mirror of https://github.com/YosysHQ/yosys.git
1398 lines
34 KiB
C++
1398 lines
34 KiB
C++
// This is free and unencumbered software released into the public domain.
|
|
//
|
|
// Anyone is free to copy, modify, publish, use, compile, sell, or
|
|
// distribute this software, either in source code form or as a compiled
|
|
// binary, for any purpose, commercial or non-commercial, and by any
|
|
// means.
|
|
|
|
// -------------------------------------------------------
|
|
// Written by Claire Xenia Wolf <claire@yosyshq.com> in 2014
|
|
// -------------------------------------------------------
|
|
|
|
#ifndef HASHLIB_H
|
|
#define HASHLIB_H
|
|
|
|
#include <stdexcept>
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <variant>
|
|
#include <vector>
|
|
#include <type_traits>
|
|
#include <stdint.h>
|
|
|
|
namespace hashlib {
|
|
|
|
/**
|
|
* HASHING
|
|
*
|
|
* Also refer to docs/source/yosys_internals/hashing.rst
|
|
*
|
|
* The Hasher knows how to hash 32 and 64-bit integers. That's it.
|
|
* In the future, it could be expanded to do vectors with SIMD.
|
|
*
|
|
* The Hasher doesn't know how to hash common standard containers
|
|
* and compositions. However, hashlib provides centralized wrappers.
|
|
*
|
|
* Hashlib doesn't know how to hash silly Yosys-specific types.
|
|
* Hashlib doesn't depend on Yosys and can be used standalone.
|
|
* Please don't use hashlib standalone for new projects.
|
|
* Never directly include kernel/hashlib.h in Yosys code.
|
|
* Instead include kernel/yosys_common.h
|
|
*
|
|
* The hash_ops type is now always left to its default value, derived
|
|
* from templated functions through SFINAE. Providing custom ops is
|
|
* still supported.
|
|
*
|
|
* HASH TABLES
|
|
*
|
|
* We implement associative data structures with separate chaining.
|
|
* Linked lists use integers into the indirection hashtable array
|
|
* instead of pointers.
|
|
*/
|
|
|
|
const int hashtable_size_trigger = 2;
|
|
const int hashtable_size_factor = 3;
|
|
|
|
namespace legacy {
|
|
inline uint32_t djb2_add(uint32_t a, uint32_t b) {
|
|
return ((a << 5) + a) + b;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Hash a type with an accumulator in a record or array context
|
|
*/
|
|
template<typename T>
|
|
struct hash_ops;
|
|
|
|
/**
|
|
* Hash a single instance in isolation.
|
|
* Can have explicit specialization, but the default redirects to hash_ops
|
|
*/
|
|
template<typename T>
|
|
struct hash_top_ops;
|
|
|
|
inline unsigned int mkhash_xorshift(unsigned int a) {
|
|
if (sizeof(a) == 4) {
|
|
a ^= a << 13;
|
|
a ^= a >> 17;
|
|
a ^= a << 5;
|
|
} else if (sizeof(a) == 8) {
|
|
a ^= a << 13;
|
|
a ^= a >> 7;
|
|
a ^= a << 17;
|
|
} else
|
|
throw std::runtime_error("mkhash_xorshift() only implemented for 32 bit and 64 bit ints");
|
|
return a;
|
|
}
|
|
|
|
class HasherDJB32 {
|
|
public:
|
|
using hash_t = uint32_t;
|
|
|
|
HasherDJB32() {
|
|
// traditionally 5381 is used as starting value for the djb2 hash
|
|
state = 5381;
|
|
}
|
|
static void set_fudge(hash_t f) {
|
|
fudge = f;
|
|
}
|
|
|
|
private:
|
|
uint32_t state;
|
|
static uint32_t fudge;
|
|
// The XOR version of DJB2
|
|
[[nodiscard]]
|
|
static uint32_t djb2_xor(uint32_t a, uint32_t b) {
|
|
uint32_t hash = ((a << 5) + a) ^ b;
|
|
return hash;
|
|
}
|
|
public:
|
|
void hash32(uint32_t i) {
|
|
state = djb2_xor(i, state);
|
|
state = mkhash_xorshift(fudge ^ state);
|
|
return;
|
|
}
|
|
void hash64(uint64_t i) {
|
|
state = djb2_xor((uint32_t)(i % (1ULL << 32ULL)), state);
|
|
state = djb2_xor((uint32_t)(i >> 32ULL), state);
|
|
state = mkhash_xorshift(fudge ^ state);
|
|
return;
|
|
}
|
|
[[nodiscard]]
|
|
hash_t yield() {
|
|
return (hash_t)state;
|
|
}
|
|
|
|
template<typename T>
|
|
void eat(T&& t) {
|
|
*this = hash_ops<std::remove_cv_t<std::remove_reference_t<T>>>::hash_eat(std::forward<T>(t), *this);
|
|
}
|
|
|
|
template<typename T>
|
|
void eat(const T& t) {
|
|
*this = hash_ops<T>::hash_eat(t, *this);
|
|
}
|
|
|
|
void commutative_eat(hash_t t) {
|
|
state ^= t;
|
|
}
|
|
|
|
void force(hash_t new_state) {
|
|
state = new_state;
|
|
}
|
|
};
|
|
|
|
using Hasher = HasherDJB32;
|
|
|
|
template<typename T>
|
|
struct hash_top_ops {
|
|
static inline bool cmp(const T &a, const T &b) {
|
|
return hash_ops<T>::cmp(a, b);
|
|
}
|
|
static inline Hasher hash(const T &a) {
|
|
return hash_ops<T>::hash_eat(a, Hasher());
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct hash_ops {
|
|
static inline bool cmp(const T &a, const T &b) {
|
|
return a == b;
|
|
}
|
|
static inline Hasher hash_eat(const T &a, Hasher h) {
|
|
if constexpr (std::is_same_v<T, bool>) {
|
|
h.hash32(a ? 1 : 0);
|
|
return h;
|
|
} else if constexpr (std::is_integral_v<T>) {
|
|
static_assert(sizeof(T) <= sizeof(uint64_t));
|
|
if (sizeof(T) == sizeof(uint64_t))
