mirror of https://github.com/YosysHQ/yosys.git
768 lines
19 KiB
Verilog
768 lines
19 KiB
Verilog
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* ---
|
|
*
|
|
* The internal logic cell technology mapper.
|
|
*
|
|
* This verilog library contains the mapping of internal cells (e.g. $not with
|
|
* variable bit width) to the internal logic cells (such as the single bit $_NOT_
|
|
* gate). Usually this logic network is then mapped to the actual technology
|
|
* using e.g. the "abc" pass.
|
|
*
|
|
* Note that this library does not map $mem cells. They must be mapped to logic
|
|
* and $dff cells using the "memory_map" pass first. (Or map it to custom cells,
|
|
* which is of course highly recommended for larger memories.)
|
|
*
|
|
*/
|
|
|
|
`define MIN(_a, _b) ((_a) < (_b) ? (_a) : (_b))
|
|
`define MAX(_a, _b) ((_a) > (_b) ? (_a) : (_b))
|
|
|
|
|
|
// --------------------------------------------------------
|
|
// Use simplemap for trivial cell types
|
|
// --------------------------------------------------------
|
|
|
|
(* techmap_simplemap *)
|
|
(* techmap_celltype = "$not $and $or $xor $xnor" *)
|
|
module simplemap_bool_ops;
|
|
endmodule
|
|
|
|
(* techmap_simplemap *)
|
|
(* techmap_celltype = "$reduce_and $reduce_or $reduce_xor $reduce_xnor $reduce_bool" *)
|
|
module simplemap_reduce_ops;
|
|
endmodule
|
|
|
|
(* techmap_simplemap *)
|
|
(* techmap_celltype = "$logic_not $logic_and $logic_or" *)
|
|
module simplemap_logic_ops;
|
|
endmodule
|
|
|
|
(* techmap_simplemap *)
|
|
(* techmap_celltype = "$pos $slice $concat $mux" *)
|
|
module simplemap_various;
|
|
endmodule
|
|
|
|
(* techmap_simplemap *)
|
|
(* techmap_celltype = "$sr $dff $adff $dffsr $dlatch" *)
|
|
module simplemap_registers;
|
|
endmodule
|
|
|
|
|
|
// --------------------------------------------------------
|
|
// Trivial substitutions
|
|
// --------------------------------------------------------
|
|
|
|
module \$neg (A, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
\$sub #(
|
|
.A_SIGNED(A_SIGNED),
|
|
.B_SIGNED(A_SIGNED),
|
|
.A_WIDTH(1),
|
|
.B_WIDTH(A_WIDTH),
|
|
.Y_WIDTH(Y_WIDTH)
|
|
) _TECHMAP_REPLACE_ (
|
|
.A(1'b0),
|
|
.B(A),
|
|
.Y(Y)
|
|
);
|
|
endmodule
|
|
|
|
module \$ge (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
\$le #(
|
|
.A_SIGNED(B_SIGNED),
|
|
.B_SIGNED(A_SIGNED),
|
|
.A_WIDTH(B_WIDTH),
|
|
.B_WIDTH(A_WIDTH),
|
|
.Y_WIDTH(Y_WIDTH)
|
|
) _TECHMAP_REPLACE_ (
|
|
.A(B),
|
|
.B(A),
|
|
.Y(Y)
|
|
);
|
|
endmodule
|
|
|
|
module \$gt (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
\$lt #(
|
|
.A_SIGNED(B_SIGNED),
|
|
.B_SIGNED(A_SIGNED),
|
|
.A_WIDTH(B_WIDTH),
|
|
.B_WIDTH(A_WIDTH),
|
|
.Y_WIDTH(Y_WIDTH)
|
|
) _TECHMAP_REPLACE_ (
|
|
.A(B),
|
|
.B(A),
|
|
.Y(Y)
|
|
);
|
|
endmodule
|
|
|
|
|
|
// --------------------------------------------------------
|
|
// Shift operators
|
