yosys/docs/source/using_yosys/synthesis/memory.rst

791 lines
22 KiB
ReStructuredText

Memory handling
===============
The `memory` command
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In the RTL netlist, memory reads and writes are individual cells. This makes
consolidating the number of ports for a memory easier. The `memory` pass
transforms memories to an implementation. Per default that is logic for address
decoders and registers. It also is a macro command that calls the other common
``memory_*`` passes in a sensible order:
.. literalinclude:: /code_examples/macro_commands/memory.ys
:language: yoscrypt
:start-after: #end:
:caption: Passes called by `memory`
.. todo:: Make ``memory_*`` notes less quick
Some quick notes:
- `memory_dff` merges registers into the memory read- and write cells.
- `memory_collect` collects all read and write cells for a memory and
transforms them into one multi-port memory cell.
- `memory_map` takes the multi-port memory cell and transforms it to address
decoder logic and registers.
For more information about `memory`, such as disabling certain sub commands, see
:doc:`/cmd/memory`.
Example
-------
.. todo:: describe ``memory`` images
|code_examples/synth_flow|_.
.. |code_examples/synth_flow| replace:: :file:`docs/source/code_examples/synth_flow`
.. _code_examples/synth_flow: https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/synth_flow
.. figure:: /_images/code_examples/synth_flow/memory_01.*
:class: width-helper invert-helper
.. literalinclude:: /code_examples/synth_flow/memory_01.ys
:language: yoscrypt
:caption: :file:`memory_01.ys`
.. literalinclude:: /code_examples/synth_flow/memory_01.v
:language: verilog
:caption: :file:`memory_01.v`
.. figure:: /_images/code_examples/synth_flow/memory_02.*
:class: width-helper invert-helper
.. literalinclude:: /code_examples/synth_flow/memory_02.v
:language: verilog
:caption: :file:`memory_02.v`
.. literalinclude:: /code_examples/synth_flow/memory_02.ys
:language: yoscrypt
:caption: :file:`memory_02.ys`
.. _memory_map:
Memory mapping
^^^^^^^^^^^^^^
Usually it is preferred to use architecture-specific RAM resources for memory.
For example:
.. code-block:: yoscrypt
memory -nomap
memory_libmap -lib my_memory_map.txt
techmap -map my_memory_map.v
memory_map
`memory_libmap` attempts to convert memory cells (`$mem_v2` etc) into hardware
supported memory using a provided library (:file:`my_memory_map.txt` in the
example above). Where necessary, emulation logic is added to ensure functional
equivalence before and after this conversion. :yoscrypt:`techmap -map
my_memory_map.v` then uses `techmap` to map to hardware primitives. Any leftover
memory cells unable to be converted are then picked up by `memory_map` and
mapped to DFFs and address decoders.
.. note::
More information about what mapping options are available and associated
costs of each can be found by enabling debug outputs. This can be done with
the `debug` command, or by using the ``-g`` flag when calling Yosys to
globally enable debug messages.
For more on the lib format for `memory_libmap`, see
`passes/memory/memlib.md
<https://github.com/YosysHQ/yosys/blob/main/passes/memory/memlib.md>`_
Supported memory patterns
^^^^^^^^^^^^^^^^^^^^^^^^^
Note that not all supported patterns are included in this document, of
particular note is that combinations of multiple patterns should generally work.
For example, `wbe`_ could be used in conjunction with any of the simple dual
port (SDP) models. In general if a hardware memory definition does not support
a given configuration, additional logic will be instantiated to guarantee
behaviour is consistent with simulation.
Notes
-----
Memory kind selection
~~~~~~~~~~~~~~~~~~~~~
The memory inference code will automatically pick target memory primitive based
on memory geometry and features used. Depending on the target, there can be up
to four memory primitive classes available for selection:
- FF RAM (aka logic): no hardware primitive used, memory lowered to a bunch of
FFs and multiplexers
- Can handle arbitrary number of write ports, as long as all write ports are
in the same clock domain
- Can handle arbitrary number and kind of read ports
- LUT RAM (aka distributed RAM): uses LUT storage as RAM
- Supported on most FPGAs (with notable exception of ice40)
- Usually has one synchronous write port, one or more asynchronous read ports
- Small
- Will never be used for ROMs (lowering to plain LUTs is always better)
- Block RAM: dedicated memory tiles
- Supported on basically all FPGAs
- Supports only synchronous reads
- Two ports with separate clocks
- Usually supports true dual port (with notable exception of ice40 that only
supports SDP)
- Usually supports asymmetric memories and per-byte write enables
- Several kilobits in size
- Huge RAM:
- Only supported on several targets:
- Some Xilinx UltraScale devices (UltraRAM)
- Two ports, both with mutually exclusive synchronous read and write
- Single clock
- Initial data must be all-0
- Some ice40 devices (SPRAM)
- Single port with mutually exclusive synchronous read and write
- Does not support initial data
- Nexus (large RAM)
- Two ports, both with mutually exclusive synchronous read and write
- Single clock
- Will not be automatically selected by memory inference code, needs explicit
opt-in via ram_style attribute
In general, you can expect the automatic selection process to work roughly like
this:
- If any read port is asynchronous, only LUT RAM (or FF RAM) can be used.