|
|
h.hash64(a);
|
|
else
|
|
h.hash32(a);
|
|
return h;
|
|
} else if constexpr (std::is_enum_v<T>) {
|
|
using u_type = std::underlying_type_t<T>;
|
|
return hash_ops<u_type>::hash_eat((u_type) a, h);
|
|
} else if constexpr (std::is_pointer_v<T>) {
|
|
return hash_ops<uintptr_t>::hash_eat((uintptr_t) a, h);
|
|
} else if constexpr (std::is_same_v<T, std::string>) {
|
|
for (auto c : a)
|
|
h.hash32(c);
|
|
return h;
|
|
} else {
|
|
return a.hash_eat(h);
|
|
}
|
|
}
|
|
};
|
|
|
|
template<typename P, typename Q> struct hash_ops<std::pair<P, Q>> {
|
|
static inline bool cmp(std::pair<P, Q> a, std::pair<P, Q> b) {
|
|
return a == b;
|
|
}
|
|
static inline Hasher hash_eat(std::pair<P, Q> a, Hasher h) {
|
|
h = hash_ops<P>::hash_eat(a.first, h);
|
|
h = hash_ops<Q>::hash_eat(a.second, h);
|
|
return h;
|
|
}
|
|
};
|
|
|
|
template<typename... T> struct hash_ops<std::tuple<T...>> {
|
|
static inline bool cmp(std::tuple<T...> a, std::tuple<T...> b) {
|
|
return a == b;
|
|
}
|
|
template<size_t I = 0>
|
|
static inline typename std::enable_if<I == sizeof...(T), Hasher>::type hash_eat(std::tuple<T...>, Hasher h) {
|
|
return h;
|
|
}
|
|
template<size_t I = 0>
|
|
static inline typename std::enable_if<I != sizeof...(T), Hasher>::type hash_eat(std::tuple<T...> a, Hasher h) {
|
|
typedef hash_ops<typename std::tuple_element<I, std::tuple<T...>>::type> element_ops_t;
|
|
h = hash_eat<I+1>(a, h);
|
|
h = element_ops_t::hash_eat(std::get<I>(a), h);
|
|
return h;
|
|
}
|
|
};
|
|
|
|
template<typename T> struct hash_ops<std::vector<T>> {
|
|
static inline bool cmp(std::vector<T> a, std::vector<T> b) {
|
|
return a == b;
|
|
}
|
|
static inline Hasher hash_eat(std::vector<T> a, Hasher h) {
|
|
h.eat(a.size());
|
|
for (auto k : a)
|
|
h.eat(k);
|
|
return h;
|
|
}
|
|
};
|
|
|
|
template<typename T, size_t N> struct hash_ops<std::array<T, N>> {
|
|
static inline bool cmp(std::array<T, N> a, std::array<T, N> b) {
|
|
return a == b;
|
|
}
|
|
static inline Hasher hash_eat(std::array<T, N> a, Hasher h) {
|
|
for (const auto& k : a)
|
|
h = hash_ops<T>::hash_eat(k, h);
|
|
return h;
|
|
}
|
|
};
|
|
|
|
struct hash_cstr_ops {
|
|
static inline bool cmp(const char *a, const char *b) {
|
|
for (int i = 0; a[i] || b[i]; i++)
|
|
if (a[i] != b[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
static inline Hasher hash_eat(const char *a, Hasher h) {
|
|
while (*a)
|
|
h.hash32(*(a++));
|
|
return h;
|
|
}
|
|
};
|
|
|
|
template <> struct hash_ops<char*> : hash_cstr_ops {};
|
|
|
|
struct hash_ptr_ops {
|
|
static inline bool cmp(const void *a, const void *b) {
|
|
return a == b;
|
|
}
|
|
static inline Hasher hash_eat(const void *a, Hasher h) {
|
|
return hash_ops<uintptr_t>::hash_eat((uintptr_t)a, h);
|
|
}
|
|
};
|
|
|
|
struct hash_obj_ops {
|
|
static inline bool cmp(const void *a, const void *b) {
|
|
return a == b;
|
|
}
|
|
template<typename T>
|
|
static inline Hasher hash_eat(const T *a, Hasher h) {
|
|
return a ? a->hash_eat(h) : h;
|
|
}
|
|
};
|
|
/**
|
|
* If you find yourself using this function, think hard
|
|
* about if it's the right thing to do. Mixing finalized
|
|
* hashes together with XORs or worse can destroy
|
|
* desirable qualities of the hash function
|
|
*/
|
|
template<typename T>
|
|
[[nodiscard]]
|
|
Hasher::hash_t run_hash(const T& obj) {
|
|
return hash_top_ops<T>::hash(obj).yield();
|
|
}
|
|
|
|
/** Refer to docs/source/yosys_internals/hashing.rst */
|
|
template<typename T>
|
|
[[nodiscard]]
|
|
[[deprecated]]
|
|
inline unsigned int mkhash(const T &v) {
|
|
return (unsigned int) run_hash<T>(v);
|
|
}
|
|
|
|
template<> struct hash_ops<std::monostate> {
|
|
static inline bool cmp(std::monostate a, std::monostate b) {
|
|
return a == b;
|
|
}
|
|
static inline Hasher hash_eat(std::monostate, Hasher h) {
|
|
return h;
|
|
}
|
|
};
|
|
|
|
template<typename... T> struct hash_ops<std::variant<T...>> {
|
|
static inline bool cmp(std::variant<T...> a, std::variant<T...> b) {
|
|
return a == b;
|
|
}
|
|
static inline Hasher hash_eat(std::variant<T...> a, Hasher h) {
|
|
std::visit([& h](const auto &v) { h.eat(v); }, a);
|
|
h.eat(a.index());
|
|
return h;
|
|
}
|
|
};
|
|
|
|
template<typename T> struct hash_ops<std::optional<T>> {
|
|
static inline bool cmp(std::optional<T> a, std::optional<T> b) {
|
|
return a == b;
|
|
}
|
|
static inline Hasher hash_eat(std::optional<T> a, Hasher h) {
|
|
if(a.has_value())
|
|
h.eat(*a);
|
|
else
|
|
h.eat(0);
|
|
return h;
|
|
}
|
|
};
|
|
|
|
inline int hashtable_size(int min_size)
|
|
{
|
|
// Primes as generated by https://oeis.org/A175953
|
|
static std::vector<int> zero_and_some_primes = {
|
|
0, 23, 29, 37, 47, 59, 79, 101, 127, 163, 211, 269, 337, 431, 541, 677,
|
|
853, 1069, 1361, 1709, 2137, 2677, 3347, 4201, 5261, 6577, 8231, 10289,
|
|
