yosys/kernel/rtlil.cc

2280 lines
63 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/compatibility.h"
#include "kernel/rtlil.h"
#include "kernel/log.h"
#include "frontends/verilog/verilog_frontend.h"
#include "backends/ilang/ilang_backend.h"
#include <assert.h>
#include <string.h>
#include <algorithm>
int RTLIL::autoidx = 1;
RTLIL::Const::Const()
{
flags = RTLIL::CONST_FLAG_NONE;
}
RTLIL::Const::Const(std::string str)
{
flags = RTLIL::CONST_FLAG_STRING;
for (int i = str.size()-1; i >= 0; i--) {
unsigned char ch = str[i];
for (int j = 0; j < 8; j++) {
bits.push_back((ch & 1) != 0 ? RTLIL::S1 : RTLIL::S0);
ch = ch >> 1;
}
}
}
RTLIL::Const::Const(int val, int width)
{
flags = RTLIL::CONST_FLAG_NONE;
for (int i = 0; i < width; i++) {
bits.push_back((val & 1) != 0 ? RTLIL::S1 : RTLIL::S0);
val = val >> 1;
}
}
RTLIL::Const::Const(RTLIL::State bit, int width)
{
flags = RTLIL::CONST_FLAG_NONE;
for (int i = 0; i < width; i++)
bits.push_back(bit);
}
bool RTLIL::Const::operator <(const RTLIL::Const &other) const
{
if (bits.size() != other.bits.size())
return bits.size() < other.bits.size();
for (size_t i = 0; i < bits.size(); i++)
if (bits[i] != other.bits[i])
return bits[i] < other.bits[i];
return false;
}
bool RTLIL::Const::operator ==(const RTLIL::Const &other) const
{
return bits == other.bits;
}
bool RTLIL::Const::operator !=(const RTLIL::Const &other) const
{
return bits != other.bits;
}
bool RTLIL::Const::as_bool() const
{
for (size_t i = 0; i < bits.size(); i++)
if (bits[i] == RTLIL::S1)
return true;
return false;
}
int RTLIL::Const::as_int() const
{
int ret = 0;
for (size_t i = 0; i < bits.size() && i < 32; i++)
if (bits[i] == RTLIL::S1)
ret |= 1 << i;
return ret;
}
std::string RTLIL::Const::as_string() const
{
std::string ret;
for (size_t i = bits.size(); i > 0; i--)
switch (bits[i-1]) {
case S0: ret += "0"; break;
case S1: ret += "1"; break;
case Sx: ret += "x"; break;
case Sz: ret += "z"; break;
case Sa: ret += "-"; break;
case Sm: ret += "m"; break;
}
return ret;
}
std::string RTLIL::Const::decode_string() const
{
std::string string;
std::vector <char> string_chars;
for (int i = 0; i < int (bits.size()); i += 8) {
char ch = 0;
for (int j = 0; j < 8 && i + j < int (bits.size()); j++)
if (bits[i + j] == RTLIL::State::S1)
ch |= 1 << j;
if (ch != 0)
string_chars.push_back(ch);
}
for (int i = int (string_chars.size()) - 1; i >= 0; i--)
string += string_chars[i];
return string;
}
bool RTLIL::Selection::selected_module(RTLIL::IdString mod_name) const
{
if (full_selection)
return true;
if (selected_modules.count(mod_name) > 0)
return true;
if (selected_members.count(mod_name) > 0)
return true;
return false;
}
bool RTLIL::Selection::selected_whole_module(RTLIL::IdString mod_name) const
{
if (full_selection)
return true;
if (selected_modules.count(mod_name) > 0)
return true;
return false;
}
bool RTLIL::Selection::selected_member(RTLIL::IdString mod_name, RTLIL::IdString memb_name) const
{
if (full_selection)
return true;
if (selected_modules.count(mod_name) > 0)
return true;
if (selected_members.count(mod_name) > 0)
if (selected_members.at(mod_name).count(memb_name) > 0)
return true;
return false;
}
void RTLIL::Selection::optimize(RTLIL::Design *design)
{
if (full_selection) {
selected_modules.clear();
selected_members.clear();
return;
}
std::vector<RTLIL::IdString> del_list, add_list;
del_list.clear();
for (auto mod_name : selected_modules) {
if (design->modules.count(mod_name) == 0)
del_list.push_back(mod_name);
selected_members.erase(mod_name);
}
for (auto mod_name : del_list)
selected_modules.erase(mod_name);
del_list.clear();
for (auto &it : selected_members)
if (design->modules.count(it.first) == 0)
del_list.push_back(it.first);
for (auto mod_name : del_list)
selected_members.erase(mod_name);
for (auto &it : selected_members) {
del_list.clear();
for (auto memb_name : it.second)
if (design->modules[it.first]->count_id(memb_name) == 0)
del_list.push_back(memb_name);
for (auto memb_name : del_list)
it.second.erase(memb_name);
}
del_list.clear();
add_list.clear();
for (auto &it : selected_members)
if (it.second.size() == 0)
del_list.push_back(it.first);
else if (it.second.size() == design->modules[it.first]->wires.size() + design->modules[it.first]->memories.size() +
design->modules[it.first]->cells.size() + design->modules[it.first]->processes.size())
add_list.push_back(it.first);
for (auto mod_name : del_list)
selected_members.erase(mod_name);
for (auto mod_name : add_list) {
selected_members.erase(mod_name);
selected_modules.insert(mod_name);
}
if (selected_modules.size() == design->modules.size()) {
full_selection = true;
selected_modules.clear();
selected_members.clear();
}
}
RTLIL::Design::~Design()
{
for (auto it = modules.begin(); it != modules.end(); it++)
delete it->second;
}
void RTLIL::Design::check()
{
#ifndef NDEBUG
for (auto &it : modules) {