- If there is more than one write port, only block RAM can be used, and this
needs to be a hardware-supported true dual port pattern
- … unless all write ports are in the same clock domain, in which case FF RAM
can also be used, but this is generally not what you want for anything but
really small memories
- Otherwise, either FF RAM, LUT RAM, or block RAM will be used, depending on
memory size
This process can be overridden by attaching a ram_style attribute to the memory:
- ``(* ram_style = "logic" *)`` selects FF RAM
- ``(* ram_style = "distributed" *)`` selects LUT RAM
- ``(* ram_style = "block" *)`` selects block RAM
- ``(* ram_style = "huge" *)`` selects huge RAM
It is an error if this override cannot be realized for the given target.
Many alternate spellings of the attribute are also accepted, for compatibility
with other software.
Initial data
~~~~~~~~~~~~
Most FPGA targets support initializing all kinds of memory to user-provided
values. If explicit initialization is not used the initial memory value is
undefined. Initial data can be provided by either initial statements writing
memory cells one by one of ``$readmemh`` or ``$readmemb`` system tasks. For an
example pattern, see `sr_init`_.
.. _wbe:
Write port with byte enables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Byte enables can be used with any supported pattern
- To ensure that multiple writes will be merged into one port, they need to have
disjoint bit ranges, have the same address, and the same clock
- Any write enable granularity will be accepted (down to per-bit write enables),
but using smaller granularity than natively supported by the target is very
likely to be inefficient (eg. using 4-bit bytes on ECP5 will result in either
padding the bytes with 5 dummy bits to native 9-bit units or splitting the RAM
into two block RAMs)
.. code:: verilog
reg [31 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable[0])
mem[write_addr][7:0] <= write_data[7:0];
if (write_enable[1])
mem[write_addr][15:8] <= write_data[15:8];
if (write_enable[2])
mem[write_addr][23:16] <= write_data[23:16];
if (write_enable[3])
mem[write_addr][31:24] <= write_data[31:24];
if (read_enable)
read_data <= mem[read_addr];
end
Simple dual port (SDP) memory patterns
--------------------------------------
.. todo:: assorted enables, e.g. cen, wen+ren
Asynchronous-read SDP
~~~~~~~~~~~~~~~~~~~~~
- This will result in LUT RAM on supported targets
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk)
if (write_enable)
mem[write_addr] <= write_data;
assign read_data = mem[read_addr];
Synchronous SDP with clock domain crossing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Will result in block RAM or LUT RAM depending on size
- No behavior guarantees in case of simultaneous read and write to the same
address
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge write_clk) begin
if (write_enable)
mem[write_addr] <= write_data;
end
always @(posedge read_clk) begin
if (read_enable)
read_data <= mem[read_addr];
end
Synchronous SDP read first
~~~~~~~~~~~~~~~~~~~~~~~~~~
- The read and write parts can be in the same or different processes.
- Will result in block RAM or LUT RAM depending on size
- As long as the same clock is used for both, yosys will ensure read-first
behavior. This may require extra circuitry on some targets for block RAM. If
this is not necessary, use one of the patterns below.
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_enable)
read_data <= mem[read_addr];
end
.. _no_rw_check:
Synchronous SDP with undefined collision behavior
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Like above, but the read value is undefined when read and write ports target
the same address in the same cycle
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_enable) begin
read_data <= mem[read_addr];
if (write_enable && read_addr == write_addr)
// this if block
read_data <= 'x;
end
end
- Or below, using the no_rw_check attribute
.. code:: verilog
(* no_rw_check *)
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_enable)
read_data <= mem[read_addr];
end
.. _sdp_wf:
Synchronous SDP with write-first behavior
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Will result in block RAM or LUT RAM depending on size
- May use additional circuitry for block RAM if write-first is not natively
supported. Will always use additional circuitry for LUT RAM.