12889, 16127, 20161, 25219, 31531, 39419, 49277, 61603, 77017, 96281,
|
|
120371, 150473, 188107, 235159, 293957, 367453, 459317, 574157, 717697,
|
|
897133, 1121423, 1401791, 1752239, 2190299, 2737937, 3422429, 4278037,
|
|
5347553, 6684443, 8355563, 10444457, 13055587, 16319519, 20399411,
|
|
25499291, 31874149, 39842687, 49803361, 62254207, 77817767, 97272239,
|
|
121590311, 151987889, 189984863, 237481091, 296851369, 371064217,
|
|
463830313, 579787991, 724735009, 905918777, 1132398479, 1415498113,
|
|
1769372713
|
|
};
|
|
|
|
for (auto p : zero_and_some_primes)
|
|
if (p >= min_size) return p;
|
|
|
|
if (sizeof(int) == 4)
|
|
throw std::length_error("hash table exceeded maximum size.\nDesign is likely too large for yosys to handle, if possible try not to flatten the design.");
|
|
|
|
for (auto p : zero_and_some_primes)
|
|
if (100129 * p > min_size) return 100129 * p;
|
|
|
|
throw std::length_error("hash table exceeded maximum size.");
|
|
}
|
|
|
|
template<typename K, typename T, typename OPS = hash_top_ops<K>> class dict;
|
|
template<typename K, int offset = 0, typename OPS = hash_top_ops<K>> class idict;
|
|
template<typename K, typename OPS = hash_top_ops<K>> class pool;
|
|
template<typename K, typename OPS = hash_top_ops<K>> class mfp;
|
|
|
|
template<typename K, typename T, typename OPS>
|
|
class dict {
|
|
struct entry_t
|
|
{
|
|
std::pair<K, T> udata;
|
|
int next;
|
|
|
|
entry_t() { }
|
|
entry_t(const std::pair<K, T> &udata, int next) : udata(udata), next(next) { }
|
|
entry_t(std::pair<K, T> &&udata, int next) : udata(std::move(udata)), next(next) { }
|
|
bool operator<(const entry_t &other) const { return udata.first < other.udata.first; }
|
|
};
|
|
|
|
std::vector<int> hashtable;
|
|
std::vector<entry_t> entries;
|
|
OPS ops;
|
|
|
|
#ifdef NDEBUG
|
|
static inline void do_assert(bool) { }
|
|
#else
|
|
static inline void do_assert(bool cond) {
|
|
if (!cond) throw std::runtime_error("dict<> assert failed.");
|
|
}
|
|
#endif
|
|
|
|
Hasher::hash_t do_hash(const K &key) const
|
|
{
|
|
Hasher::hash_t hash = 0;
|
|
if (!hashtable.empty())
|
|
hash = ops.hash(key).yield() % (unsigned int)(hashtable.size());
|
|
return hash;
|
|
}
|
|
|
|
void do_rehash()
|
|
{
|
|
hashtable.clear();
|
|
hashtable.resize(hashtable_size(entries.capacity() * hashtable_size_factor), -1);
|
|
|
|
for (int i = 0; i < int(entries.size()); i++) {
|
|
do_assert(-1 <= entries[i].next && entries[i].next < int(entries.size()));
|
|
Hasher::hash_t hash = do_hash(entries[i].udata.first);
|
|
entries[i].next = hashtable[hash];
|
|
hashtable[hash] = i;
|
|
}
|
|
}
|
|
|
|
int do_erase(int index, Hasher::hash_t hash)
|
|
{
|
|
do_assert(index < int(entries.size()));
|
|
if (hashtable.empty() || index < 0)
|
|
return 0;
|
|
|
|
int k = hashtable[hash];
|
|
do_assert(0 <= k && k < int(entries.size()));
|
|
|
|
if (k == index) {
|
|
hashtable[hash] = entries[index].next;
|
|
} else {
|
|
while (entries[k].next != index) {
|
|
k = entries[k].next;
|
|
do_assert(0 <= k && k < int(entries.size()));
|
|
}
|
|
entries[k].next = entries[index].next;
|
|
}
|
|
|
|
int back_idx = entries.size()-1;
|
|
|
|
if (index != back_idx)
|
|
{
|
|
Hasher::hash_t back_hash = do_hash(entries[back_idx].udata.first);
|
|
|
|
k = hashtable[back_hash];
|
|
do_assert(0 <= k && k < int(entries.size()));
|
|
|
|
if (k == back_idx) {
|
|
hashtable[back_hash] = index;
|
|
} else {
|
|
while (entries[k].next != back_idx) {
|
|
k = entries[k].next;
|
|
do_assert(0 <= k && k < int(entries.size()));
|
|
}
|
|
entries[k].next = index;
|
|
}
|
|
|
|
entries[index] = std::move(entries[back_idx]);
|
|
}
|
|
|
|
entries.pop_back();
|
|
|
|
if (entries.empty())
|
|
hashtable.clear();
|
|
|
|
return 1;
|
|
}
|
|
|
|
int do_lookup(const K &key, Hasher::hash_t &hash) const
|
|
{
|
|
if (hashtable.empty())
|
|
return -1;
|
|
|
|
if (entries.size() * hashtable_size_trigger > hashtable.size()) {
|
|
((dict*)this)->do_rehash();
|
|
hash = do_hash(key);
|
|
}
|
|
|
|
int index = hashtable[hash];
|
|
|
|
while (index >= 0 && !ops.cmp(entries[index].udata.first, key)) {
|
|
index = entries[index].next;
|
|
do_assert(-1 <= index && index < int(entries.size()));
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
int do_insert(const K &key, Hasher::hash_t &hash)
|
|
{
|
|
if (hashtable.empty()) {
|
|
entries.emplace_back(std::pair<K, T>(key, T()), -1);
|
|
do_rehash();
|
|
hash = do_hash(key);
|
|
} else {
|
|
entries.emplace_back(std::pair<K, T>(key, T()), hashtable[hash]);
|
|
hashtable[hash] = entries.size() - 1;
|
|
}
|
|
return entries.size() - 1;
|
|
}
|
|
|
|
int do_insert(const std::pair<K, T> &value, Hasher::hash_t &hash)
|
|
{
|
|
if (hashtable.empty()) {
|
|
entries.emplace_back(value, -1);
|
|
do_rehash();
|
|
hash = do_hash(value.first);
|
|
} else {
|
|
