mirror of https://github.com/YosysHQ/yosys.git
477 lines
13 KiB
C++
477 lines
13 KiB
C++
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "kernel/register.h"
|
|
#include "kernel/sigtools.h"
|
|
#include "kernel/ffinit.h"
|
|
#include "kernel/consteval.h"
|
|
#include "kernel/log.h"
|
|
#include <sstream>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
|
|
USING_YOSYS_NAMESPACE
|
|
PRIVATE_NAMESPACE_BEGIN
|
|
|
|
struct proc_dlatch_db_t
|
|
{
|
|
Module *module;
|
|
SigMap sigmap;
|
|
FfInitVals initvals;
|
|
|
|
pool<Cell*> generated_dlatches;
|
|
dict<Cell*, vector<SigBit>> mux_srcbits;
|
|
dict<SigBit, pair<Cell*, int>> mux_drivers;
|
|
dict<SigBit, int> sigusers;
|
|
|
|
proc_dlatch_db_t(Module *module) : module(module), sigmap(module)
|
|
{
|
|
initvals.set(&sigmap, module);
|
|
|
|
for (auto cell : module->cells())
|
|
{
|
|
if (cell->type.in(ID($mux), ID($pmux), ID($bwmux)))
|
|
{
|
|
auto sig_y = sigmap(cell->getPort(ID::Y));
|
|
for (int i = 0; i < GetSize(sig_y); i++)
|
|
mux_drivers[sig_y[i]] = pair<Cell*, int>(cell, i);
|
|
|
|
pool<SigBit> mux_srcbits_pool;
|
|
for (auto bit : sigmap(cell->getPort(ID::A)))
|
|
mux_srcbits_pool.insert(bit);
|
|
for (auto bit : sigmap(cell->getPort(ID::B)))
|
|
mux_srcbits_pool.insert(bit);
|
|
|
|
vector<SigBit> mux_srcbits_vec;
|
|
for (auto bit : mux_srcbits_pool)
|
|
if (bit.wire != nullptr)
|
|
mux_srcbits_vec.push_back(bit);
|
|
|
|
mux_srcbits[cell].swap(mux_srcbits_vec);
|
|
}
|
|
|
|
for (auto &conn : cell->connections())
|
|
if (!cell->known() || cell->input(conn.first))
|
|
for (auto bit : sigmap(conn.second))
|
|
sigusers[bit]++;
|
|
}
|
|
|
|
for (auto wire : module->wires())
|
|
{
|
|
if (wire->port_input)
|
|
for (auto bit : sigmap(wire))
|
|
sigusers[bit]++;
|
|
}
|
|
}
|
|
|
|
bool quickcheck(const SigSpec &haystack, const SigSpec &needle)
|
|
{
|
|
pool<SigBit> haystack_bits = sigmap(haystack).to_sigbit_pool();
|
|
pool<SigBit> needle_bits = sigmap(needle).to_sigbit_pool();
|
|
|
|
pool<Cell*> cells_queue, cells_visited;
|
|
pool<SigBit> bits_queue, bits_visited;
|
|
|
|
bits_queue = haystack_bits;
|
|
while (!bits_queue.empty())
|
|
{
|
|
for (auto &bit : bits_queue) {
|
|
auto it = mux_drivers.find(bit);
|
|
if (it != mux_drivers.end())
|
|
if (!cells_visited.count(it->second.first))
|
|
cells_queue.insert(it->second.first);
|
|
bits_visited.insert(bit);
|
|
}
|
|
|
|
bits_queue.clear();
|
|
|
|
for (auto c : cells_queue) {
|
|
for (auto bit : mux_srcbits[c]) {
|
|
if (needle_bits.count(bit))
|
|
return true;
|
|
if (!bits_visited.count(bit))
|
|
bits_queue.insert(bit);
|
|
}
|
|
}
|
|
|
|
cells_queue.clear();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
struct rule_node_t
|
|
{
|
|
// a node is true if "signal" equals "match" and [any
|
|
// of the child nodes is true or "children" is empty]
|
|
SigBit signal, match;
|
|
vector<int> children;
|
|
|
|
bool operator==(const rule_node_t &other) const {
|
|
return signal == other.signal && match == other.match && children == other.children;
|
|
}
|
|
|
|
Hasher hash_into(Hasher h) const {
|
|
h.eat(signal);
|
|
h.eat(match);
|
|
h.eat(children);
|
|
return h;
|
|
}
|
|
};
|
|
|
|
enum tf_node_types_t : int {
|
|
true_node = 1,
|
|
false_node = 2
|
|
};
|
|
|
|
idict<rule_node_t, 3> rules_db;