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_enable) begin
read_data <= mem[read_addr];
if (write_enable && read_addr == write_addr)
read_data <= write_data;
end
end
Synchronous SDP with write-first behavior (alternate pattern)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- This pattern is supported for compatibility, but is much less flexible than
the above
.. code:: verilog
reg [ADDR_WIDTH - 1 : 0] read_addr_reg;
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
read_addr_reg <= read_addr;
end
assign read_data = mem[read_addr_reg];
Single-port RAM memory patterns
-------------------------------
Asynchronous-read single-port RAM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Will result in single-port LUT RAM on supported targets
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk)
if (write_enable)
mem[addr] <= write_data;
assign read_data = mem[addr];
Synchronous single-port RAM with mutually exclusive read/write
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Will result in single-port block RAM or LUT RAM depending on size
- This is the correct pattern to infer ice40 SPRAM (with manual ram_style
selection)
- On targets that don't support read/write block RAM ports (eg. ice40), will
result in SDP block RAM instead
- For block RAM, will use "NO_CHANGE" mode if available
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable)
mem[addr] <= write_data;
else if (read_enable)
read_data <= mem[addr];
end
Synchronous single-port RAM with read-first behavior
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Will only result in single-port block RAM when read-first behavior is natively
supported; otherwise, SDP RAM with additional circuitry will be used
- Many targets (Xilinx, ECP5, …) can only natively support
read-first/write-first single-port RAM (or TDP RAM) where the write_enable
signal implies the read_enable signal (ie. can never write without reading).
The memory inference code will run a simple SAT solver on the control signals
to determine if this is the case, and insert emulation circuitry if it cannot
be easily proven.
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable)
mem[addr] <= write_data;
if (read_enable)
read_data <= mem[addr];
end
Synchronous single-port RAM with write-first behavior
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Will result in single-port block RAM or LUT RAM when supported
- Block RAMs will require extra circuitry if write-first behavior not natively
supported
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable)
mem[addr] <= write_data;
if (read_enable)
if (write_enable)
read_data <= write_data;
else
read_data <= mem[addr];
end
.. _sr_init:
Synchronous read port with initial value
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Initial read port values can be combined with any other supported pattern
- If block RAM is used and initial read port values are not natively supported
by the target, small emulation circuit will be inserted
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
reg [DATA_WIDTH - 1 : 0] read_data;
initial read_data = 'h1234;
always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_enable)
read_data <= mem[read_addr];
end
Read register reset patterns
----------------------------
Resets can be combined with any other supported pattern (except that synchronous
reset and asynchronous reset cannot both be used on a single read port). If
block RAM is used and the selected reset (synchronous or asynchronous) is used
but not natively supported by the target, small emulation circuitry will be
inserted.
Synchronous reset, reset priority over enable
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_reset)
read_data <= 'h1234;
else if (read_enable)
read_data <= mem[read_addr];
end
Synchronous reset, enable priority over reset
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_enable)
if (read_reset)
read_data <= 'h1234;
else
read_data <= mem[read_addr];
end
Synchronous read port with asynchronous reset
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
end
always @(posedge clk, posedge read_reset) begin
if (read_reset)
read_data <= 'h1234;
else if (read_enable)
read_data <= mem[read_addr];
end
Asymmetric memory patterns
--------------------------
To construct an asymmetric memory (memory with read/write ports of differing
widths):
- Declare the memory with the width of the narrowest intended port
- Split all wide ports into multiple narrow ports
- To ensure the wide ports will be correctly merged:
- For the address, use a concatenation of actual address in the high bits and
a constant in the low bits
- Ensure the actual address is identical for all ports belonging to the wide
port
- Ensure that clock is identical
- For read ports, ensure that enable/reset signals are identical (for write
ports, the enable signal may vary — this will result in using the byte
enable functionality)
Asymmetric memory is supported on all targets, but may require emulation
circuitry where not natively supported. Note that when the memory is larger
than the underlying block RAM primitive, hardware asymmetric memory support is
likely not to be used even if present as it is more expensive.