entries.emplace_back(value, hashtable[hash]);
|
|
hashtable[hash] = entries.size() - 1;
|
|
}
|
|
return entries.size() - 1;
|
|
}
|
|
|
|
int do_insert(std::pair<K, T> &&rvalue, Hasher::hash_t &hash)
|
|
{
|
|
if (hashtable.empty()) {
|
|
auto key = rvalue.first;
|
|
entries.emplace_back(std::forward<std::pair<K, T>>(rvalue), -1);
|
|
do_rehash();
|
|
hash = do_hash(key);
|
|
} else {
|
|
entries.emplace_back(std::forward<std::pair<K, T>>(rvalue), hashtable[hash]);
|
|
hashtable[hash] = entries.size() - 1;
|
|
}
|
|
return entries.size() - 1;
|
|
}
|
|
|
|
public:
|
|
class const_iterator
|
|
{
|
|
friend class dict;
|
|
protected:
|
|
const dict *ptr;
|
|
int index;
|
|
const_iterator(const dict *ptr, int index) : ptr(ptr), index(index) { }
|
|
public:
|
|
typedef std::forward_iterator_tag iterator_category;
|
|
typedef std::pair<K, T> value_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef std::pair<K, T>* pointer;
|
|
typedef std::pair<K, T>& reference;
|
|
const_iterator() { }
|
|
const_iterator operator++() { index--; return *this; }
|
|
const_iterator operator+=(int amt) { index -= amt; return *this; }
|
|
bool operator<(const const_iterator &other) const { return index > other.index; }
|
|
bool operator==(const const_iterator &other) const { return index == other.index; }
|
|
bool operator!=(const const_iterator &other) const { return index != other.index; }
|
|
const std::pair<K, T> &operator*() const { return ptr->entries[index].udata; }
|
|
const std::pair<K, T> *operator->() const { return &ptr->entries[index].udata; }
|
|
};
|
|
|
|
class iterator
|
|
{
|
|
friend class dict;
|
|
protected:
|
|
dict *ptr;
|
|
int index;
|
|
iterator(dict *ptr, int index) : ptr(ptr), index(index) { }
|
|
public:
|
|
typedef std::forward_iterator_tag iterator_category;
|
|
typedef std::pair<K, T> value_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef std::pair<K, T>* pointer;
|
|
typedef std::pair<K, T>& reference;
|
|
iterator() { }
|
|
iterator operator++() { index--; return *this; }
|
|
iterator operator+=(int amt) { index -= amt; return *this; }
|
|
bool operator<(const iterator &other) const { return index > other.index; }
|
|
bool operator==(const iterator &other) const { return index == other.index; }
|
|
bool operator!=(const iterator &other) const { return index != other.index; }
|
|
std::pair<K, T> &operator*() { return ptr->entries[index].udata; }
|
|
std::pair<K, T> *operator->() { return &ptr->entries[index].udata; }
|
|
const std::pair<K, T> &operator*() const { return ptr->entries[index].udata; }
|
|
const std::pair<K, T> *operator->() const { return &ptr->entries[index].udata; }
|
|
operator const_iterator() const { return const_iterator(ptr, index); }
|
|
};
|
|
|
|
constexpr dict()
|
|
{
|
|
}
|
|
|
|
dict(const dict &other)
|
|
{
|
|
entries = other.entries;
|
|
do_rehash();
|
|
}
|
|
|
|
dict(dict &&other)
|
|
{
|
|
swap(other);
|
|
}
|
|
|
|
dict &operator=(const dict &other) {
|
|
entries = other.entries;
|
|
do_rehash();
|
|
return *this;
|
|
}
|
|
|
|
dict &operator=(dict &&other) {
|
|
clear();
|
|
swap(other);
|
|
return *this;
|
|
}
|
|
|
|
dict(const std::initializer_list<std::pair<K, T>> &list)
|
|
{
|
|
for (auto &it : list)
|
|
insert(it);
|
|
}
|
|
|
|
template<class InputIterator>
|
|
dict(InputIterator first, InputIterator last)
|
|
{
|
|
insert(first, last);
|
|
}
|
|
|
|
template<class InputIterator>
|
|
void insert(InputIterator first, InputIterator last)
|
|
{
|
|
for (; first != last; ++first)
|
|
insert(*first);
|
|
}
|
|
|
|
std::pair<iterator, bool> insert(const K &key)
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
if (i >= 0)
|
|
return std::pair<iterator, bool>(iterator(this, i), false);
|
|
i = do_insert(key, hash);
|
|
return std::pair<iterator, bool>(iterator(this, i), true);
|
|
}
|
|
|
|
std::pair<iterator, bool> insert(const std::pair<K, T> &value)
|
|
{
|
|
Hasher::hash_t hash = do_hash(value.first);
|
|
int i = do_lookup(value.first, hash);
|
|
if (i >= 0)
|
|
return std::pair<iterator, bool>(iterator(this, i), false);
|
|
i = do_insert(value, hash);
|
|
return std::pair<iterator, bool>(iterator(this, i), true);
|
|
}
|
|
|
|
std::pair<iterator, bool> insert(std::pair<K, T> &&rvalue)
|
|
{
|
|
Hasher::hash_t hash = do_hash(rvalue.first);
|
|
int i = do_lookup(rvalue.first, hash);
|
|
if (i >= 0)
|
|
return std::pair<iterator, bool>(iterator(this, i), false);
|
|
i = do_insert(std::forward<std::pair<K, T>>(rvalue), hash);
|
|
return std::pair<iterator, bool>(iterator(this, i), true);
|
|
}
|
|
|
|
std::pair<iterator, bool> emplace(K const &key, T const &value)
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
if (i >= 0)
|
|
return std::pair<iterator, bool>(iterator(this, i), false);
|
|
i = do_insert(std::make_pair(key, value), hash);
|
|