assert(it.first == it.second->name);
assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$'));
it.second->check();
}
#endif
}
void RTLIL::Design::optimize()
{
for (auto &it : modules)
it.second->optimize();
for (auto &it : selection_stack)
it.optimize(this);
for (auto &it : selection_vars)
it.second.optimize(this);
}
bool RTLIL::Design::selected_module(RTLIL::IdString mod_name) const
{
if (!selected_active_module.empty() && mod_name != selected_active_module)
return false;
if (selection_stack.size() == 0)
return true;
return selection_stack.back().selected_module(mod_name);
}
bool RTLIL::Design::selected_whole_module(RTLIL::IdString mod_name) const
{
if (!selected_active_module.empty() && mod_name != selected_active_module)
return false;
if (selection_stack.size() == 0)
return true;
return selection_stack.back().selected_whole_module(mod_name);
}
bool RTLIL::Design::selected_member(RTLIL::IdString mod_name, RTLIL::IdString memb_name) const
{
if (!selected_active_module.empty() && mod_name != selected_active_module)
return false;
if (selection_stack.size() == 0)
return true;
return selection_stack.back().selected_member(mod_name, memb_name);
}
RTLIL::Module::~Module()
{
for (auto it = wires.begin(); it != wires.end(); it++)
delete it->second;
for (auto it = memories.begin(); it != memories.end(); it++)
delete it->second;
for (auto it = cells.begin(); it != cells.end(); it++)
delete it->second;
for (auto it = processes.begin(); it != processes.end(); it++)
delete it->second;
}
RTLIL::IdString RTLIL::Module::derive(RTLIL::Design*, std::map<RTLIL::IdString, RTLIL::Const>)
{
log_error("Module `%s' is used with parameters but is not parametric!\n", id2cstr(name));
}
size_t RTLIL::Module::count_id(RTLIL::IdString id)
{
return wires.count(id) + memories.count(id) + cells.count(id) + processes.count(id);
}
#ifndef NDEBUG
namespace {
struct InternalCellChecker
{
RTLIL::Module *module;
RTLIL::Cell *cell;
std::set<RTLIL::IdString> expected_params, expected_ports;
InternalCellChecker(RTLIL::Module *module, RTLIL::Cell *cell) : module(module), cell(cell) { }
void error(int linenr)
{
char *ptr;
size_t size;
FILE *f = open_memstream(&ptr, &size);
ILANG_BACKEND::dump_cell(f, " ", cell);
fputc(0, f);
fclose(f);
log_error("Found error in internal cell %s%s%s (%s) at %s:%d:\n%s",
module ? module->name.c_str() : "", module ? "." : "",
cell->name.c_str(), cell->type.c_str(), __FILE__, linenr, ptr);
}
int param(const char *name)
{
if (cell->parameters.count(name) == 0)
error(__LINE__);
expected_params.insert(name);
return cell->parameters.at(name).as_int();
}
int param_bool(const char *name)
{
int v = param(name);
if (cell->parameters.at(name).bits.size() > 32)
error(__LINE__);
if (v != 0 && v != 1)
error(__LINE__);
return v;
}
void param_bits(const char *name, int width)
{
param(name);
if (int(cell->parameters.at(name).bits.size()) != width)
error(__LINE__);
}
void port(const char *name, int width)
{
if (cell->connections.count(name) == 0)
error(__LINE__);
if (cell->connections.at(name).width != width)
error(__LINE__);
expected_ports.insert(name);
}
void check_expected(bool check_matched_sign = true)
{
for (auto &para : cell->parameters)
if (expected_params.count(para.first) == 0)
error(__LINE__);
for (auto &conn : cell->connections)
if (expected_ports.count(conn.first) == 0)
error(__LINE__);
if (expected_params.count("\\A_SIGNED") != 0 && expected_params.count("\\B_SIGNED") && check_matched_sign) {
bool a_is_signed = param("\\A_SIGNED") != 0;
bool b_is_signed = param("\\B_SIGNED") != 0;
if (a_is_signed != b_is_signed)
error(__LINE__);
}
}
void check_gate(const char *ports)
{
if (cell->parameters.size() != 0)
error(__LINE__);
for (const char *p = ports; *p; p++) {
char portname[3] = { '\\', *p, 0 };
if (cell->connections.count(portname) == 0)
error(__LINE__);
if (cell->connections.at(portname).width != 1)
error(__LINE__);
}
for (auto &conn : cell->connections) {
if (conn.first.size() != 2 || conn.first.at(0) != '\\')
error(__LINE__);
if (strchr(ports, conn.first.at(1)) == NULL)
error(__LINE__);
}
}
void check()
{
if (cell->type[0] != '$' || cell->type.substr(0, 3) == "$__" || cell->type.substr(0, 8) == "$paramod" ||
cell->type.substr(0, 9) == "$verific$" || cell->type.substr(0, 7) == "$array:")
return;
if (cell->type == "$not" || cell->type == "$pos" || cell->type == "$bu0" || cell->type == "$neg") {
param_bool("\\A_SIGNED");
port("\\A", param("\\A_WIDTH"));
port("\\Y", param("\\Y_WIDTH"));
check_expected();
return;
}
if (cell->type == "$and" || cell->type == "$or" || cell->type == "$xor" || cell->type == "$xnor") {
param_bool("\\A_SIGNED");
param_bool("\\B_SIGNED");
port("\\A", param("\\A_WIDTH"));
port("\\B", param("\\B_WIDTH"));
port("\\Y", param("\\Y_WIDTH"));
check_expected();
return;
}
if (cell->type == "$reduce_and" || cell->type == "$reduce_or" || cell->type == "$reduce_xor" ||