|
|
dict<int, SigBit> rules_sig;
|
|
|
|
int make_leaf(SigBit signal, SigBit match)
|
|
{
|
|
rule_node_t node;
|
|
node.signal = signal;
|
|
node.match = match;
|
|
return rules_db(node);
|
|
}
|
|
|
|
int make_inner(SigBit signal, SigBit match, int child)
|
|
{
|
|
rule_node_t node;
|
|
node.signal = signal;
|
|
node.match = match;
|
|
node.children.push_back(child);
|
|
return rules_db(node);
|
|
}
|
|
|
|
int make_inner(const pool<int> &children)
|
|
{
|
|
rule_node_t node;
|
|
node.signal = State::S0;
|
|
node.match = State::S0;
|
|
node.children = vector<int>(children.begin(), children.end());
|
|
std::sort(node.children.begin(), node.children.end());
|
|
return rules_db(node);
|
|
}
|
|
|
|
int find_mux_feedback(SigBit haystack, SigBit needle, bool set_undef)
|
|
{
|
|
if (sigusers[haystack] > 1)
|
|
set_undef = false;
|
|
|
|
if (haystack == needle)
|
|
return true_node;
|
|
|
|
auto it = mux_drivers.find(haystack);
|
|
if (it == mux_drivers.end())
|
|
return false_node;
|
|
|
|
Cell *cell = it->second.first;
|
|
int index = it->second.second;
|
|
|
|
log_assert(cell->type.in(ID($mux), ID($pmux), ID($bwmux)));
|
|
bool is_bwmux = (cell->type == ID($bwmux));
|
|
SigSpec sig_a = sigmap(cell->getPort(ID::A));
|
|
SigSpec sig_b = sigmap(cell->getPort(ID::B));
|
|
SigSpec sig_s = sigmap(cell->getPort(ID::S));
|
|
int width = GetSize(sig_a);
|
|
|
|
pool<int> children;
|
|
|
|
int n = find_mux_feedback(sig_a[index], needle, set_undef);
|
|
if (n != false_node) {
|
|
if (set_undef && sig_a[index] == needle) {
|
|
SigSpec sig = cell->getPort(ID::A);
|
|
sig[index] = State::Sx;
|
|
cell->setPort(ID::A, sig);
|
|
}
|
|
if (!is_bwmux) {
|
|
for (int i = 0; i < GetSize(sig_s); i++)
|
|
n = make_inner(sig_s[i], State::S0, n);
|
|
} else {
|
|
n = make_inner(sig_s[index], State::S0, n);
|
|
}
|
|
children.insert(n);
|
|
}
|
|
|
|
for (int i = 0; i < (is_bwmux ? 1 : GetSize(sig_s)); i++) {
|
|
n = find_mux_feedback(sig_b[i*width + index], needle, set_undef);
|
|
if (n != false_node) {
|
|
if (set_undef && sig_b[i*width + index] == needle) {
|
|
SigSpec sig = cell->getPort(ID::B);
|
|
sig[i*width + index] = State::Sx;
|
|
cell->setPort(ID::B, sig);
|
|
}
|
|
children.insert(make_inner(sig_s[is_bwmux ? index : i], State::S1, n));
|
|
}
|
|
}
|
|
|
|
if (children.empty())
|
|
return false_node;
|
|
|
|
return make_inner(children);
|
|
}
|
|
|
|
SigBit make_hold(int n, string &src)
|
|
{
|
|
if (n == true_node)
|
|
return State::S1;
|
|
|
|
if (n == false_node)
|
|
return State::S0;
|
|
|
|
if (rules_sig.count(n))
|
|
return rules_sig.at(n);
|
|
|
|
const rule_node_t &rule = rules_db[n];
|
|
SigSpec and_bits;
|
|
|
|
if (rule.signal != rule.match) {
|
|
if (rule.match == State::S1)
|
|
and_bits.append(rule.signal);
|
|
else if (rule.match == State::S0)
|
|
and_bits.append(module->Not(NEW_ID, rule.signal, false, src));
|
|
else
|
|
and_bits.append(module->Eq(NEW_ID, rule.signal, rule.match, false, src));
|
|
}
|
|
|
|
if (!rule.children.empty()) {
|
|
SigSpec or_bits;
|
|
for (int k : rule.children)
|
|
or_bits.append(make_hold(k, src));
|
|
and_bits.append(module->ReduceOr(NEW_ID, or_bits, false, src));
|
|
}
|
|
|
|
if (GetSize(and_bits) == 2)
|
|
and_bits = module->And(NEW_ID, and_bits[0], and_bits[1], false, src);