|
// --------------------------------------------------------
|
|
|
|
(* techmap_celltype = "$shr $shl $sshl $sshr" *)
|
|
module shift_ops_shr_shl_sshl_sshr (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
parameter _TECHMAP_CELLTYPE_ = "";
|
|
localparam shift_left = _TECHMAP_CELLTYPE_ == "$shl" || _TECHMAP_CELLTYPE_ == "$sshl";
|
|
localparam sign_extend = A_SIGNED && _TECHMAP_CELLTYPE_ == "$sshr";
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH);
|
|
localparam BB_WIDTH = `MIN($clog2(shift_left ? Y_WIDTH : A_SIGNED ? WIDTH : A_WIDTH) + 1, B_WIDTH);
|
|
|
|
wire [1023:0] _TECHMAP_DO_00_ = "proc;;";
|
|
wire [1023:0] _TECHMAP_DO_01_ = "RECURSION; CONSTMAP; opt_muxtree; opt_const -mux_undef -mux_bool -fine;;;";
|
|
|
|
integer i;
|
|
reg [WIDTH-1:0] buffer;
|
|
reg overflow;
|
|
|
|
always @* begin
|
|
overflow = B_WIDTH > BB_WIDTH ? |B[B_WIDTH-1:BB_WIDTH] : 1'b0;
|
|
buffer = overflow ? {WIDTH{sign_extend ? A[A_WIDTH-1] : 1'b0}} : {{WIDTH-A_WIDTH{A_SIGNED ? A[A_WIDTH-1] : 1'b0}}, A};
|
|
|
|
for (i = 0; i < BB_WIDTH; i = i+1)
|
|
if (B[i]) begin
|
|
if (shift_left)
|
|
buffer = {buffer, (2**i)'b0};
|
|
else if (2**i < WIDTH)
|
|
buffer = {{2**i{sign_extend ? buffer[WIDTH-1] : 1'b0}}, buffer[WIDTH-1 : 2**i]};
|
|
else
|
|
buffer = {WIDTH{sign_extend ? buffer[WIDTH-1] : 1'b0}};
|
|
end
|
|
end
|
|
|
|
assign Y = buffer;
|
|
endmodule
|
|
|
|
(* techmap_celltype = "$shift $shiftx" *)
|
|
module shift_shiftx (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
localparam BB_WIDTH = `MIN($clog2(`MAX(A_WIDTH, Y_WIDTH)) + (B_SIGNED ? 2 : 1), B_WIDTH);
|
|
localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH) + (B_SIGNED ? 2**(BB_WIDTH-1) : 0);
|
|
|
|
parameter _TECHMAP_CELLTYPE_ = "";
|
|
localparam extbit = _TECHMAP_CELLTYPE_ == "$shift" ? 1'b0 : 1'bx;
|
|
|
|
wire [1023:0] _TECHMAP_DO_00_ = "proc;;";
|
|
wire [1023:0] _TECHMAP_DO_01_ = "CONSTMAP; opt_muxtree; opt_const -mux_undef -mux_bool -fine;;;";
|
|
|
|
integer i;
|
|
reg [WIDTH-1:0] buffer;
|
|
reg overflow;
|
|
|
|
always @* begin
|
|
overflow = 0;
|
|
buffer = {WIDTH{extbit}};
|
|
buffer[`MAX(A_WIDTH, Y_WIDTH)-1:0] = A;
|
|
|
|
if (B_WIDTH > BB_WIDTH) begin
|
|
if (B_SIGNED) begin
|
|
for (i = BB_WIDTH; i < B_WIDTH; i = i+1)
|
|
if (B[i] != B[BB_WIDTH-1])
|
|
overflow = 1;
|
|
end else
|
|
overflow = |B[B_WIDTH-1:BB_WIDTH];
|
|
if (overflow)
|
|
buffer = {WIDTH{extbit}};
|
|
end
|
|
|
|
for (i = BB_WIDTH-1; i >= 0; i = i-1)
|
|
if (B[i]) begin
|
|
if (B_SIGNED && i == BB_WIDTH-1)
|
|
buffer = {buffer, {2**i{extbit}}};
|
|
else if (2**i < WIDTH)
|
|
buffer = {{2**i{extbit}}, buffer[WIDTH-1 : 2**i]};
|
|
else
|
|
buffer = {WIDTH{extbit}};
|
|
end
|
|
end
|
|
|
|
assign Y = buffer;
|
|
endmodule
|
|
|
|
|
|
// --------------------------------------------------------
|
|
// ALU Infrastructure
|
|
// --------------------------------------------------------
