yosys/kernel/utils.h

268 lines
7.0 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// This file contains various c++ utility routines and helper classes that
// do not depend on any other components of yosys (except stuff like log_*).
#include "kernel/yosys.h"
#ifndef UTILS_H
#define UTILS_H
YOSYS_NAMESPACE_BEGIN
// ------------------------------------------------
// A map-like container, but you can save and restore the state
// ------------------------------------------------
template<typename Key, typename T, typename OPS = hash_ops<Key>>
struct stackmap
{
private:
std::vector<dict<Key, T*, OPS>> backup_state;
dict<Key, T, OPS> current_state;
static T empty_tuple;
public:
stackmap() { }
stackmap(const dict<Key, T, OPS> &other) : current_state(other) { }
template<typename Other>
void operator=(const Other &other)
{
for (auto &it : current_state)
if (!backup_state.empty() && backup_state.back().count(it.first) == 0)
backup_state.back()[it.first] = new T(it.second);
current_state.clear();
for (auto &it : other)
set(it.first, it.second);
}
bool has(const Key &k)
{
return current_state.count(k) != 0;
}
void set(const Key &k, const T &v)
{
if (!backup_state.empty() && backup_state.back().count(k) == 0)
backup_state.back()[k] = current_state.count(k) ? new T(current_state.at(k)) : nullptr;
current_state[k] = v;
}
void unset(const Key &k)
{
if (!backup_state.empty() && backup_state.back().count(k) == 0)
backup_state.back()[k] = current_state.count(k) ? new T(current_state.at(k)) : nullptr;
current_state.erase(k);
}
const T &get(const Key &k)
{
if (current_state.count(k) == 0)
return empty_tuple;
return current_state.at(k);
}
void reset(const Key &k)
{
for (int i = GetSize(backup_state)-1; i >= 0; i--)
if (backup_state[i].count(k) != 0) {
if (backup_state[i].at(k) == nullptr)
current_state.erase(k);
else
current_state[k] = *backup_state[i].at(k);
return;
}
current_state.erase(k);
}
const dict<Key, T, OPS> &stdmap()
{
return current_state;
}
void save()
{
backup_state.resize(backup_state.size()+1);
}
void restore()
{
log_assert(!backup_state.empty());
for (auto &it : backup_state.back())
if (it.second != nullptr) {
current_state[it.first] = *it.second;
delete it.second;
} else
current_state.erase(it.first);
backup_state.pop_back();
}
~stackmap()
{
while (!backup_state.empty())
restore();
}
};
// ------------------------------------------------
// A simple class for topological sorting
// ------------------------------------------------
template <typename T, typename C = std::less<T>, typename OPS = hash_ops<T>> class TopoSort
{
public:
// We use this ordering of the edges in the adjacency matrix for
// exact compatibility with an older implementation.
struct IndirectCmp {
IndirectCmp(const std::vector<T> &nodes) : node_cmp_(), nodes_(nodes) {}
bool operator()(int a, int b) const
{
log_assert(static_cast<size_t>(a) < nodes_.size());
log_assert(static_cast<size_t>(b) < nodes_.size());
return node_cmp_(nodes_[a], nodes_[b]);
}
const C node_cmp_;
const std::vector<T> &nodes_;
};
bool analyze_loops;
std::map<T, int, C> node_to_index;
std::vector<std::set<int, IndirectCmp>> edges;
std::vector<T> sorted;
std::set<std::vector<T>> loops;
TopoSort() : indirect_cmp(nodes)
{
analyze_loops = true;
found_loops = false;
}
int node(T n)
{
auto rv = node_to_index.emplace(n, static_cast<int>(nodes.size()));
if (rv.second) {
nodes.push_back(n);
edges.push_back(std::set<int, IndirectCmp>(indirect_cmp));
}
return rv.first->second;
}
void edge(int l_index, int r_index) { edges[r_index].insert(l_index); }
void edge(T left, T right) { edge(node(left), node(right)); }
bool has_node(const T &node) { return node_to_index.find(node) != node_to_index.end(); }
bool sort()
{
log_assert(GetSize(node_to_index) == GetSize(edges));
log_assert(GetSize(nodes) == GetSize(edges));
loops.clear();
sorted.clear();
found_loops = false;
std::vector<bool> marked_cells(edges.size(), false);
std::vector<bool> active_cells(edges.size(), false);
std::vector<int> active_stack;
sorted.reserve(edges.size());
for (const auto &it : node_to_index)
sort_worker(it.second, marked_cells, active_cells, active_stack);
log_assert(GetSize(sorted) == GetSize(nodes));
return !found_loops;
}
// Build the more expensive representation of edges for
// a few passes that use it directly.
std::map<T, std::set<T, C>, C> get_database()
{
std::map<T, std::set<T, C>, C> database;
for (size_t i = 0; i < nodes.size(); ++i) {
std::set<T, C> converted_edge_set;
for (int other_node : edges[i]) {
converted_edge_set.insert(nodes[other_node]);
}
database.emplace(nodes[i], converted_edge_set);
}
return database;
}
private:
bool found_loops;
std::vector<T> nodes;
const IndirectCmp indirect_cmp;
void sort_worker(const int root_index, std::vector<bool> &marked_cells, std::vector<bool> &active_cells, std::vector<int> &active_stack)
{
if (active_cells[root_index]) {
found_loops = true;
if (analyze_loops) {
std::vector<T> loop;
for (int i = GetSize(active_stack) - 1; i >= 0; i--) {
const int index = active_stack[i];
loop.push_back(nodes[index]);
if (index == root_index)
break;
}
loops.insert(loop);
}
return;
}
if (marked_cells[root_index])
return;
if (!edges[root_index].empty()) {
if (analyze_loops)
active_stack.push_back(root_index);
active_cells[root_index] = true;
for (int left_n : edges[root_index])
sort_worker(left_n, marked_cells, active_cells, active_stack);
if (analyze_loops)
active_stack.pop_back();
active_cells[root_index] = false;
}
marked_cells[root_index] = true;
sorted.push_back(nodes[root_index]);
}
};
// this class is used for implementing operator-> on iterators that return values rather than references
// it's necessary because in C++ operator-> is called recursively until a raw pointer is obtained
template<class T>
struct arrow_proxy {
T v;
explicit arrow_proxy(T const & v) : v(v) {}
T* operator->() { return &v; }
};
YOSYS_NAMESPACE_END
#endif