cell->type == "$reduce_xnor" || cell->type == "$reduce_bool") {
param_bool("\\A_SIGNED");
port("\\A", param("\\A_WIDTH"));
port("\\Y", param("\\Y_WIDTH"));
check_expected();
return;
}
if (cell->type == "$shl" || cell->type == "$shr" || cell->type == "$sshl" || cell->type == "$sshr") {
param_bool("\\A_SIGNED");
param_bool("\\B_SIGNED");
port("\\A", param("\\A_WIDTH"));
port("\\B", param("\\B_WIDTH"));
port("\\Y", param("\\Y_WIDTH"));
check_expected(false);
return;
}
if (cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" ||
cell->type == "$eqx" || cell->type == "$nex" || cell->type == "$ge" || cell->type == "$gt") {
param_bool("\\A_SIGNED");
param_bool("\\B_SIGNED");
port("\\A", param("\\A_WIDTH"));
port("\\B", param("\\B_WIDTH"));
port("\\Y", param("\\Y_WIDTH"));
check_expected();
return;
}
if (cell->type == "$add" || cell->type == "$sub" || cell->type == "$mul" || cell->type == "$div" ||
cell->type == "$mod" || cell->type == "$pow") {
param_bool("\\A_SIGNED");
param_bool("\\B_SIGNED");
port("\\A", param("\\A_WIDTH"));
port("\\B", param("\\B_WIDTH"));
port("\\Y", param("\\Y_WIDTH"));
check_expected(cell->type != "$pow");
return;
}
if (cell->type == "$logic_not") {
param_bool("\\A_SIGNED");
port("\\A", param("\\A_WIDTH"));
port("\\Y", param("\\Y_WIDTH"));
check_expected();
return;
}
if (cell->type == "$logic_and" || cell->type == "$logic_or") {
param_bool("\\A_SIGNED");
param_bool("\\B_SIGNED");
port("\\A", param("\\A_WIDTH"));
port("\\B", param("\\B_WIDTH"));
port("\\Y", param("\\Y_WIDTH"));
check_expected(false);
return;
}
if (cell->type == "$slice") {
param("\\OFFSET");
port("\\A", param("\\A_WIDTH"));
port("\\Y", param("\\Y_WIDTH"));
if (param("\\OFFSET") + param("\\Y_WIDTH") > param("\\A_WIDTH"))
error(__LINE__);
check_expected();
return;
}
if (cell->type == "$concat") {
port("\\A", param("\\A_WIDTH"));
port("\\B", param("\\B_WIDTH"));
port("\\Y", param("\\A_WIDTH") + param("\\B_WIDTH"));
check_expected();
return;
}
if (cell->type == "$mux") {
port("\\A", param("\\WIDTH"));
port("\\B", param("\\WIDTH"));
port("\\S", 1);
port("\\Y", param("\\WIDTH"));
check_expected();
return;
}
if (cell->type == "$pmux" || cell->type == "$safe_pmux") {
port("\\A", param("\\WIDTH"));
port("\\B", param("\\WIDTH") * param("\\S_WIDTH"));
port("\\S", param("\\S_WIDTH"));
port("\\Y", param("\\WIDTH"));
check_expected();
return;
}
if (cell->type == "$lut") {
param("\\LUT");
port("\\I", param("\\WIDTH"));
port("\\O", 1);
check_expected();
return;
}
if (cell->type == "$sr") {
param_bool("\\SET_POLARITY");
param_bool("\\CLR_POLARITY");
port("\\SET", param("\\WIDTH"));
port("\\CLR", param("\\WIDTH"));
port("\\Q", param("\\WIDTH"));
check_expected();
return;
}
if (cell->type == "$dff") {
param_bool("\\CLK_POLARITY");
port("\\CLK", 1);
port("\\D", param("\\WIDTH"));
port("\\Q", param("\\WIDTH"));
check_expected();
return;
}
if (cell->type == "$dffsr") {
param_bool("\\CLK_POLARITY");
param_bool("\\SET_POLARITY");
param_bool("\\CLR_POLARITY");
port("\\CLK", 1);
port("\\SET", param("\\WIDTH"));
port("\\CLR", param("\\WIDTH"));
port("\\D", param("\\WIDTH"));
port("\\Q", param("\\WIDTH"));
check_expected();
return;
}
if (cell->type == "$adff") {
param_bool("\\CLK_POLARITY");
param_bool("\\ARST_POLARITY");
param_bits("\\ARST_VALUE", param("\\WIDTH"));
port("\\CLK", 1);
port("\\ARST", 1);
port("\\D", param("\\WIDTH"));
port("\\Q", param("\\WIDTH"));
check_expected();
return;
}
if (cell->type == "$dlatch") {
param_bool("\\EN_POLARITY");
port("\\EN", 1);
port("\\D", param("\\WIDTH"));
port("\\Q", param("\\WIDTH"));
check_expected();
return;
}
if (cell->type == "$dlatchsr") {
param_bool("\\EN_POLARITY");
param_bool("\\SET_POLARITY");
param_bool("\\CLR_POLARITY");
port("\\EN", 1);
port("\\SET", param("\\WIDTH"));
port("\\CLR", param("\\WIDTH"));
port("\\D", param("\\WIDTH"));
port("\\Q", param("\\WIDTH"));
check_expected();
return;
}
if (cell->type == "$fsm") {
param("\\NAME");
param_bool("\\CLK_POLARITY");
param_bool("\\ARST_POLARITY");
param("\\STATE_BITS");
param("\\STATE_NUM");
param("\\STATE_NUM_LOG2");
param("\\STATE_RST");
param_bits("\\STATE_TABLE", param("\\STATE_BITS") * param("\\STATE_NUM"));
param("\\TRANS_NUM");
param_bits("\\TRANS_TABLE", param("\\TRANS_NUM") * (2*param("\\STATE_NUM_LOG2") + param("\\CTRL_IN_WIDTH") + param("\\CTRL_OUT_WIDTH")));
port("\\CLK", 1);
port("\\ARST", 1);
port("\\CTRL_IN", param("\\CTRL_IN_WIDTH"));
port("\\CTRL_OUT", param("\\CTRL_OUT_WIDTH"));
check_expected();
return;
}
if (cell->type == "$memrd") {
param("\\MEMID");
param_bool("\\CLK_ENABLE");
param_bool("\\CLK_POLARITY");
param_bool("\\TRANSPARENT");
port("\\CLK", 1);
port("\\ADDR", param("\\ABITS"));
port("\\DATA", param("\\WIDTH"));
check_expected();
return;
}
if (cell->type == "$memwr") {
param("\\MEMID");
param_bool("\\CLK_ENABLE");
param_bool("\\CLK_POLARITY");