|
|
|
|
module \$__alu_ripple (A, B, CI, X, Y, CO);
|
|
parameter WIDTH = 1;
|
|
|
|
input [WIDTH-1:0] A, B;
|
|
output [WIDTH-1:0] X, Y;
|
|
|
|
input CI;
|
|
output [WIDTH-1:0] CO;
|
|
|
|
wire [WIDTH:0] carry;
|
|
assign carry[0] = CI;
|
|
assign CO = carry[WIDTH:1];
|
|
|
|
genvar i;
|
|
generate
|
|
for (i = 0; i < WIDTH; i = i+1)
|
|
begin:V
|
|
// {x, y} = a + b + c
|
|
wire a, b, c, x, y;
|
|
wire t1, t2, t3;
|
|
|
|
\$_AND_ gate1 ( .A(a), .B(b), .Y(t1) );
|
|
\$_XOR_ gate2 ( .A(a), .B(b), .Y(t2) );
|
|
\$_AND_ gate3 ( .A(t2), .B(c), .Y(t3) );
|
|
\$_XOR_ gate4 ( .A(t2), .B(c), .Y(y) );
|
|
\$_OR_ gate5 ( .A(t1), .B(t3), .Y(x) );
|
|
|
|
assign a = A[i], b = B[i], c = carry[i];
|
|
assign carry[i+1] = x, X[i] = t2, Y[i] = y;
|
|
end
|
|
endgenerate
|
|
endmodule
|
|
|
|
module \$__lcu (P, G, CI, CO);
|
|
parameter WIDTH = 2;
|
|
|
|
input [WIDTH-1:0] P, G;
|
|
input CI;
|
|
|
|
output [WIDTH-1:0] CO;
|
|
|
|
integer i, j;
|
|
reg [WIDTH-1:0] p, g;
|
|
|
|
wire [1023:0] _TECHMAP_DO_ = "proc; opt -fast";
|
|
|
|
always @* begin
|
|
p = P;
|
|
g = G;
|
|
|
|
// in almost all cases CI will be constant zero
|
|
g[0] = g[0] | (p[0] & CI);
|
|
|
|
// [[CITE]] Brent Kung Adder
|
|
// R. P. Brent and H. T. Kung, “A Regular Layout for Parallel Adders”,
|
|
// IEEE Transaction on Computers, Vol. C-31, No. 3, p. 260-264, March, 1982
|
|
|
|
// Main tree
|
|
for (i = 1; i <= $clog2(WIDTH); i = i+1) begin
|
|
for (j = 2**i - 1; j < WIDTH; j = j + 2**i) begin
|
|
g[j] = g[j] | p[j] & g[j - 2**(i-1)];
|
|
p[j] = p[j] & p[j - 2**(i-1)];
|
|
end
|
|
end
|
|
|
|
// Inverse tree
|
|
for (i = $clog2(WIDTH); i > 0; i = i-1) begin
|
|
for (j = 2**i + 2**(i-1) - 1; j < WIDTH; j = j + 2**i) begin
|
|
g[j] = g[j] | p[j] & g[j - 2**(i-1)];
|
|
p[j] = p[j] & p[j - 2**(i-1)];
|
|
end
|
|
end
|
|
end
|
|
|
|
assign CO = g;
|
|
endmodule
|
|
|
|
module \$__alu_lookahead (A, B, CI, X, Y, CO);
|
|
parameter WIDTH = 1;
|
|
|
|
input [WIDTH-1:0] A, B;
|
|
output [WIDTH-1:0] X, Y;
|
|
|
|
input CI;
|
|
output [WIDTH-1:0] CO;
|
|
|
|
wire [WIDTH-1:0] P, G;
|
|
wire [WIDTH:0] carry;
|
|
|
|
genvar i;
|
|
generate
|
|
for (i = 0; i < WIDTH; i = i+1)
|
|
begin:V
|
|
wire a, b, c, p, g, y;
|
|
|
|
\$_AND_ gate1 ( .A(a), .B(b), .Y(g) );
|
|
\$_XOR_ gate2 ( .A(a), .B(b), .Y(p) );
|
|
\$_XOR_ gate3 ( .A(p), .B(c), .Y(y) );
|
|
|
|
assign a = A[i], b = B[i], c = carry[i];
|
|
assign P[i] = p, G[i] = g, X[i] = p, Y[i] = y;
|
|
end
|
|
endgenerate
|
|
|
|
\$__lcu #(.WIDTH(WIDTH)) lcu (.P(P), .G(G), .CI(CI), .CO(CO));
|
|
assign carry = {CO, CI};
|
|
endmodule
|
|
|
|
module \$alu (A, B, CI, BI, X, Y, CO);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] X, Y;
|
|
|
|
input CI, BI;
|
|
output [Y_WIDTH-1:0] CO;
|
|
|
|
wire [Y_WIDTH-1:0] A_buf, B_buf;
|
|
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
|
|
