yosys/techlibs/common/stdcells.v

1043 lines
22 KiB
Verilog

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* ---
*
* The internal logic cell technology mapper.
*
* This verilog library contains the mapping of internal cells (e.g. $not with
* variable bit width) to the internal logic cells (such as the single bit $_INV_
* gate). Usually this logic network is then mapped to the actual technology
* using e.g. the "abc" pass.
*
* Note that this library does not map $mem cells. They must be mapped to logic
* and $dff cells using the "memory_map" pass first. (Or map it to custom cells,
* which is of course highly recommended for larger memories.)
*
*/
// --------------------------------------------------------
(* techmap_simplemap *)
module \$not ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$pos ;
endmodule
// --------------------------------------------------------
module \$neg (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
\$sub #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(A_SIGNED),
.A_WIDTH(1),
.B_WIDTH(A_WIDTH),
.Y_WIDTH(Y_WIDTH)
) sub (
.A(1'b0),
.B(A),
.Y(Y)
);
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$and ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$or ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$xor ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$xnor ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$reduce_and ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$reduce_or ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$reduce_xor ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$reduce_xnor ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$reduce_bool ;
endmodule
// --------------------------------------------------------
module \$__shift (X, A, Y);
parameter WIDTH = 1;
parameter SHIFT = 0;
input X;
input [WIDTH-1:0] A;
output [WIDTH-1:0] Y;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 1) begin:V
if (i+SHIFT < 0) begin
assign Y[i] = 0;
end else
if (i+SHIFT < WIDTH) begin
assign Y[i] = A[i+SHIFT];
end else begin
assign Y[i] = X;
end
end
endgenerate
endmodule
// --------------------------------------------------------
module \$shl (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = Y_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
genvar i;
generate
wire [WIDTH*(B_WIDTH+1)-1:0] chain;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH(A_WIDTH),
.Y_WIDTH(WIDTH)
) expand (
.A(A),
.Y(chain[WIDTH-1:0])
);
assign Y = chain[WIDTH*(B_WIDTH+1)-1 : WIDTH*B_WIDTH];
for (i = 0; i < B_WIDTH; i = i + 1) begin:V
wire [WIDTH-1:0] unshifted, shifted, result;
assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
\$__shift #(
.WIDTH(WIDTH),
.SHIFT(0 - (2 ** (i > 30 ? 30 : i)))
) sh (
.X(0),
.A(unshifted),
.Y(shifted)
);
\$mux #(
.WIDTH(WIDTH)
) mux (
.A(unshifted),
.B(shifted),
.Y(result),
.S(B[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$shr (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = A_WIDTH > Y_WIDTH ? A_WIDTH : Y_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
genvar i;
generate
wire [WIDTH*(B_WIDTH+1)-1:0] chain;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH(A_WIDTH),
.Y_WIDTH(WIDTH)
) expand (
.A(A),
.Y(chain[WIDTH-1:0])
);
assign Y = chain[WIDTH*(B_WIDTH+1)-1 : WIDTH*B_WIDTH];
for (i = 0; i < B_WIDTH; i = i + 1) begin:V
wire [WIDTH-1:0] unshifted, shifted, result;
assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
\$__shift #(
.WIDTH(WIDTH),
.SHIFT(2 ** (i > 30 ? 30 : i))
) sh (
.X(0),
.A(unshifted),
.Y(shifted)
);
\$mux #(
.WIDTH(WIDTH)
) mux (
.A(unshifted),
.B(shifted),
.Y(result),
.S(B[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$sshl (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = Y_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