|
|
log_assert(GetSize(and_bits) == 1);
|
|
|
|
rules_sig[n] = and_bits[0];
|
|
return and_bits[0];
|
|
}
|
|
|
|
void fixup_mux(Cell *cell)
|
|
{
|
|
SigSpec sig_a = cell->getPort(ID::A);
|
|
SigSpec sig_b = cell->getPort(ID::B);
|
|
SigSpec sig_s = cell->getPort(ID::S);
|
|
SigSpec sig_any_valid_b;
|
|
|
|
SigSpec sig_new_b, sig_new_s;
|
|
for (int i = 0; i < GetSize(sig_s); i++) {
|
|
SigSpec b = sig_b.extract(i*GetSize(sig_a), GetSize(sig_a));
|
|
if (!b.is_fully_undef()) {
|
|
sig_any_valid_b = b;
|
|
sig_new_b.append(b);
|
|
sig_new_s.append(sig_s[i]);
|
|
}
|
|
}
|
|
|
|
if (sig_new_s.empty()) {
|
|
sig_new_b = sig_a;
|
|
sig_new_s = State::S0;
|
|
}
|
|
|
|
if (sig_a.is_fully_undef() && !sig_any_valid_b.empty())
|
|
cell->setPort(ID::A, sig_any_valid_b);
|
|
|
|
if (GetSize(sig_new_s) == 1) {
|
|
cell->type = ID($mux);
|
|
cell->unsetParam(ID::S_WIDTH);
|
|
} else {
|
|
cell->type = ID($pmux);
|
|
cell->setParam(ID::S_WIDTH, GetSize(sig_new_s));
|
|
}
|
|
|
|
cell->setPort(ID::B, sig_new_b);
|
|
cell->setPort(ID::S, sig_new_s);
|
|
}
|
|
|
|
void fixup_muxes()
|
|
{
|
|
pool<Cell*> visited, queue;
|
|
dict<Cell*, pool<SigBit>> upstream_cell2net;
|
|
dict<SigBit, pool<Cell*>> upstream_net2cell;
|
|
|
|
CellTypes ct;
|
|
ct.setup_internals();
|
|
|
|
for (auto cell : module->cells())
|
|
for (auto conn : cell->connections()) {
|
|
if (cell->input(conn.first))
|
|
for (auto bit : sigmap(conn.second))
|
|
upstream_cell2net[cell].insert(bit);
|
|
if (cell->output(conn.first))
|
|
for (auto bit : sigmap(conn.second))
|
|
upstream_net2cell[bit].insert(cell);
|
|
}
|
|
|
|
queue = generated_dlatches;
|
|
while (!queue.empty())
|
|
{
|
|
pool<Cell*> next_queue;
|
|
|
|
for (auto cell : queue) {
|
|
if (cell->type.in(ID($mux), ID($pmux)))
|
|
fixup_mux(cell);
|
|
for (auto bit : upstream_cell2net[cell])
|
|
for (auto cell : upstream_net2cell[bit])
|
|
next_queue.insert(cell);
|
|
visited.insert(cell);
|
|
}
|
|
|
|
queue.clear();
|
|
for (auto cell : next_queue) {
|
|
if (!visited.count(cell) && ct.cell_known(cell->type))
|
|
queue.insert(cell);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
void proc_dlatch(proc_dlatch_db_t &db, RTLIL::Process *proc)
|
|
{
|
|
RTLIL::SigSig latches_bits, nolatches_bits;
|
|
dict<SigBit, SigBit> latches_out_in;
|
|
dict<SigBit, int> latches_hold;
|
|
std::string src = proc->get_src_attribute();
|
|
|
|
for (auto sr : proc->syncs)
|
|
{
|
|
if (sr->type != RTLIL::SyncType::STa) {
|
|
continue;
|
|
}
|
|
|
|
if (proc->get_bool_attribute(ID::always_ff))
|
|
log_error("Found non edge/level sensitive event in always_ff process `%s.%s'.\n",
|
|
db.module->name.c_str(), proc->name.c_str());
|
|
|
|
for (auto ss : sr->actions)
|
|
{
|
|
db.sigmap.apply(ss.first);
|
|
db.sigmap.apply(ss.second);
|
|
|
|
if (!db.quickcheck(ss.second, ss.first)) {
|
|
nolatches_bits.first.append(ss.first);
|
|
nolatches_bits.second.append(ss.second);
|
|
continue;
|
|
}
|
|
|
|
for (int i = 0; i < GetSize(ss.first); i++)
|
|
latches_out_in[ss.first[i]] = ss.second[i];
|
|
}
|
|
sr->actions.clear();
|
|
}
|
|
|
|
latches_out_in.sort();
|
|
for (auto &it : latches_out_in) {
|
|
int n = db.find_mux_feedback(it.second, it.first, true);
|
|
if (n == db.false_node) {
|
|
nolatches_bits.first.append(it.first);