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
|
|
|
|
`ifdef ALU_RIPPLE
|
|
\$__alu_ripple #(.WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_buf), .B(BI ? ~B_buf : B_buf), .CI(CI), .X(X), .Y(Y), .CO(CO));
|
|
`else
|
|
if (Y_WIDTH <= 4) begin
|
|
\$__alu_ripple #(.WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_buf), .B(BI ? ~B_buf : B_buf), .CI(CI), .X(X), .Y(Y), .CO(CO));
|
|
end else begin
|
|
\$__alu_lookahead #(.WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_buf), .B(BI ? ~B_buf : B_buf), .CI(CI), .X(X), .Y(Y), .CO(CO));
|
|
end
|
|
`endif
|
|
endmodule
|
|
|
|
|
|
// --------------------------------------------------------
|
|
// ALU Cell Types: Compare, Add, Subtract
|
|
// --------------------------------------------------------
|
|
|
|
`define ALU_COMMONS(_width, _sub) """
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
localparam WIDTH = _width;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
wire [WIDTH-1:0] alu_x, alu_y, alu_co;
|
|
wire [WIDTH:0] carry = {alu_co, |_sub};
|
|
|
|
\$alu #(
|
|
.A_SIGNED(A_SIGNED),
|
|
.B_SIGNED(B_SIGNED),
|
|
.A_WIDTH(A_WIDTH),
|
|
.B_WIDTH(B_WIDTH),
|
|
.Y_WIDTH(WIDTH)
|
|
) alu (
|
|
.A(A),
|
|
.B(B),
|
|
.CI(|_sub),
|
|
.BI(|_sub),
|
|
.X(alu_x),
|
|
.Y(alu_y),
|
|
.CO(alu_co)
|
|
);
|
|
|
|
wire cf, of, zf, sf;
|
|
assign cf = !carry[WIDTH];
|
|
assign of = carry[WIDTH] ^ carry[WIDTH-1];
|
|
assign sf = alu_y[WIDTH-1];
|
|
"""
|
|
|
|
module \$lt (A, B, Y);
|
|
wire [1023:0] _TECHMAP_DO_ = "RECURSION; opt_const -mux_undef -mux_bool -fine;;;";
|
|
`ALU_COMMONS(`MAX(A_WIDTH, B_WIDTH), 1)
|
|
assign Y = A_SIGNED && B_SIGNED ? of != sf : cf;
|
|
endmodule
|
|
|
|
module \$le (A, B, Y);
|
|
wire [1023:0] _TECHMAP_DO_ = "RECURSION; opt_const -mux_undef -mux_bool -fine;;;";
|
|
`ALU_COMMONS(`MAX(A_WIDTH, B_WIDTH), 1)
|
|
assign Y = &alu_x || (A_SIGNED && B_SIGNED ? of != sf : cf);
|
|
endmodule
|
|
|
|
module \$add (A, B, Y);
|
|
wire [1023:0] _TECHMAP_DO_ = "RECURSION; opt_const -mux_undef -mux_bool -fine;;;";
|
|
`ALU_COMMONS(Y_WIDTH, 0)
|
|
assign Y = alu_y;
|
|
endmodule
|
|
|
|
module \$sub (A, B, Y);
|
|
wire [1023:0] _TECHMAP_DO_ = "RECURSION; opt_const -mux_undef -mux_bool -fine;;;";
|
|
`ALU_COMMONS(Y_WIDTH, 1)
|
|
assign Y = alu_y;
|
|
endmodule
|
|
|
|
|
|
// --------------------------------------------------------
|
|
// Multiply
|
|
// --------------------------------------------------------
|
|
|
|
(* techmap_maccmap *)
|
|
module \$macc ;
|
|
endmodule
|
|
|
|
module \$mul (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
wire [1023:0] _TECHMAP_DO_ = "RECURSION; CONSTMAP; opt -purge";
|
|
|
|
localparam [ 3:0] CONFIG_WIDTH_BITS = 15;
|
|
localparam [ 0:0] CONFIG_IS_SIGNED = A_SIGNED && B_SIGNED;
|
|
localparam [ 0:0] CONFIG_DO_SUBTRACT = 0;
|
|
localparam [14:0] CONFIG_A_WIDTH = A_WIDTH;
|
|