return std::pair<iterator, bool>(iterator(this, i), true);
|
|
}
|
|
|
|
std::pair<iterator, bool> emplace(K const &key, T &&rvalue)
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
if (i >= 0)
|
|
return std::pair<iterator, bool>(iterator(this, i), false);
|
|
i = do_insert(std::make_pair(key, std::forward<T>(rvalue)), hash);
|
|
return std::pair<iterator, bool>(iterator(this, i), true);
|
|
}
|
|
|
|
std::pair<iterator, bool> emplace(K &&rkey, T const &value)
|
|
{
|
|
Hasher::hash_t hash = do_hash(rkey);
|
|
int i = do_lookup(rkey, hash);
|
|
if (i >= 0)
|
|
return std::pair<iterator, bool>(iterator(this, i), false);
|
|
i = do_insert(std::make_pair(std::forward<K>(rkey), value), hash);
|
|
return std::pair<iterator, bool>(iterator(this, i), true);
|
|
}
|
|
|
|
std::pair<iterator, bool> emplace(K &&rkey, T &&rvalue)
|
|
{
|
|
Hasher::hash_t hash = do_hash(rkey);
|
|
int i = do_lookup(rkey, hash);
|
|
if (i >= 0)
|
|
return std::pair<iterator, bool>(iterator(this, i), false);
|
|
i = do_insert(std::make_pair(std::forward<K>(rkey), std::forward<T>(rvalue)), hash);
|
|
return std::pair<iterator, bool>(iterator(this, i), true);
|
|
}
|
|
|
|
int erase(const K &key)
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int index = do_lookup(key, hash);
|
|
return do_erase(index, hash);
|
|
}
|
|
|
|
iterator erase(iterator it)
|
|
{
|
|
Hasher::hash_t hash = do_hash(it->first);
|
|
do_erase(it.index, hash);
|
|
return ++it;
|
|
}
|
|
|
|
int count(const K &key) const
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
return i < 0 ? 0 : 1;
|
|
}
|
|
|
|
int count(const K &key, const_iterator it) const
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
return i < 0 || i > it.index ? 0 : 1;
|
|
}
|
|
|
|
iterator find(const K &key)
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
if (i < 0)
|
|
return end();
|
|
return iterator(this, i);
|
|
}
|
|
|
|
const_iterator find(const K &key) const
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
if (i < 0)
|
|
return end();
|
|
return const_iterator(this, i);
|
|
}
|
|
|
|
T& at(const K &key)
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
if (i < 0)
|
|
throw std::out_of_range("dict::at()");
|
|
return entries[i].udata.second;
|
|
}
|
|
|
|
const T& at(const K &key) const
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
if (i < 0)
|
|
throw std::out_of_range("dict::at()");
|
|
return entries[i].udata.second;
|
|
}
|
|
|
|
const T& at(const K &key, const T &defval) const
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
if (i < 0)
|
|
return defval;
|
|
return entries[i].udata.second;
|
|
}
|
|
|
|
T& operator[](const K &key)
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
if (i < 0)
|
|
i = do_insert(std::pair<K, T>(key, T()), hash);
|
|
return entries[i].udata.second;
|
|
}
|
|
|
|
template<typename Compare = std::less<K>>
|
|
void sort(Compare comp = Compare())
|
|
{
|
|
std::sort(entries.begin(), entries.end(), [comp](const entry_t &a, const entry_t &b){ return comp(b.udata.first, a.udata.first); });
|
|
do_rehash();
|
|
}
|
|
|
|
void swap(dict &other)
|
|
{
|
|
hashtable.swap(other.hashtable);
|
|
entries.swap(other.entries);
|
|
}
|
|
|
|
bool operator==(const dict &other) const {
|
|
if (size() != other.size())
|
|
return false;
|
|
for (auto &it : entries) {
|
|
auto oit = other.find(it.udata.first);
|
|
if (oit == other.end() || !(oit->second == it.udata.second))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool operator!=(const dict &other) const {
|
|
return !operator==(other);
|
|
}
|
|
|
|
Hasher hash_eat(Hasher h) const {
|
|
h.eat(entries.size());
|
|
for (auto &it : entries) {
|
|
Hasher entry_hash;
|
|
entry_hash.eat(it.udata.first);
|
|
entry_hash.eat(it.udata.second);
|
|
h.commutative_eat(entry_hash.yield());
|
|
}
|
|
return h;
|
|
}
|
|
|
|
void reserve(size_t n) { entries.reserve(n); }
|
|
size_t size() const { return entries.size(); }
|
|
bool empty() const { return entries.empty(); }
|
|
void clear() { hashtable.clear(); entries.clear(); }
|
|
|
|
iterator begin() { return iterator(this, int(entries.size())-1); }
|
|
iterator element(int n) { return iterator(this, int(entries.size())-1-n); }
|
|
iterator end() { return iterator(nullptr, -1); }
|
|
|
|
const_iterator begin() const { return const_iterator(this, int(entries.size())-1); }
|
|
const_iterator element(int n) const { return const_iterator(this, int(entries.size())-1-n); }
|
|
const_iterator end() const { return const_iterator(nullptr, -1); }
|
|
};
|
|
|
|
template<typename K, typename OPS>
|
|
class pool
|
|
{
|
|
template<typename, int, typename> friend class idict;
|
|
|
|
protected:
|
|
struct entry_t
|
|
{
|
|
K udata;
|
|
int next;
|
|
|
|
entry_t() { }
|
|
entry_t(const K &udata, int next) : udata(udata), next(next) { }
|
|
entry_t(K &&udata, int next) : udata(std::move(udata)), next(next) { }