genvar i;
generate
wire [WIDTH*(B_WIDTH+1)-1:0] chain;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH(A_WIDTH),
.Y_WIDTH(WIDTH)
) expand (
.A(A),
.Y(chain[WIDTH-1:0])
);
assign Y = chain[WIDTH*(B_WIDTH+1)-1 : WIDTH*B_WIDTH];
for (i = 0; i < B_WIDTH; i = i + 1) begin:V
wire [WIDTH-1:0] unshifted, shifted, result;
assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
\$__shift #(
.WIDTH(WIDTH),
.SHIFT(0 - (2 ** (i > 30 ? 30 : i)))
) sh (
.X(0),
.A(unshifted),
.Y(shifted)
);
\$mux #(
.WIDTH(WIDTH)
) mux (
.A(unshifted),
.B(shifted),
.Y(result),
.S(B[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$sshr (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = A_WIDTH > Y_WIDTH ? A_WIDTH : Y_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
genvar i;
generate
wire [WIDTH*(B_WIDTH+1)-1:0] chain;
\$pos #(
.A_SIGNED(A_SIGNED),
.A_WIDTH(A_WIDTH),
.Y_WIDTH(WIDTH)
) expand (
.A(A),
.Y(chain[WIDTH-1:0])
);
for (i = 0; i < Y_WIDTH; i = i + 1) begin:Y
if (i < WIDTH) begin
assign Y[i] = chain[WIDTH*B_WIDTH + i];
end else
if (A_SIGNED) begin
assign Y[i] = chain[WIDTH*B_WIDTH + WIDTH-1];
end else begin
assign Y[i] = 0;
end
end
for (i = 0; i < B_WIDTH; i = i + 1) begin:V
wire [WIDTH-1:0] unshifted, shifted, result;
assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
\$__shift #(
.WIDTH(WIDTH),
.SHIFT(2 ** (i > 30 ? 30 : i))
) sh (
.X(A_SIGNED && A[A_WIDTH-1]),
.A(unshifted),
.Y(shifted)
);
\$mux #(
.WIDTH(WIDTH)
) mux (
.A(unshifted),
.B(shifted),
.Y(result),
.S(B[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$__fulladd (A, B, C, X, Y);
// {X, Y} = A + B + C
input A, B, C;
output X, Y;
// {t1, t2} = A + B
wire t1, t2, t3;
\$_AND_ gate1 ( .A(A), .B(B), .Y(t1) );
\$_XOR_ gate2 ( .A(A), .B(B), .Y(t2) );
\$_AND_ gate3 ( .A(t2), .B(C), .Y(t3) );
\$_XOR_ gate4 ( .A(t2), .B(C), .Y(Y) );
\$_OR_ gate5 ( .A(t1), .B(t3), .Y(X) );
endmodule
// --------------------------------------------------------
module \$__alu (A, B, Cin, Y, Cout, Csign);
parameter WIDTH = 1;
input [WIDTH-1:0] A, B;
input Cin;
output [WIDTH-1:0] Y;
output Cout, Csign;
wire [WIDTH:0] carry;
assign carry[0] = Cin;
assign Cout = carry[WIDTH];
assign Csign = carry[WIDTH-1];
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 1) begin:V
\$__fulladd adder (
.A(A[i]),
.B(B[i]),
.C(carry[i]),
.X(carry[i+1]),
.Y(Y[i])
);
end
endgenerate
endmodule
// --------------------------------------------------------
module \$lt (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire carry, carry_sign;
wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
\$__alu #(
.WIDTH(WIDTH)
) alu (
.A(A_buf),
.B(~B_buf),
.Cin(1'b1),
.Y(Y_buf),
.Cout(carry),
.Csign(carry_sign),
);
// ALU flags
wire cf, of, zf, sf;
assign cf = !carry;
assign of = carry ^ carry_sign;
assign zf = ~|Y_buf;
assign sf = Y_buf[WIDTH-1];
generate
if (A_SIGNED && B_SIGNED) begin
assign Y = of != sf;
end else begin
assign Y = cf;
end
endgenerate
endmodule
// --------------------------------------------------------
module \$le (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire carry, carry_sign;
wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
\$__alu #(
.WIDTH(WIDTH)
) alu (
.A(A_buf),
.B(~B_buf),
.Cin(1'b1),
.Y(Y_buf),
.Cout(carry),
.Csign(carry_sign),
);
// ALU flags
wire cf, of, zf, sf;
assign cf = !carry;
assign of = carry ^ carry_sign;
assign zf = ~|Y_buf;
assign sf = Y_buf[WIDTH-1];
generate
if (A_SIGNED && B_SIGNED) begin
assign Y = zf || (of != sf);
end else begin
assign Y = zf || cf;
end
endgenerate
endmodule
// --------------------------------------------------------
module \$eq (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire carry, carry_sign;