localparam [14:0] CONFIG_B_WIDTH = B_WIDTH;
|
|
|
|
\$macc #(
|
|
.CONFIG({CONFIG_B_WIDTH, CONFIG_A_WIDTH, CONFIG_DO_SUBTRACT, CONFIG_IS_SIGNED, CONFIG_WIDTH_BITS}),
|
|
.CONFIG_WIDTH(15 + 15 + 2 + 4),
|
|
.A_WIDTH(B_WIDTH + A_WIDTH),
|
|
.B_WIDTH(0),
|
|
.Y_WIDTH(Y_WIDTH)
|
|
) _TECHMAP_REPLACE_ (
|
|
.A({B, A}),
|
|
.B(),
|
|
.Y(Y)
|
|
);
|
|
endmodule
|
|
|
|
|
|
// --------------------------------------------------------
|
|
// Divide and Modulo
|
|
// --------------------------------------------------------
|
|
|
|
module \$__div_mod_u (A, B, Y, R);
|
|
parameter WIDTH = 1;
|
|
|
|
input [WIDTH-1:0] A, B;
|
|
output [WIDTH-1:0] Y, R;
|
|
|
|
wire [WIDTH*WIDTH-1:0] chaindata;
|
|
assign R = chaindata[WIDTH*WIDTH-1:WIDTH*(WIDTH-1)];
|
|
|
|
genvar i;
|
|
generate begin
|
|
for (i = 0; i < WIDTH; i=i+1) begin:stage
|
|
wire [WIDTH-1:0] stage_in;
|
|
|
|
if (i == 0) begin:cp
|
|
assign stage_in = A;
|
|
end else begin:cp
|
|
assign stage_in = chaindata[i*WIDTH-1:(i-1)*WIDTH];
|
|
end
|
|
|
|
assign Y[WIDTH-(i+1)] = stage_in >= {B, {WIDTH-(i+1){1'b0}}};
|
|
assign chaindata[(i+1)*WIDTH-1:i*WIDTH] = Y[WIDTH-(i+1)] ? stage_in - {B, {WIDTH-(i+1){1'b0}}} : stage_in;
|
|
end
|
|
end endgenerate
|
|
endmodule
|
|
|
|
module \$__div_mod (A, B, Y, R);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
localparam WIDTH =
|
|
A_WIDTH >= B_WIDTH && A_WIDTH >= Y_WIDTH ? A_WIDTH :
|
|
B_WIDTH >= A_WIDTH && B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y, R;
|
|
|
|
wire [WIDTH-1:0] A_buf, B_buf;
|
|
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
|
|
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
|
|
|
|
wire [WIDTH-1:0] A_buf_u, B_buf_u, Y_u, R_u;
|
|
assign A_buf_u = A_SIGNED && A_buf[WIDTH-1] ? -A_buf : A_buf;
|
|
assign B_buf_u = B_SIGNED && B_buf[WIDTH-1] ? -B_buf : B_buf;
|
|
|
|
\$__div_mod_u #(
|
|
.WIDTH(WIDTH)
|
|
) div_mod_u (
|
|
.A(A_buf_u),
|
|
.B(B_buf_u),
|
|
.Y(Y_u),
|
|
.R(R_u)
|
|
);
|
|
|
|
assign Y = A_SIGNED && B_SIGNED && (A_buf[WIDTH-1] != B_buf[WIDTH-1]) ? -Y_u : Y_u;
|
|
assign R = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -R_u : R_u;
|
|
endmodule
|
|
|
|
module \$div (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
\$__div_mod #(
|
|
.A_SIGNED(A_SIGNED),
|
|
.B_SIGNED(B_SIGNED),
|
|
.A_WIDTH(A_WIDTH),
|
|
.B_WIDTH(B_WIDTH),
|
|
.Y_WIDTH(Y_WIDTH)
|
|
) div_mod (
|
|
.A(A),
|
|
.B(B),
|
|
.Y(Y)
|
|
);
|
|
endmodule
|
|
|
|
module \$mod (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
\$__div_mod #(
|
|
.A_SIGNED(A_SIGNED),
|
|
.B_SIGNED(B_SIGNED),
|
|
.A_WIDTH(A_WIDTH),
|
|
.B_WIDTH(B_WIDTH),
|
|
.Y_WIDTH(Y_WIDTH)
|
|
) div_mod (
|
|
.A(A),
|
|
.B(B),
|
|
.R(Y)
|
|
);
|
|
endmodule
|
|
|
|
|
|
// --------------------------------------------------------
|
|
// Power
|
|
// --------------------------------------------------------
|
|
|
|