|
|
};
|
|
|
|
std::vector<int> hashtable;
|
|
std::vector<entry_t> entries;
|
|
OPS ops;
|
|
|
|
#ifdef NDEBUG
|
|
static inline void do_assert(bool) { }
|
|
#else
|
|
static inline void do_assert(bool cond) {
|
|
if (!cond) throw std::runtime_error("pool<> assert failed.");
|
|
}
|
|
#endif
|
|
|
|
Hasher::hash_t do_hash(const K &key) const
|
|
{
|
|
Hasher::hash_t hash = 0;
|
|
if (!hashtable.empty())
|
|
hash = ops.hash(key).yield() % (unsigned int)(hashtable.size());
|
|
return hash;
|
|
}
|
|
|
|
void do_rehash()
|
|
{
|
|
hashtable.clear();
|
|
hashtable.resize(hashtable_size(entries.capacity() * hashtable_size_factor), -1);
|
|
|
|
for (int i = 0; i < int(entries.size()); i++) {
|
|
do_assert(-1 <= entries[i].next && entries[i].next < int(entries.size()));
|
|
Hasher::hash_t hash = do_hash(entries[i].udata);
|
|
entries[i].next = hashtable[hash];
|
|
hashtable[hash] = i;
|
|
}
|
|
}
|
|
|
|
int do_erase(int index, Hasher::hash_t hash)
|
|
{
|
|
do_assert(index < int(entries.size()));
|
|
if (hashtable.empty() || index < 0)
|
|
return 0;
|
|
|
|
int k = hashtable[hash];
|
|
if (k == index) {
|
|
hashtable[hash] = entries[index].next;
|
|
} else {
|
|
while (entries[k].next != index) {
|
|
k = entries[k].next;
|
|
do_assert(0 <= k && k < int(entries.size()));
|
|
}
|
|
entries[k].next = entries[index].next;
|
|
}
|
|
|
|
int back_idx = entries.size()-1;
|
|
|
|
if (index != back_idx)
|
|
{
|
|
Hasher::hash_t back_hash = do_hash(entries[back_idx].udata);
|
|
|
|
k = hashtable[back_hash];
|
|
if (k == back_idx) {
|
|
hashtable[back_hash] = index;
|
|
} else {
|
|
while (entries[k].next != back_idx) {
|
|
k = entries[k].next;
|
|
do_assert(0 <= k && k < int(entries.size()));
|
|
}
|
|
entries[k].next = index;
|
|
}
|
|
|
|
entries[index] = std::move(entries[back_idx]);
|
|
}
|
|
|
|
entries.pop_back();
|
|
|
|
if (entries.empty())
|
|
hashtable.clear();
|
|
|
|
return 1;
|
|
}
|
|
|
|
int do_lookup(const K &key, Hasher::hash_t &hash) const
|
|
{
|
|
if (hashtable.empty())
|
|
return -1;
|
|
|
|
if (entries.size() * hashtable_size_trigger > hashtable.size()) {
|
|
((pool*)this)->do_rehash();
|
|
hash = do_hash(key);
|
|
}
|
|
|
|
int index = hashtable[hash];
|
|
|
|
while (index >= 0 && !ops.cmp(entries[index].udata, key)) {
|
|
index = entries[index].next;
|
|
do_assert(-1 <= index && index < int(entries.size()));
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
int do_insert(const K &value, Hasher::hash_t &hash)
|
|
{
|
|
if (hashtable.empty()) {
|
|
entries.emplace_back(value, -1);
|
|
do_rehash();
|
|
hash = do_hash(value);
|
|
} else {
|
|
entries.emplace_back(value, hashtable[hash]);
|
|
hashtable[hash] = entries.size() - 1;
|
|
}
|
|
return entries.size() - 1;
|
|
}
|
|
|
|
int do_insert(K &&rvalue, Hasher::hash_t &hash)
|
|
{
|
|
if (hashtable.empty()) {
|
|
entries.emplace_back(std::forward<K>(rvalue), -1);
|
|
do_rehash();
|
|
hash = do_hash(rvalue);
|
|
} else {
|
|
entries.emplace_back(std::forward<K>(rvalue), hashtable[hash]);
|
|
hashtable[hash] = entries.size() - 1;
|
|
}
|
|
return entries.size() - 1;
|
|
}
|
|
|
|
public:
|
|
class const_iterator
|
|
{
|
|
friend class pool;
|
|
protected:
|
|
const pool *ptr;
|
|
int index;
|
|
const_iterator(const pool *ptr, int index) : ptr(ptr), index(index) { }
|
|
public:
|
|
typedef std::forward_iterator_tag iterator_category;
|
|
typedef K value_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef K* pointer;
|
|
typedef K& reference;
|
|
const_iterator() { }
|
|
const_iterator operator++() { index--; return *this; }
|
|
bool operator==(const const_iterator &other) const { return index == other.index; }
|
|
bool operator!=(const const_iterator &other) const { return index != other.index; }
|
|
const K &operator*() const { return ptr->entries[index].udata; }
|
|
const K *operator->() const { return &ptr->entries[index].udata; }
|
|
};
|
|
|
|
class iterator
|
|
{
|
|
friend class pool;
|
|
protected:
|
|
pool *ptr;
|
|
int index;
|
|
iterator(pool *ptr, int index) : ptr(ptr), index(index) { }
|
|
public:
|
|
typedef std::forward_iterator_tag iterator_category;
|
|
typedef K value_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef K* pointer;
|
|
typedef K& reference;
|
|
iterator() { }
|
|
iterator operator++() { index--; return *this; }
|
|
bool operator==(const iterator &other) const { return index == other.index; }
|
|
bool operator!=(const iterator &other) const { return index != other.index; }
|
|
K &operator*() { return ptr->entries[index].udata; }
|
|
K *operator->() { return &ptr->entries[index].udata; }
|
|
const K &operator*() const { return ptr->entries[index].udata; }
|
|
const K *operator->() const { return &ptr->entries[index].udata; }
|
|
operator const_iterator() const { return const_iterator(ptr, index); }