wire [WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
assign Y = ~|(A_buf ^ B_buf);
endmodule
// --------------------------------------------------------
module \$ne (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire carry, carry_sign;
wire [WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
assign Y = |(A_buf ^ B_buf);
endmodule
// --------------------------------------------------------
module \$ge (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
\$le #(
.A_SIGNED(B_SIGNED),
.B_SIGNED(A_SIGNED),
.A_WIDTH(B_WIDTH),
.B_WIDTH(A_WIDTH),
.Y_WIDTH(Y_WIDTH)
) ge_via_le (
.A(B),
.B(A),
.Y(Y)
);
endmodule
// --------------------------------------------------------
module \$gt (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
\$lt #(
.A_SIGNED(B_SIGNED),
.B_SIGNED(A_SIGNED),
.A_WIDTH(B_WIDTH),
.B_WIDTH(A_WIDTH),
.Y_WIDTH(Y_WIDTH)
) gt_via_lt (
.A(B),
.B(A),
.Y(Y)
);
endmodule
// --------------------------------------------------------
module \$add (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
\$__alu #(
.WIDTH(Y_WIDTH)
) alu (
.A(A_buf),
.B(B_buf),
.Cin(1'b0),
.Y(Y)
);
endmodule
// --------------------------------------------------------
module \$sub (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
\$__alu #(
.WIDTH(Y_WIDTH)
) alu (
.A(A_buf),
.B(~B_buf),
.Cin(1'b1),
.Y(Y)
);
endmodule
// --------------------------------------------------------
module \$__arraymul (A, B, Y);
parameter WIDTH = 8;
input [WIDTH-1:0] A, B;
output [WIDTH-1:0] Y;
wire [WIDTH*WIDTH-1:0] partials;
genvar i;
assign partials[WIDTH-1 : 0] = A[0] ? B : 0;
generate for (i = 1; i < WIDTH; i = i+1) begin:gen
assign partials[WIDTH*(i+1)-1 : WIDTH*i] = (A[i] ? B << i : 0) + partials[WIDTH*i-1 : WIDTH*(i-1)];
end endgenerate
assign Y = partials[WIDTH*WIDTH-1 : WIDTH*(WIDTH-1)];
endmodule
// --------------------------------------------------------
module \$mul (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
\$__arraymul #(
.WIDTH(Y_WIDTH)
) arraymul (
.A(A_buf),
.B(B_buf),
.Y(Y)
);
endmodule
// --------------------------------------------------------
module \$__div_mod_u (A, B, Y, R);
parameter WIDTH = 1;
input [WIDTH-1:0] A, B;
output [WIDTH-1:0] Y, R;
wire [WIDTH*WIDTH-1:0] chaindata;
assign R = chaindata[WIDTH*WIDTH-1:WIDTH*(WIDTH-1)];
genvar i;
generate begin
for (i = 0; i < WIDTH; i=i+1) begin:stage
wire [WIDTH-1:0] stage_in;
if (i == 0) begin:cp
assign stage_in = A;
end else begin:cp
assign stage_in = chaindata[i*WIDTH-1:(i-1)*WIDTH];
end
assign Y[WIDTH-(i+1)] = stage_in >= {B, {WIDTH-(i+1){1'b0}}};
assign chaindata[(i+1)*WIDTH-1:i*WIDTH] = Y[WIDTH-(i+1)] ? stage_in - {B, {WIDTH-(i+1){1'b0}}} : stage_in;
end
end endgenerate
endmodule
// --------------------------------------------------------
module \$__div_mod (A, B, Y, R);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
localparam WIDTH =
A_WIDTH >= B_WIDTH && A_WIDTH >= Y_WIDTH ? A_WIDTH :
B_WIDTH >= A_WIDTH && B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y, R;
wire [WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
wire [WIDTH-1:0] A_buf_u, B_buf_u, Y_u, R_u;
assign A_buf_u = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -A_buf : A_buf;
assign B_buf_u = A_SIGNED && B_SIGNED && B_buf[WIDTH-1] ? -B_buf : B_buf;
\$__div_mod_u #(
.WIDTH(WIDTH)
) div_mod_u (
.A(A_buf_u),
.B(B_buf_u),
.Y(Y_u),
.R(R_u),
);
assign Y = A_SIGNED && B_SIGNED && (A_buf[WIDTH-1] != B_buf[WIDTH-1]) ? -Y_u : Y_u;
assign R = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -R_u : R_u;
endmodule
// --------------------------------------------------------
module \$div (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire [Y_WIDTH-1:0] Y_buf;