module \$pow (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
wire _TECHMAP_FAIL_ = 1;
|
|
endmodule
|
|
|
|
|
|
// --------------------------------------------------------
|
|
// Equal and Not-Equal
|
|
// --------------------------------------------------------
|
|
|
|
module \$eq (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
wire carry, carry_sign;
|
|
wire [WIDTH-1:0] A_buf, B_buf;
|
|
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
|
|
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
|
|
|
|
assign Y = ~|(A_buf ^ B_buf);
|
|
endmodule
|
|
|
|
module \$ne (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
wire carry, carry_sign;
|
|
wire [WIDTH-1:0] A_buf, B_buf;
|
|
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
|
|
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
|
|
|
|
assign Y = |(A_buf ^ B_buf);
|
|
endmodule
|
|
|
|
module \$eqx (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
wire carry, carry_sign;
|
|
wire [WIDTH-1:0] A_buf, B_buf;
|
|
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
|
|
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
|
|
|
|
assign Y = ~|(A_buf ^ B_buf);
|
|
endmodule
|
|
|
|
module \$nex (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
|
|
|
|
input [A_WIDTH-1:0] A;
|
|
input [B_WIDTH-1:0] B;
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
wire carry, carry_sign;
|
|
wire [WIDTH-1:0] A_buf, B_buf;
|
|
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
|
|
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
|
|
|
|
assign Y = |(A_buf ^ B_buf);
|
|
endmodule
|
|
|
|
|
|
// --------------------------------------------------------
|
|
// Parallel Multiplexers
|
|
// --------------------------------------------------------
|
|
|
|
module \$pmux (A, B, S, Y);
|
|
parameter WIDTH = 1;
|
|
parameter S_WIDTH = 1;
|
|
|
|
input [WIDTH-1:0] A;
|
|
input [WIDTH*S_WIDTH-1:0] B;
|
|
input [S_WIDTH-1:0] S;
|
|
output [WIDTH-1:0] Y;
|
|
|
|
wire [WIDTH-1:0] Y_B;
|
|
|
|
genvar i, j;
|
|
generate
|
|
wire [WIDTH*S_WIDTH-1:0] B_AND_S;
|
|
for (i = 0; i < S_WIDTH; i = i + 1) begin:B_AND
|
|
assign B_AND_S[WIDTH*(i+1)-1:WIDTH*i] = B[WIDTH*(i+1)-1:WIDTH*i] & {WIDTH{S[i]}};
|
|
end:B_AND
|
|
for (i = 0; i < WIDTH; i = i + 1) begin:B_OR
|
|
wire [S_WIDTH-1:0] B_AND_BITS;
|
|
for (j = 0; j < S_WIDTH; j = j + 1) begin:B_AND_BITS_COLLECT
|
|
assign B_AND_BITS[j] = B_AND_S[WIDTH*j+i];
|
|
end:B_AND_BITS_COLLECT
|
|
assign Y_B[i] = |B_AND_BITS;
|
|
end:B_OR
|
|
endgenerate
|
|
|
|
assign Y = |S ? Y_B : A;
|
|
endmodule
|
|
|
|
|
|
// --------------------------------------------------------
|
|
// LUTs
|
|
// --------------------------------------------------------
|
|
|
|
`ifndef NOLUT
|
|
module \$lut (A, Y);
|
|
parameter WIDTH = 1;
|
|
parameter LUT = 0;
|
|
|
|
input [WIDTH-1:0] A;
|
|
output Y;
|
|
|
|
assign Y = LUT[A];
|
|
endmodule
|
|
`endif
|
|
|