.. _wide_sr:
Wide synchronous read port
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: verilog
reg [7:0] mem [0:255];
wire [7:0] write_addr;
wire [5:0] read_addr;
wire [7:0] write_data;
reg [31:0] read_data;
always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_enable) begin
read_data[7:0] <= mem[{read_addr, 2'b00}];
read_data[15:8] <= mem[{read_addr, 2'b01}];
read_data[23:16] <= mem[{read_addr, 2'b10}];
read_data[31:24] <= mem[{read_addr, 2'b11}];
end
end
Wide asynchronous read port
~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Note: the only target natively supporting this pattern is Xilinx UltraScale
.. code:: verilog
reg [7:0] mem [0:511];
wire [8:0] write_addr;
wire [5:0] read_addr;
wire [7:0] write_data;
wire [63:0] read_data;
always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
end
assign read_data[7:0] = mem[{read_addr, 3'b000}];
assign read_data[15:8] = mem[{read_addr, 3'b001}];
assign read_data[23:16] = mem[{read_addr, 3'b010}];
assign read_data[31:24] = mem[{read_addr, 3'b011}];
assign read_data[39:32] = mem[{read_addr, 3'b100}];
assign read_data[47:40] = mem[{read_addr, 3'b101}];
assign read_data[55:48] = mem[{read_addr, 3'b110}];
assign read_data[63:56] = mem[{read_addr, 3'b111}];
Wide write port
~~~~~~~~~~~~~~~
.. code:: verilog
reg [7:0] mem [0:255];
wire [5:0] write_addr;
wire [7:0] read_addr;
wire [31:0] write_data;
reg [7:0] read_data;
always @(posedge clk) begin
if (write_enable[0])
mem[{write_addr, 2'b00}] <= write_data[7:0];
if (write_enable[1])
mem[{write_addr, 2'b01}] <= write_data[15:8];
if (write_enable[2])
mem[{write_addr, 2'b10}] <= write_data[23:16];
if (write_enable[3])
mem[{write_addr, 2'b11}] <= write_data[31:24];
if (read_enable)
read_data <= mem[read_addr];
end
True dual port (TDP) patterns
-----------------------------
- Many different variations of true dual port memory can be created by combining
two single-port RAM patterns on the same memory
- When TDP memory is used, memory inference code has much less maneuver room to
create requested semantics compared to individual single-port patterns (which
can end up lowered to SDP memory where necessary) — supported patterns depend
strongly on the target
- In particular, when both ports have the same clock, it's likely that
"undefined collision" mode needs to be manually selected to enable TDP memory
inference
- The examples below are non-exhaustive — many more combinations of port types
are possible
- Note: if two write ports are in the same process, this defines a priority
relation between them (if both ports are active in the same clock, the later
one wins). On almost all targets, this will result in a bit of extra circuitry
to ensure the priority semantics. If this is not what you want, put them in
separate processes.
- Priority is not supported when using the verific front end and any priority
semantics are ignored.
TDP with different clocks, exclusive read/write
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk_a) begin
if (write_enable_a)
mem[addr_a] <= write_data_a;
else if (read_enable_a)
read_data_a <= mem[addr_a];
end
always @(posedge clk_b) begin
if (write_enable_b)
mem[addr_b] <= write_data_b;
else if (read_enable_b)
read_data_b <= mem[addr_b];
end
TDP with same clock, read-first behavior
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- This requires hardware inter-port read-first behavior, and will only work on
some targets (Xilinx, Nexus)
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable_a)
mem[addr_a] <= write_data_a;
if (read_enable_a)
read_data_a <= mem[addr_a];
end
always @(posedge clk) begin
if (write_enable_b)
mem[addr_b] <= write_data_b;
if (read_enable_b)
read_data_b <= mem[addr_b];
end
TDP with multiple read ports
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- The combination of a single write port with an arbitrary amount of read ports
is supported on all targets — if a multi-read port primitive is available
(like Xilinx RAM64M), it'll be used as appropriate. Otherwise, the memory
will be automatically split into multiple primitives.
.. code:: verilog
reg [31:0] mem [0:31];
always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
end
assign read_data_a = mem[read_addr_a];
assign read_data_b = mem[read_addr_b];
assign read_data_c = mem[read_addr_c];
Patterns only supported with Verific
------------------------------------
The following patterns are only supported when the design is read in using the
Verific front-end.
Synchronous SDP with write-first behavior via blocking assignments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Use `sdp_wf`_ for compatibility with Yosys
Verilog frontend.
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk) begin
if (write_enable)
mem[write_addr] = write_data;
if (read_enable)
read_data <= mem[read_addr];
end
Asymmetric memories via part selection
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Build wide ports out of narrow ports instead (see `wide_sr`_) for
compatibility with Yosys Verilog frontend.
.. code:: verilog
reg [31:0] mem [2**ADDR_WIDTH - 1 : 0];
wire [1:0] byte_lane;
wire [7:0] write_data;
always @(posedge clk) begin
if (write_enable)
mem[write_addr][byte_lane * 8 +: 8] <= write_data;
if (read_enable)
read_data <= mem[read_addr];
end
Undesired patterns
------------------
Asynchronous writes
~~~~~~~~~~~~~~~~~~~
- Not supported in modern FPGAs
- Not supported in yosys code anyhow
.. code:: verilog
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @* begin
if (write_enable)
mem[write_addr] = write_data;
end
assign read_data = mem[read_addr];