param("\\PRIORITY");
port("\\CLK", 1);
port("\\EN", param("\\WIDTH"));
port("\\ADDR", param("\\ABITS"));
port("\\DATA", param("\\WIDTH"));
check_expected();
return;
}
if (cell->type == "$mem") {
param("\\MEMID");
param("\\SIZE");
param("\\OFFSET");
param_bits("\\RD_CLK_ENABLE", param("\\RD_PORTS"));
param_bits("\\RD_CLK_POLARITY", param("\\RD_PORTS"));
param_bits("\\RD_TRANSPARENT", param("\\RD_PORTS"));
param_bits("\\WR_CLK_ENABLE", param("\\WR_PORTS"));
param_bits("\\WR_CLK_POLARITY", param("\\WR_PORTS"));
port("\\RD_CLK", param("\\RD_PORTS"));
port("\\RD_ADDR", param("\\RD_PORTS") * param("\\ABITS"));
port("\\RD_DATA", param("\\RD_PORTS") * param("\\WIDTH"));
port("\\WR_CLK", param("\\WR_PORTS"));
port("\\WR_EN", param("\\WR_PORTS") * param("\\WIDTH"));
port("\\WR_ADDR", param("\\WR_PORTS") * param("\\ABITS"));
port("\\WR_DATA", param("\\WR_PORTS") * param("\\WIDTH"));
check_expected();
return;
}
if (cell->type == "$assert") {
port("\\A", 1);
port("\\EN", 1);
check_expected();
return;
}
if (cell->type == "$_INV_") { check_gate("AY"); return; }
if (cell->type == "$_AND_") { check_gate("ABY"); return; }
if (cell->type == "$_OR_") { check_gate("ABY"); return; }
if (cell->type == "$_XOR_") { check_gate("ABY"); return; }
if (cell->type == "$_MUX_") { check_gate("ABSY"); return; }
if (cell->type == "$_SR_NN_") { check_gate("SRQ"); return; }
if (cell->type == "$_SR_NP_") { check_gate("SRQ"); return; }
if (cell->type == "$_SR_PN_") { check_gate("SRQ"); return; }
if (cell->type == "$_SR_PP_") { check_gate("SRQ"); return; }
if (cell->type == "$_DFF_N_") { check_gate("DQC"); return; }
if (cell->type == "$_DFF_P_") { check_gate("DQC"); return; }
if (cell->type == "$_DFF_NN0_") { check_gate("DQCR"); return; }
if (cell->type == "$_DFF_NN1_") { check_gate("DQCR"); return; }
if (cell->type == "$_DFF_NP0_") { check_gate("DQCR"); return; }
if (cell->type == "$_DFF_NP1_") { check_gate("DQCR"); return; }
if (cell->type == "$_DFF_PN0_") { check_gate("DQCR"); return; }
if (cell->type == "$_DFF_PN1_") { check_gate("DQCR"); return; }
if (cell->type == "$_DFF_PP0_") { check_gate("DQCR"); return; }
if (cell->type == "$_DFF_PP1_") { check_gate("DQCR"); return; }
if (cell->type == "$_DFFSR_NNN_") { check_gate("CSRDQ"); return; }
if (cell->type == "$_DFFSR_NNP_") { check_gate("CSRDQ"); return; }
if (cell->type == "$_DFFSR_NPN_") { check_gate("CSRDQ"); return; }
if (cell->type == "$_DFFSR_NPP_") { check_gate("CSRDQ"); return; }
if (cell->type == "$_DFFSR_PNN_") { check_gate("CSRDQ"); return; }
if (cell->type == "$_DFFSR_PNP_") { check_gate("CSRDQ"); return; }
if (cell->type == "$_DFFSR_PPN_") { check_gate("CSRDQ"); return; }
if (cell->type == "$_DFFSR_PPP_") { check_gate("CSRDQ"); return; }
if (cell->type == "$_DLATCH_N_") { check_gate("EDQ"); return; }
if (cell->type == "$_DLATCH_P_") { check_gate("EDQ"); return; }
if (cell->type == "$_DLATCHSR_NNN_") { check_gate("ESRDQ"); return; }
if (cell->type == "$_DLATCHSR_NNP_") { check_gate("ESRDQ"); return; }
if (cell->type == "$_DLATCHSR_NPN_") { check_gate("ESRDQ"); return; }
if (cell->type == "$_DLATCHSR_NPP_") { check_gate("ESRDQ"); return; }
if (cell->type == "$_DLATCHSR_PNN_") { check_gate("ESRDQ"); return; }
if (cell->type == "$_DLATCHSR_PNP_") { check_gate("ESRDQ"); return; }
if (cell->type == "$_DLATCHSR_PPN_") { check_gate("ESRDQ"); return; }
if (cell->type == "$_DLATCHSR_PPP_") { check_gate("ESRDQ"); return; }
error(__LINE__);
}
};
}
#endif
void RTLIL::Module::check()
{
#ifndef NDEBUG
for (auto &it : wires) {
assert(it.first == it.second->name);
assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$'));
assert(it.second->width >= 0);
assert(it.second->port_id >= 0);
for (auto &it2 : it.second->attributes) {
assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$'));
}
}
for (auto &it : memories) {
assert(it.first == it.second->name);
assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$'));
assert(it.second->width >= 0);
assert(it.second->size >= 0);
for (auto &it2 : it.second->attributes) {
assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$'));
}
}
for (auto &it : cells) {
assert(it.first == it.second->name);
assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$'));
assert(it.second->type.size() > 0 && (it.second->type[0] == '\\' || it.second->type[0] == '$'));
for (auto &it2 : it.second->connections) {
assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$'));
it2.second.check();
}
for (auto &it2 : it.second->attributes) {
assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$'));
}
for (auto &it2 : it.second->parameters) {
assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$'));
}
InternalCellChecker checker(this, it.second);
checker.check();
}
for (auto &it : processes) {
assert(it.first == it.second->name);
assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$'));
// FIXME: More checks here..