|
|
nolatches_bits.second.append(it.second);
|
|
} else {
|
|
latches_bits.first.append(it.first);
|
|
latches_bits.second.append(it.second);
|
|
latches_hold[it.first] = n;
|
|
}
|
|
}
|
|
|
|
int offset = 0;
|
|
for (auto chunk : nolatches_bits.first.chunks()) {
|
|
SigSpec lhs = chunk, rhs = nolatches_bits.second.extract(offset, chunk.width);
|
|
if (proc->get_bool_attribute(ID::always_latch))
|
|
log_error("No latch inferred for signal `%s.%s' from always_latch process `%s.%s'.\n",
|
|
db.module->name.c_str(), log_signal(lhs), db.module->name.c_str(), proc->name.c_str());
|
|
else
|
|
log("No latch inferred for signal `%s.%s' from process `%s.%s'.\n",
|
|
db.module->name.c_str(), log_signal(lhs), db.module->name.c_str(), proc->name.c_str());
|
|
for (auto &bit : lhs) {
|
|
State val = db.initvals(bit);
|
|
if (db.initvals(bit) != State::Sx) {
|
|
log("Removing init bit %s for non-memory siginal `%s.%s` in process `%s.%s`.\n", log_signal(val), db.module->name.c_str(), log_signal(bit), db.module->name.c_str(), proc->name.c_str());
|
|
}
|
|
db.initvals.remove_init(bit);
|
|
}
|
|
db.module->connect(lhs, rhs);
|
|
offset += chunk.width;
|
|
}
|
|
|
|
offset = 0;
|
|
while (offset < GetSize(latches_bits.first))
|
|
{
|
|
int width = 1;
|
|
int n = latches_hold[latches_bits.first[offset]];
|
|
Wire *w = latches_bits.first[offset].wire;
|
|
|
|
if (w != nullptr)
|
|
{
|
|
while (offset+width < GetSize(latches_bits.first) &&
|
|
n == latches_hold[latches_bits.first[offset+width]] &&
|
|
w == latches_bits.first[offset+width].wire)
|
|
width++;
|
|
|
|
SigSpec lhs = latches_bits.first.extract(offset, width);
|
|
SigSpec rhs = latches_bits.second.extract(offset, width);
|
|
|
|
Cell *cell = db.module->addDlatch(NEW_ID, db.module->Not(NEW_ID, db.make_hold(n, src)), rhs, lhs);
|
|
cell->set_src_attribute(src);
|
|
db.generated_dlatches.insert(cell);
|
|
|
|
if (proc->get_bool_attribute(ID::always_comb))
|
|
log_error("Latch inferred for signal `%s.%s' from always_comb process `%s.%s'.\n",
|
|
db.module->name.c_str(), log_signal(lhs), db.module->name.c_str(), proc->name.c_str());
|
|
else
|
|
log("Latch inferred for signal `%s.%s' from process `%s.%s': %s\n",
|
|
db.module->name.c_str(), log_signal(lhs), db.module->name.c_str(), proc->name.c_str(), log_id(cell));
|
|
}
|
|
|
|
offset += width;
|
|
}
|
|
}
|
|
|
|
struct ProcDlatchPass : public Pass {
|
|
ProcDlatchPass() : Pass("proc_dlatch", "extract latches from processes") { }
|
|
void help() override
|
|
{
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
log("\n");
|
|
log(" proc_dlatch [selection]\n");
|
|
log("\n");
|
|
log("This pass identifies latches in the processes and converts them to\n");
|
|
log("d-type latches.\n");
|
|
log("\n");
|
|
}
|
|
void execute(std::vector<std::string> args, RTLIL::Design *design) override
|
|
{
|
|
log_header(design, "Executing PROC_DLATCH pass (convert process syncs to latches).\n");
|
|
|
|
extra_args(args, 1, design);
|
|
|
|
for (auto module : design->selected_modules()) {
|
|
proc_dlatch_db_t db(module);
|
|
for (auto &proc_it : module->processes)
|
|
if (design->selected(module, proc_it.second))
|
|
proc_dlatch(db, proc_it.second);
|
|
db.fixup_muxes();
|
|
}
|
|
}
|
|
} ProcDlatchPass;
|
|
|
|
PRIVATE_NAMESPACE_END
|