RTLIL::Const(1, 1));
find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care);
ce.pop(), ce_nostop.pop();
}
}
static void extract_fsm(RTLIL::Wire *wire)
{
log("Extracting FSM `%s' from module `%s'.\n", wire->name.c_str(), module->name.c_str());
// get input and output signals for state ff
RTLIL::SigSpec dff_out = assign_map(RTLIL::SigSpec(wire));
RTLIL::SigSpec dff_in(RTLIL::State::Sm, wire->width);
RTLIL::Const reset_state(RTLIL::State::Sx, wire->width);
RTLIL::SigSpec clk = RTLIL::SigSpec(0, 1);
RTLIL::SigSpec arst = RTLIL::SigSpec(0, 1);
bool clk_polarity = true;
bool arst_polarity = true;
std::set<sig2driver_entry_t> cellport_list;
sig2driver.find(dff_out, cellport_list);
for (auto &cellport : cellport_list) {
RTLIL::Cell *cell = module->cells_.at(cellport.first);
if ((cell->type != "$dff" && cell->type != "$adff") || cellport.second != "\\Q")
continue;
log(" found %s cell for state register: %s\n", cell->type.c_str(), cell->name.c_str());
RTLIL::SigSpec sig_q = assign_map(cell->getPort("\\Q"));
RTLIL::SigSpec sig_d = assign_map(cell->getPort("\\D"));
clk = cell->getPort("\\CLK");
clk_polarity = cell->parameters["\\CLK_POLARITY"].as_bool();
if (cell->type == "$adff") {
arst = cell->getPort("\\ARST");
arst_polarity = cell->parameters["\\ARST_POLARITY"].as_bool();
reset_state = cell->parameters["\\ARST_VALUE"];
}
sig_q.replace(dff_out, sig_d, &dff_in);
break;
}
log(" root of input selection tree: %s\n", log_signal(dff_in));
if (dff_in.has_marked_bits()) {
log(" fsm extraction failed: incomplete input selection tree root.\n");
return;
}
// find states and control inputs
RTLIL::SigSpec ctrl_in;
std::map<RTLIL::Const, int> states;
if (!arst.is_fully_const()) {
log(" found reset state: %s (from async reset)\n", log_signal(reset_state));
states[reset_state] = -1;
}
if (!find_states(dff_in, dff_out, ctrl_in, states, &reset_state)) {
log(" fsm extraction failed: state selection tree is not closed.\n");
return;
}
// find control outputs
// (add the state signals to the list of control outputs. if everything goes right, this signals
// become unused and can then be removed from the fsm control output)
RTLIL::SigSpec ctrl_out = dff_in;
cellport_list.clear();
sig2trigger.find(dff_out, cellport_list);
for (auto &cellport : cellport_list) {
RTLIL::Cell *cell = module->cells_.at(cellport.first);
RTLIL::SigSpec sig_a = assign_map(cell->getPort("\\A"));
RTLIL::SigSpec sig_b = assign_map(cell->getPort("\\B"));
RTLIL::SigSpec sig_y = assign_map(cell->getPort("\\Y"));
if (cellport.second == "\\A" && !sig_b.is_fully_const())
continue;
if (cellport.second == "\\B" && !sig_a.is_fully_const())
continue;
log(" found ctrl output: %s\n", log_signal(sig_y));
ctrl_out.append(sig_y);
}
ctrl_in.remove(ctrl_out);
ctrl_in.sort_and_unify();
ctrl_out.sort_and_unify();
log(" ctrl inputs: %s\n", log_signal(ctrl_in));
log(" ctrl outputs: %s\n", log_signal(ctrl_out));
// Initialize fsm data struct
FsmData fsm_data;
fsm_data.num_inputs = ctrl_in.size();
fsm_data.num_outputs = ctrl_out.size();
fsm_data.state_bits = wire->width;
fsm_data.reset_state = -1;
for (auto &it : states) {
it.second = fsm_data.state_table.size();
fsm_data.state_table.push_back(it.first);
}
if (!arst.is_fully_const() || RTLIL::SigSpec(reset_state).is_fully_def())
fsm_data.reset_state = states[reset_state];
// Create transition table
ConstEval ce(module), ce_nostop(module);
ce.stop(ctrl_in);
for (int state_idx = 0; state_idx < int(fsm_data.state_table.size()); state_idx++) {
ce.push(), ce_nostop.push();
ce.set(dff_out, fsm_data.state_table[state_idx]);
ce_nostop.set(dff_out, fsm_data.state_table[state_idx]);