}
for (auto &it : connections) {
assert(it.first.width == it.second.width);
it.first.check();
it.second.check();
}
for (auto &it : attributes) {
assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$'));
}
#endif
}
void RTLIL::Module::optimize()
{
for (auto &it : cells)
it.second->optimize();
for (auto &it : processes)
it.second->optimize();
for (auto &it : connections) {
it.first.optimize();
it.second.optimize();
}
}
void RTLIL::Module::cloneInto(RTLIL::Module *new_mod) const
{
new_mod->name = name;
new_mod->connections = connections;
new_mod->attributes = attributes;
for (auto &it : wires)
new_mod->wires[it.first] = new RTLIL::Wire(*it.second);
for (auto &it : memories)
new_mod->memories[it.first] = new RTLIL::Memory(*it.second);
for (auto &it : cells)
new_mod->cells[it.first] = new RTLIL::Cell(*it.second);
for (auto &it : processes)
new_mod->processes[it.first] = it.second->clone();
struct RewriteSigSpecWorker
{
RTLIL::Module *mod;
void operator()(RTLIL::SigSpec &sig)
{
for (auto &c : sig.chunks)
if (c.wire != NULL)
c.wire = mod->wires.at(c.wire->name);
}
};
RewriteSigSpecWorker rewriteSigSpecWorker;
rewriteSigSpecWorker.mod = new_mod;
new_mod->rewrite_sigspecs(rewriteSigSpecWorker);
}
RTLIL::Module *RTLIL::Module::clone() const
{
RTLIL::Module *new_mod = new RTLIL::Module;
cloneInto(new_mod);
return new_mod;
}
void RTLIL::Module::add(RTLIL::Wire *wire)
{
assert(!wire->name.empty());
assert(count_id(wire->name) == 0);
wires[wire->name] = wire;
}
void RTLIL::Module::add(RTLIL::Cell *cell)
{
assert(!cell->name.empty());
assert(count_id(cell->name) == 0);
cells[cell->name] = cell;
}
void RTLIL::Module::remove(RTLIL::Cell *cell)
{
assert(cells.count(cell->name) != 0);
cells.erase(cell->name);
delete cell;
}
static bool fixup_ports_compare(const RTLIL::Wire *a, const RTLIL::Wire *b)
{
if (a->port_id && !b->port_id)
return true;
if (!a->port_id && b->port_id)
return false;
if (a->port_id == b->port_id)
return a->name < b->name;
return a->port_id < b->port_id;
}
void RTLIL::Module::fixup_ports()
{
std::vector<RTLIL::Wire*> all_ports;
for (auto &w : wires)
if (w.second->port_input || w.second->port_output)
all_ports.push_back(w.second);
else
w.second->port_id = 0;
std::sort(all_ports.begin(), all_ports.end(), fixup_ports_compare);
for (size_t i = 0; i < all_ports.size(); i++)
all_ports[i]->port_id = i+1;
}
RTLIL::Wire *RTLIL::Module::addWire(RTLIL::IdString name, int width)
{
RTLIL::Wire *wire = new RTLIL::Wire;
wire->name = name;
wire->width = width;
add(wire);
return wire;
}
RTLIL::Cell *RTLIL::Module::addCell(RTLIL::IdString name, RTLIL::IdString type)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = type;
add(cell);
return cell;
}
#define DEF_METHOD(_func, _y_size, _type) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_y, bool is_signed) { \
RTLIL::Cell *cell = new RTLIL::Cell; \
cell->name = name; \
cell->type = _type; \
cell->parameters["\\A_SIGNED"] = is_signed; \
cell->parameters["\\A_WIDTH"] = sig_a.width; \
cell->parameters["\\Y_WIDTH"] = sig_y.width; \
cell->connections["\\A"] = sig_a; \
cell->connections["\\Y"] = sig_y; \
add(cell); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig_a, bool is_signed) { \
RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \
add ## _func(name, sig_a, sig_y, is_signed); \
return sig_y; \
}
DEF_METHOD(Not, sig_a.width, "$not")
DEF_METHOD(Pos, sig_a.width, "$pos")
DEF_METHOD(Bu0, sig_a.width, "$bu0")
DEF_METHOD(Neg, sig_a.width, "$neg")
DEF_METHOD(ReduceAnd, 1, "$reduce_and")
DEF_METHOD(ReduceOr, 1, "$reduce_or")
DEF_METHOD(ReduceXor, 1, "$reduce_xor")
DEF_METHOD(ReduceXnor, 1, "$reduce_xnor")
DEF_METHOD(ReduceBool, 1, "$reduce_bool")
DEF_METHOD(LogicNot, 1, "$logic_not")
#undef DEF_METHOD
#define DEF_METHOD(_func, _y_size, _type) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_y, bool is_signed) { \
RTLIL::Cell *cell = new RTLIL::Cell; \
cell->name = name; \
cell->type = _type; \
cell->parameters["\\A_SIGNED"] = is_signed; \
cell->parameters["\\B_SIGNED"] = is_signed; \
cell->parameters["\\A_WIDTH"] = sig_a.width; \
cell->parameters["\\B_WIDTH"] = sig_b.width; \
cell->parameters["\\Y_WIDTH"] = sig_y.width; \
cell->connections["\\A"] = sig_a; \
cell->connections["\\B"] = sig_b; \
cell->connections["\\Y"] = sig_y; \
add(cell); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, bool is_signed) { \
RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \
add ## _func(name, sig_a, sig_b, sig_y, is_signed); \
return sig_y; \
}
DEF_METHOD(And, std::max(sig_a.width, sig_b.width), "$and")
DEF_METHOD(Or, std::max(sig_a.width, sig_b.width), "$or")
DEF_METHOD(Xor, std::max(sig_a.width, sig_b.width), "$xor")
DEF_METHOD(Xnor, std::max(sig_a.width, sig_b.width), "$xnor")
DEF_METHOD(Shl, sig_a.width, "$shl")