wire [Y_WIDTH-1:0] Y_div_zero;
\$__div_mod #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)
) div_mod (
.A(A),
.B(B),
.Y(Y_buf)
);
// explicitly force the division-by-zero behavior found in other synthesis tools
generate begin
if (A_SIGNED && B_SIGNED) begin:make_div_zero
assign Y_div_zero = A[A_WIDTH-1] ? {Y_WIDTH{1'b0}} | 1'b1 : {Y_WIDTH{1'b1}};
end else begin:make_div_zero
assign Y_div_zero = {A_WIDTH{1'b1}};
end
end endgenerate
assign Y = B ? Y_buf : Y_div_zero;
endmodule
// --------------------------------------------------------
module \$mod (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire [Y_WIDTH-1:0] Y_buf;
wire [Y_WIDTH-1:0] Y_div_zero;
\$__div_mod #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)
) div_mod (
.A(A),
.B(B),
.R(Y_buf)
);
// explicitly force the division-by-zero behavior found in other synthesis tools
localparam div_zero_copy_a_bits = A_WIDTH < B_WIDTH ? A_WIDTH : B_WIDTH;
generate begin
if (A_SIGNED && B_SIGNED) begin:make_div_zero
assign Y_div_zero = $signed(A[div_zero_copy_a_bits-1:0]);
end else begin:make_div_zero
assign Y_div_zero = $unsigned(A[div_zero_copy_a_bits-1:0]);
end
end endgenerate
assign Y = B ? Y_buf : Y_div_zero;
endmodule
/****
// --------------------------------------------------------
module \$pow (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
wire signed [A_WIDTH:0] buffer_a = A_SIGNED ? $signed(A) : A;
wire signed [B_WIDTH:0] buffer_b = B_SIGNED ? $signed(B) : B;
assign Y = buffer_a ** buffer_b;
endmodule
// --------------------------------------------------------
****/
(* techmap_simplemap *)
module \$logic_not ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$logic_and ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$logic_or ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$mux ;
endmodule
// --------------------------------------------------------
module \$pmux (A, B, S, Y);
parameter WIDTH = 1;
parameter S_WIDTH = 1;
input [WIDTH-1:0] A;
input [WIDTH*S_WIDTH-1:0] B;
input [S_WIDTH-1:0] S;
output [WIDTH-1:0] Y;
wire [WIDTH-1:0] Y_B;
genvar i, j;
generate
wire [WIDTH*S_WIDTH-1:0] B_AND_S;
for (i = 0; i < S_WIDTH; i = i + 1) begin:B_AND
assign B_AND_S[WIDTH*(i+1)-1:WIDTH*i] = B[WIDTH*(i+1)-1:WIDTH*i] & {WIDTH{S[i]}};
end:B_AND
for (i = 0; i < WIDTH; i = i + 1) begin:B_OR
wire [S_WIDTH-1:0] B_AND_BITS;
for (j = 0; j < S_WIDTH; j = j + 1) begin:B_AND_BITS_COLLECT
assign B_AND_BITS[j] = B_AND_S[WIDTH*j+i];
end:B_AND_BITS_COLLECT
assign Y_B[i] = |B_AND_BITS;
end:B_OR
endgenerate
assign Y = |S ? Y_B : A;
endmodule
// --------------------------------------------------------
module \$safe_pmux (A, B, S, Y);
parameter WIDTH = 1;
parameter S_WIDTH = 1;
input [WIDTH-1:0] A;
input [WIDTH*S_WIDTH-1:0] B;
input [S_WIDTH-1:0] S;
output [WIDTH-1:0] Y;
wire [S_WIDTH-1:0] status_found_first;
wire [S_WIDTH-1:0] status_found_second;
genvar i;
generate
for (i = 0; i < S_WIDTH; i = i + 1) begin:GEN1
wire pre_first;
if (i > 0) begin:GEN2
assign pre_first = status_found_first[i-1];
end:GEN2 else begin:GEN3
assign pre_first = 0;
end:GEN3
assign status_found_first[i] = pre_first | S[i];
assign status_found_second[i] = pre_first & S[i];
end:GEN1
endgenerate
\$pmux #(
.WIDTH(WIDTH),
.S_WIDTH(S_WIDTH)
) pmux_cell (
.A(A),
.B(B),
.S(S & {S_WIDTH{~|status_found_second}}),
.Y(Y)
);
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$sr ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$dff ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$adff ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$dffsr ;
endmodule
// --------------------------------------------------------
(* techmap_simplemap *)
module \$dlatch ;
endmodule
// --------------------------------------------------------