find_transitions(ce, ce_nostop, fsm_data, states, state_idx, ctrl_in, ctrl_out, dff_in, RTLIL::SigSpec());
ce.pop(), ce_nostop.pop();
}
// create fsm cell
RTLIL::Cell *fsm_cell = module->addCell(stringf("$fsm$%s$%d", wire->name.c_str(), autoidx++), "$fsm");
fsm_cell->setPort("\\CLK", clk);
fsm_cell->setPort("\\ARST", arst);
fsm_cell->parameters["\\CLK_POLARITY"] = RTLIL::Const(clk_polarity ? 1 : 0, 1);
fsm_cell->parameters["\\ARST_POLARITY"] = RTLIL::Const(arst_polarity ? 1 : 0, 1);
fsm_cell->setPort("\\CTRL_IN", ctrl_in);
fsm_cell->setPort("\\CTRL_OUT", ctrl_out);
fsm_cell->parameters["\\NAME"] = RTLIL::Const(wire->name);
fsm_cell->attributes = wire->attributes;
fsm_data.copy_to_cell(fsm_cell);
// rename original state wire
module->wires_.erase(wire->name);
wire->attributes.erase("\\fsm_encoding");
wire->name = stringf("$fsm$oldstate%s", wire->name.c_str());
module->wires_[wire->name] = wire;
// unconnect control outputs from old drivers
cellport_list.clear();
sig2driver.find(ctrl_out, cellport_list);
for (auto &cellport : cellport_list) {
RTLIL::Cell *cell = module->cells_.at(cellport.first);
RTLIL::SigSpec port_sig = assign_map(cell->getPort(cellport.second));
RTLIL::SigSpec unconn_sig = port_sig.extract(ctrl_out);
RTLIL::Wire *unconn_wire = module->addWire(stringf("$fsm_unconnect$%s$%d", log_signal(unconn_sig), autoidx++), unconn_sig.size());
port_sig.replace(unconn_sig, RTLIL::SigSpec(unconn_wire), &cell->connections_[cellport.second]);
}
}
struct FsmExtractPass : public Pass {
FsmExtractPass() : Pass("fsm_extract", "extracting FSMs in design") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" fsm_extract [selection]\n");
log("\n");
log("This pass operates on all signals marked as FSM state signals using the\n");
log("'fsm_encoding' attribute. It consumes the logic that creates the state signal\n");
log("and uses the state signal to generate control signal and replaces it with an\n");
log("FSM cell.\n");
log("\n");
log("The generated FSM cell still generates the original state signal with its\n");
log("original encoding. The 'fsm_opt' pass can be used in combination with the\n");
log("'opt_clean' pass to eliminate this signal.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
log_header("Executing FSM_EXTRACT pass (extracting FSM from design).\n");
extra_args(args, 1, design);
CellTypes ct;
ct.setup_internals();
ct.setup_internals_mem();
ct.setup_stdcells();
ct.setup_stdcells_mem();
for (auto &mod_it : design->modules_)
{
if (!design->selected(mod_it.second))
continue;
module = mod_it.second;
assign_map.set(module);
sig2driver.clear();
sig2trigger.clear();
for (auto &cell_it : module->cells_)
for (auto &conn_it : cell_it.second->connections()) {
if (ct.cell_output(cell_it.second->type, conn_it.first) || !ct.cell_known(cell_it.second->type)) {
RTLIL::SigSpec sig = conn_it.second;
assign_map.apply(sig);
sig2driver.insert(sig, sig2driver_entry_t(cell_it.first, conn_it.first));
}
if (ct.cell_input(cell_it.second->type, conn_it.first) && cell_it.second->hasPort("\\Y") &&
cell_it.second->getPort("\\Y").size() == 1 && (conn_it.first == "\\A" || conn_it.first == "\\B")) {
RTLIL::SigSpec sig = conn_it.second;
assign_map.apply(sig);
sig2trigger.insert(sig, sig2driver_entry_t(cell_it.first, conn_it.first));
}
}
std::vector<RTLIL::Wire*> wire_list;
for (auto &wire_it : module->wires_)
if (wire_it.second->attributes.count("\\fsm_encoding") > 0 && wire_it.second->attributes["\\fsm_encoding"].decode_string() != "none")
if (design->selected(module, wire_it.second))
wire_list.push_back(wire_it.second);
for (auto wire : wire_list)
extract_fsm(wire);
}
assign_map.clear();
sig2driver.clear();
sig2trigger.clear();
}
} FsmExtractPass;