DEF_METHOD(Shr, sig_a.width, "$shr")
DEF_METHOD(Sshl, sig_a.width, "$sshl")
DEF_METHOD(Sshr, sig_a.width, "$sshr")
DEF_METHOD(Lt, 1, "$lt")
DEF_METHOD(Le, 1, "$le")
DEF_METHOD(Eq, 1, "$eq")
DEF_METHOD(Ne, 1, "$ne")
DEF_METHOD(Eqx, 1, "$eqx")
DEF_METHOD(Nex, 1, "$nex")
DEF_METHOD(Ge, 1, "$ge")
DEF_METHOD(Gt, 1, "$gt")
DEF_METHOD(Add, std::max(sig_a.width, sig_b.width), "$add")
DEF_METHOD(Sub, std::max(sig_a.width, sig_b.width), "$sub")
DEF_METHOD(Mul, std::max(sig_a.width, sig_b.width), "$mul")
DEF_METHOD(Div, std::max(sig_a.width, sig_b.width), "$div")
DEF_METHOD(Mod, std::max(sig_a.width, sig_b.width), "$mod")
DEF_METHOD(LogicAnd, 1, "$logic_and")
DEF_METHOD(LogicOr, 1, "$logic_or")
#undef DEF_METHOD
#define DEF_METHOD(_func, _type, _pmux) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_s, RTLIL::SigSpec sig_y) { \
RTLIL::Cell *cell = new RTLIL::Cell; \
cell->name = name; \
cell->type = _type; \
cell->parameters["\\WIDTH"] = sig_a.width; \
cell->parameters["\\WIDTH"] = sig_b.width; \
if (_pmux) cell->parameters["\\S_WIDTH"] = sig_s.width; \
cell->connections["\\A"] = sig_a; \
cell->connections["\\B"] = sig_b; \
cell->connections["\\S"] = sig_s; \
cell->connections["\\Y"] = sig_y; \
add(cell); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_s) { \
RTLIL::SigSpec sig_y = addWire(NEW_ID, sig_a.width); \
add ## _func(name, sig_a, sig_b, sig_s, sig_y); \
return sig_y; \
}
DEF_METHOD(Mux, "$mux", 0)
DEF_METHOD(Pmux, "$pmux", 1)
DEF_METHOD(SafePmux, "$safe_pmux", 1)
#undef DEF_METHOD
#define DEF_METHOD_2(_func, _type, _P1, _P2) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig1, RTLIL::SigSpec sig2) { \
RTLIL::Cell *cell = new RTLIL::Cell; \
cell->name = name; \
cell->type = _type; \
cell->connections["\\" #_P1] = sig1; \
cell->connections["\\" #_P2] = sig2; \
add(cell); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig1) { \
RTLIL::SigSpec sig2 = addWire(NEW_ID); \
add ## _func(name, sig1, sig2); \
return sig2; \
}
#define DEF_METHOD_3(_func, _type, _P1, _P2, _P3) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig1, RTLIL::SigSpec sig2, RTLIL::SigSpec sig3) { \
RTLIL::Cell *cell = new RTLIL::Cell; \
cell->name = name; \
cell->type = _type; \
cell->connections["\\" #_P1] = sig1; \
cell->connections["\\" #_P2] = sig2; \
cell->connections["\\" #_P3] = sig3; \
add(cell); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig1, RTLIL::SigSpec sig2) { \
RTLIL::SigSpec sig3 = addWire(NEW_ID); \
add ## _func(name, sig1, sig2, sig3); \
return sig3; \
}
#define DEF_METHOD_4(_func, _type, _P1, _P2, _P3, _P4) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig1, RTLIL::SigSpec sig2, RTLIL::SigSpec sig3, RTLIL::SigSpec sig4) { \
RTLIL::Cell *cell = new RTLIL::Cell; \
cell->name = name; \
cell->type = _type; \
cell->connections["\\" #_P1] = sig1; \
cell->connections["\\" #_P2] = sig2; \
cell->connections["\\" #_P3] = sig3; \
cell->connections["\\" #_P4] = sig4; \
add(cell); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig1, RTLIL::SigSpec sig2, RTLIL::SigSpec sig3) { \
RTLIL::SigSpec sig4 = addWire(NEW_ID); \
add ## _func(name, sig1, sig2, sig3, sig4); \
return sig4; \
}
DEF_METHOD_2(InvGate, "$_INV_", A, Y)
DEF_METHOD_3(AndGate, "$_AND_", A, B, Y)
DEF_METHOD_3(OrGate, "$_OR_", A, B, Y)
DEF_METHOD_3(XorGate, "$_XOR_", A, B, Y)
DEF_METHOD_4(MuxGate, "$_MUX_", A, B, S, Y)
#undef DEF_METHOD_2
#undef DEF_METHOD_3
#undef DEF_METHOD_4
RTLIL::Cell* RTLIL::Module::addPow(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_y, bool a_signed, bool b_signed)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = "$pow";
cell->parameters["\\A_SIGNED"] = a_signed;
cell->parameters["\\B_SIGNED"] = b_signed;
cell->parameters["\\A_WIDTH"] = sig_a.width;
cell->parameters["\\B_WIDTH"] = sig_b.width;
cell->parameters["\\Y_WIDTH"] = sig_y.width;
cell->connections["\\A"] = sig_a;
cell->connections["\\B"] = sig_b;
cell->connections["\\Y"] = sig_y;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addSlice(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_y, RTLIL::Const offset)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = "$slice";
cell->parameters["\\A_WIDTH"] = sig_a.width;
cell->parameters["\\Y_WIDTH"] = sig_y.width;
cell->parameters["\\OFFSET"] = offset;
cell->connections["\\A"] = sig_a;
cell->connections["\\Y"] = sig_y;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addConcat(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_y)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = "$concat";
cell->parameters["\\A_WIDTH"] = sig_a.width;
cell->parameters["\\B_WIDTH"] = sig_b.width;
cell->connections["\\A"] = sig_a;
cell->connections["\\B"] = sig_b;