|
|
};
|
|
|
|
constexpr pool()
|
|
{
|
|
}
|
|
|
|
pool(const pool &other)
|
|
{
|
|
entries = other.entries;
|
|
do_rehash();
|
|
}
|
|
|
|
pool(pool &&other)
|
|
{
|
|
swap(other);
|
|
}
|
|
|
|
pool &operator=(const pool &other) {
|
|
entries = other.entries;
|
|
do_rehash();
|
|
return *this;
|
|
}
|
|
|
|
pool &operator=(pool &&other) {
|
|
clear();
|
|
swap(other);
|
|
return *this;
|
|
}
|
|
|
|
pool(const std::initializer_list<K> &list)
|
|
{
|
|
for (auto &it : list)
|
|
insert(it);
|
|
}
|
|
|
|
template<class InputIterator>
|
|
pool(InputIterator first, InputIterator last)
|
|
{
|
|
insert(first, last);
|
|
}
|
|
|
|
template<class InputIterator>
|
|
void insert(InputIterator first, InputIterator last)
|
|
{
|
|
for (; first != last; ++first)
|
|
insert(*first);
|
|
}
|
|
|
|
std::pair<iterator, bool> insert(const K &value)
|
|
{
|
|
Hasher::hash_t hash = do_hash(value);
|
|
int i = do_lookup(value, hash);
|
|
if (i >= 0)
|
|
return std::pair<iterator, bool>(iterator(this, i), false);
|
|
i = do_insert(value, hash);
|
|
return std::pair<iterator, bool>(iterator(this, i), true);
|
|
}
|
|
|
|
std::pair<iterator, bool> insert(K &&rvalue)
|
|
{
|
|
Hasher::hash_t hash = do_hash(rvalue);
|
|
int i = do_lookup(rvalue, hash);
|
|
if (i >= 0)
|
|
return std::pair<iterator, bool>(iterator(this, i), false);
|
|
i = do_insert(std::forward<K>(rvalue), hash);
|
|
return std::pair<iterator, bool>(iterator(this, i), true);
|
|
}
|
|
|
|
template<typename... Args>
|
|
std::pair<iterator, bool> emplace(Args&&... args)
|
|
{
|
|
return insert(K(std::forward<Args>(args)...));
|
|
}
|
|
|
|
int erase(const K &key)
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int index = do_lookup(key, hash);
|
|
return do_erase(index, hash);
|
|
}
|
|
|
|
iterator erase(iterator it)
|
|
{
|
|
Hasher::hash_t hash = do_hash(*it);
|
|
do_erase(it.index, hash);
|
|
return ++it;
|
|
}
|
|
|
|
int count(const K &key) const
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
return i < 0 ? 0 : 1;
|
|
}
|
|
|
|
int count(const K &key, const_iterator it) const
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
return i < 0 || i > it.index ? 0 : 1;
|
|
}
|
|
|
|
iterator find(const K &key)
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
if (i < 0)
|
|
return end();
|
|
return iterator(this, i);
|
|
}
|
|
|
|
const_iterator find(const K &key) const
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
if (i < 0)
|
|
return end();
|
|
return const_iterator(this, i);
|
|
}
|
|
|
|
bool operator[](const K &key)
|
|
{
|
|
Hasher::hash_t hash = do_hash(key);
|
|
int i = do_lookup(key, hash);
|
|
return i >= 0;
|
|
}
|
|
|
|
template<typename Compare = std::less<K>>
|
|
void sort(Compare comp = Compare())
|
|
{
|
|
std::sort(entries.begin(), entries.end(), [comp](const entry_t &a, const entry_t &b){ return comp(b.udata, a.udata); });
|
|
do_rehash();
|
|
}
|
|
|
|
K pop()
|
|
{
|
|
iterator it = begin();
|
|
K ret = *it;
|
|
erase(it);
|
|
return ret;
|
|
}
|
|
|
|
void swap(pool &other)
|
|
{
|
|
hashtable.swap(other.hashtable);
|
|
entries.swap(other.entries);
|
|
}
|
|
|
|
bool operator==(const pool &other) const {
|
|
if (size() != other.size())
|
|
return false;
|
|
for (auto &it : entries)
|
|
if (!other.count(it.udata))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool operator!=(const pool &other) const {
|
|
return !operator==(other);
|
|
}
|
|
|
|
Hasher hash_eat(Hasher h) const {
|
|
h.eat(entries.size());
|
|
for (auto &it : entries) {
|
|
h.commutative_eat(ops.hash(it.udata).yield());
|
|
}
|
|
return h;
|
|
}
|
|
|
|
void reserve(size_t n) { entries.reserve(n); }
|
|
size_t size() const { return entries.size(); }
|
|
bool empty() const { return entries.empty(); }
|
|
void clear() { hashtable.clear(); entries.clear(); }
|
|
|
|
iterator begin() { return iterator(this, int(entries.size())-1); }
|
|
iterator element(int n) { return iterator(this, int(entries.size())-1-n); }
|
|
iterator end() { return iterator(nullptr, -1); }
|
|
|
|
const_iterator begin() const { return const_iterator(this, int(entries.size())-1); }
|
|
const_iterator element(int n) const { return const_iterator(this, int(entries.size())-1-n); }
|
|
const_iterator end() const { return const_iterator(nullptr, -1); }
|
|
};
|
|
|
|
template<typename K, int offset, typename OPS>
|
|
class idict
|
|
{
|
|
pool<K, OPS> database;
|
|
|
|
public:
|
|
class const_iterator
|
|
{
|
|
friend class idict;
|
|
protected:
|
|
const idict &container;
|
|
int index;
|
|
const_iterator(const idict &container, int index) : container(container), index(index) { }
|
|
public:
|
|
typedef std::forward_iterator_tag iterator_category;
|
|
typedef K value_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef K* pointer;
|
|
typedef K& reference;
|
|
const_iterator() { }