cell->connections["\\Y"] = sig_y;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addLut(RTLIL::IdString name, RTLIL::SigSpec sig_i, RTLIL::SigSpec sig_o, RTLIL::Const lut)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = "$lut";
cell->parameters["\\LUT"] = lut;
cell->parameters["\\WIDTH"] = sig_i.width;
cell->connections["\\I"] = sig_i;
cell->connections["\\O"] = sig_o;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAssert(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_en)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = "$assert";
cell->connections["\\A"] = sig_a;
cell->connections["\\EN"] = sig_en;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addSr(RTLIL::IdString name, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr, RTLIL::SigSpec sig_q, bool set_polarity, bool clr_polarity)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = "$sr";
cell->parameters["\\SET_POLARITY"] = set_polarity;
cell->parameters["\\CLR_POLARITY"] = clr_polarity;
cell->parameters["\\WIDTH"] = sig_q.width;
cell->connections["\\SET"] = sig_set;
cell->connections["\\CLR"] = sig_clr;
cell->connections["\\Q"] = sig_q;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDff(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = "$dff";
cell->parameters["\\CLK_POLARITY"] = clk_polarity;
cell->parameters["\\WIDTH"] = sig_q.width;
cell->connections["\\CLK"] = sig_clk;
cell->connections["\\D"] = sig_d;
cell->connections["\\Q"] = sig_q;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDffsr(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr,
RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity, bool set_polarity, bool clr_polarity)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = "$dffsr";
cell->parameters["\\CLK_POLARITY"] = clk_polarity;
cell->parameters["\\SET_POLARITY"] = set_polarity;
cell->parameters["\\CLR_POLARITY"] = clr_polarity;
cell->parameters["\\WIDTH"] = sig_q.width;
cell->connections["\\CLK"] = sig_clk;
cell->connections["\\SET"] = sig_set;
cell->connections["\\CLR"] = sig_clr;
cell->connections["\\D"] = sig_d;
cell->connections["\\Q"] = sig_q;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAdff(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_arst, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q,
RTLIL::Const arst_value, bool clk_polarity, bool arst_polarity)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = "$adff";
cell->parameters["\\CLK_POLARITY"] = clk_polarity;
cell->parameters["\\ARST_POLARITY"] = arst_polarity;
cell->parameters["\\ARST_VALUE"] = arst_value;
cell->parameters["\\WIDTH"] = sig_q.width;
cell->connections["\\CLK"] = sig_clk;
cell->connections["\\ARST"] = sig_arst;
cell->connections["\\D"] = sig_d;
cell->connections["\\Q"] = sig_q;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDlatch(RTLIL::IdString name, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool en_polarity)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = "$dlatch";
cell->parameters["\\EN_POLARITY"] = en_polarity;
cell->parameters["\\WIDTH"] = sig_q.width;
cell->connections["\\EN"] = sig_en;
cell->connections["\\D"] = sig_d;
cell->connections["\\Q"] = sig_q;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDlatchsr(RTLIL::IdString name, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr,
RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool en_polarity, bool set_polarity, bool clr_polarity)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = "$dlatchsr";
cell->parameters["\\EN_POLARITY"] = en_polarity;
cell->parameters["\\SET_POLARITY"] = set_polarity;
cell->parameters["\\CLR_POLARITY"] = clr_polarity;
cell->parameters["\\WIDTH"] = sig_q.width;
cell->connections["\\EN"] = sig_en;
cell->connections["\\SET"] = sig_set;
cell->connections["\\CLR"] = sig_clr;
cell->connections["\\D"] = sig_d;
cell->connections["\\Q"] = sig_q;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDffGate(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = stringf("$_DFF_%c_", clk_polarity ? 'P' : 'N');
cell->connections["\\C"] = sig_clk;
cell->connections["\\D"] = sig_d;
cell->connections["\\Q"] = sig_q;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDffsrGate(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr,
RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity, bool set_polarity, bool clr_polarity)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = stringf("$_DFFSR_%c%c%c_", clk_polarity ? 'P' : 'N', set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N');
cell->connections["\\C"] = sig_clk;
cell->connections["\\S"] = sig_set;
cell->connections["\\R"] = sig_clr;
cell->connections["\\D"] = sig_d;
cell->connections["\\Q"] = sig_q;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAdffGate(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_arst, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q,