|
|
const_iterator operator++() { index++; return *this; }
|
|
bool operator==(const const_iterator &other) const { return index == other.index; }
|
|
bool operator!=(const const_iterator &other) const { return index != other.index; }
|
|
const K &operator*() const { return container[index]; }
|
|
const K *operator->() const { return &container[index]; }
|
|
};
|
|
|
|
constexpr idict()
|
|
{
|
|
}
|
|
|
|
int operator()(const K &key)
|
|
{
|
|
Hasher::hash_t hash = database.do_hash(key);
|
|
int i = database.do_lookup(key, hash);
|
|
if (i < 0)
|
|
i = database.do_insert(key, hash);
|
|
return i + offset;
|
|
}
|
|
|
|
int at(const K &key) const
|
|
{
|
|
Hasher::hash_t hash = database.do_hash(key);
|
|
int i = database.do_lookup(key, hash);
|
|
if (i < 0)
|
|
throw std::out_of_range("idict::at()");
|
|
return i + offset;
|
|
}
|
|
|
|
int at(const K &key, int defval) const
|
|
{
|
|
Hasher::hash_t hash = database.do_hash(key);
|
|
int i = database.do_lookup(key, hash);
|
|
if (i < 0)
|
|
return defval;
|
|
return i + offset;
|
|
}
|
|
|
|
int count(const K &key) const
|
|
{
|
|
Hasher::hash_t hash = database.do_hash(key);
|
|
int i = database.do_lookup(key, hash);
|
|
return i < 0 ? 0 : 1;
|
|
}
|
|
|
|
void expect(const K &key, int i)
|
|
{
|
|
int j = (*this)(key);
|
|
if (i != j)
|
|
throw std::out_of_range("idict::expect()");
|
|
}
|
|
|
|
const K &operator[](int index) const
|
|
{
|
|
return database.entries.at(index - offset).udata;
|
|
}
|
|
|
|
void swap(idict &other)
|
|
{
|
|
database.swap(other.database);
|
|
}
|
|
|
|
void reserve(size_t n) { database.reserve(n); }
|
|
size_t size() const { return database.size(); }
|
|
bool empty() const { return database.empty(); }
|
|
void clear() { database.clear(); }
|
|
|
|
const_iterator begin() const { return const_iterator(*this, offset); }
|
|
const_iterator element(int n) const { return const_iterator(*this, n); }
|
|
const_iterator end() const { return const_iterator(*this, offset + size()); }
|
|
};
|
|
|
|
/**
|
|
* Union-find data structure with a promotion method
|
|
* mfp stands for "merge, find, promote"
|
|
* i-prefixed methods operate on indices in parents
|
|
*/
|
|
template<typename K, typename OPS>
|
|
class mfp
|
|
{
|
|
mutable idict<K, 0, OPS> database;
|
|
mutable std::vector<int> parents;
|
|
|
|
public:
|
|
typedef typename idict<K, 0>::const_iterator const_iterator;
|
|
|
|
constexpr mfp()
|
|
{
|
|
}
|
|
|
|
// Finds a given element's index. If it isn't in the data structure,
|
|
// it is added as its own set
|
|
int operator()(const K &key) const
|
|
{
|
|
int i = database(key);
|
|
// If the lookup caused the database to grow,
|
|
// also add a corresponding entry in parents initialized to -1 (no parent)
|
|
parents.resize(database.size(), -1);
|
|
return i;
|
|
}
|
|
|
|
// Finds an element at given index
|
|
const K &operator[](int index) const
|
|
{
|
|
return database[index];
|
|
}
|
|
|
|
int ifind(int i) const
|
|
{
|
|
int p = i, k = i;
|
|
|
|
while (parents[p] != -1)
|
|
p = parents[p];
|
|
|
|
// p is now the representative of i
|
|
// Now we traverse from i up to the representative again
|
|
// and make p the parent of all the nodes along the way.
|
|
// This is a side effect and doesn't affect the return value.
|
|
// It speeds up future find operations
|
|
while (k != p) {
|
|
int next_k = parents[k];
|
|
parents[k] = p;
|
|
k = next_k;
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
// Merge sets if the given indices belong to different sets
|
|
void imerge(int i, int j)
|
|
{
|
|
i = ifind(i);
|
|
j = ifind(j);
|
|
|
|
if (i != j)
|
|
parents[i] = j;
|
|
}
|
|
|
|
void ipromote(int i)
|
|
{
|
|
int k = i;
|
|
|
|
while (k != -1) {
|
|
int next_k = parents[k];
|
|
parents[k] = i;
|
|
k = next_k;
|
|
}
|
|
|
|
parents[i] = -1;
|
|
}
|
|
|
|
int lookup(const K &a) const
|
|
{
|
|
return ifind((*this)(a));
|
|
}
|
|
|
|
const K &find(const K &a) const
|
|
{
|
|
int i = database.at(a, -1);
|
|
if (i < 0)
|
|
return a;
|
|
return (*this)[ifind(i)];
|
|
}
|
|
|
|
void merge(const K &a, const K &b)
|
|
{
|
|
imerge((*this)(a), (*this)(b));
|
|
}
|
|
|
|
void promote(const K &a)
|
|
{
|
|
int i = database.at(a, -1);
|
|
if (i >= 0)
|
|
ipromote(i);
|
|
}
|
|
|
|
void swap(mfp &other)
|
|
{
|
|
database.swap(other.database);
|
|
parents.swap(other.parents);
|
|
}
|
|
|
|
void reserve(size_t n) { database.reserve(n); }
|
|
size_t size() const { return database.size(); }
|
|
bool empty() const { return database.empty(); }
|
|
void clear() { database.clear(); parents.clear(); }
|
|
|
|
const_iterator begin() const { return database.begin(); }
|
|
const_iterator element(int n) const { return database.element(n); }
|
|
const_iterator end() const { return database.end(); }
|
|
};
|
|
|
|
} /* namespace hashlib */
|
|
|
|
#endif
|