bool arst_value, bool clk_polarity, bool arst_polarity)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = stringf("$_DFF_%c%c%c_", clk_polarity ? 'P' : 'N', arst_polarity ? 'P' : 'N', arst_value ? '1' : '0');
cell->connections["\\C"] = sig_clk;
cell->connections["\\R"] = sig_arst;
cell->connections["\\D"] = sig_d;
cell->connections["\\Q"] = sig_q;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDlatchGate(RTLIL::IdString name, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool en_polarity)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = stringf("$_DLATCH_%c_", en_polarity ? 'P' : 'N');
cell->connections["\\E"] = sig_en;
cell->connections["\\D"] = sig_d;
cell->connections["\\Q"] = sig_q;
add(cell);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDlatchsrGate(RTLIL::IdString name, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr,
RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool en_polarity, bool set_polarity, bool clr_polarity)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = stringf("$_DLATCHSR_%c%c%c_", en_polarity ? 'P' : 'N', set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N');
cell->connections["\\E"] = sig_en;
cell->connections["\\S"] = sig_set;
cell->connections["\\R"] = sig_clr;
cell->connections["\\D"] = sig_d;
cell->connections["\\Q"] = sig_q;
add(cell);
return cell;
}
RTLIL::Wire::Wire()
{
width = 1;
start_offset = 0;
port_id = 0;
port_input = false;
port_output = false;
}
RTLIL::Memory::Memory()
{
width = 1;
size = 0;
}
void RTLIL::Cell::optimize()
{
for (auto &it : connections)
it.second.optimize();
}
void RTLIL::Cell::check()
{
InternalCellChecker checker(NULL, this);
checker.check();
}
RTLIL::SigChunk::SigChunk()
{
wire = NULL;
width = 0;
offset = 0;
}
RTLIL::SigChunk::SigChunk(const RTLIL::Const &data)
{
wire = NULL;
this->data = data;
width = data.bits.size();
offset = 0;
}
RTLIL::SigChunk::SigChunk(RTLIL::Wire *wire, int width, int offset)
{
this->wire = wire;
this->width = width >= 0 ? width : wire->width;
this->offset = offset;
}
RTLIL::SigChunk::SigChunk(const std::string &str)
{
wire = NULL;
data = RTLIL::Const(str);
width = data.bits.size();
offset = 0;
}
RTLIL::SigChunk::SigChunk(int val, int width)
{
wire = NULL;
data = RTLIL::Const(val, width);
this->width = data.bits.size();
offset = 0;
}
RTLIL::SigChunk::SigChunk(RTLIL::State bit, int width)
{
wire = NULL;
data = RTLIL::Const(bit, width);
this->width = data.bits.size();
offset = 0;
}
RTLIL::SigChunk::SigChunk(RTLIL::SigBit bit)
{
wire = bit.wire;
if (wire == NULL)
data = RTLIL::Const(bit.data);
offset = bit.offset;
width = 1;
}
RTLIL::SigChunk RTLIL::SigChunk::extract(int offset, int length) const
{
RTLIL::SigChunk ret;
if (wire) {
ret.wire = wire;
ret.offset = this->offset + offset;
ret.width = length;
} else {
for (int i = 0; i < length; i++)
ret.data.bits.push_back(data.bits[offset+i]);
ret.width = length;
}
return ret;
}
bool RTLIL::SigChunk::operator <(const RTLIL::SigChunk &other) const
{
if (wire && other.wire)
if (wire->name != other.wire->name)
return wire->name < other.wire->name;
if (wire != other.wire)
return wire < other.wire;
if (offset != other.offset)
return offset < other.offset;
if (width != other.width)
return width < other.width;
if (data.bits != other.data.bits)
return data.bits < other.data.bits;
return false;
}
bool RTLIL::SigChunk::operator ==(const RTLIL::SigChunk &other) const
{
if (wire != other.wire || width != other.width || offset != other.offset)
return false;
if (data.bits != other.data.bits)
return false;
return true;
}
bool RTLIL::SigChunk::operator !=(const RTLIL::SigChunk &other) const
{
if (*this == other)
return false;
return true;
}
RTLIL::SigSpec::SigSpec()
{
width = 0;
}
RTLIL::SigSpec::SigSpec(const RTLIL::Const &data)
{
chunks.push_back(RTLIL::SigChunk(data));
width = chunks.back().width;
check();
}
RTLIL::SigSpec::SigSpec(const RTLIL::SigChunk &chunk)
{
chunks.push_back(chunk);
width = chunks.back().width;
check();
}
RTLIL::SigSpec::SigSpec(RTLIL::Wire *wire, int width, int offset)
{
chunks.push_back(RTLIL::SigChunk(wire, width, offset));
this->width = chunks.back().width;
check();
}
RTLIL::SigSpec::SigSpec(const std::string &str)
{
chunks.push_back(RTLIL::SigChunk(str));
width = chunks.back().width;
check();
}
RTLIL::SigSpec::SigSpec(int val, int width)
{
chunks.push_back(RTLIL::SigChunk(val, width));
this->width = width;
check();
}
RTLIL::SigSpec::SigSpec(RTLIL::State bit, int width)
{
chunks.push_back(RTLIL::SigChunk(bit, width));
this->width = width;
check();
}
RTLIL::SigSpec::SigSpec(RTLIL::SigBit bit, int width)
{
if (bit.wire == NULL)
chunks.push_back(RTLIL::SigChunk(bit.data, width));
else
for (int i = 0; i < width; i++)
chunks.push_back(bit);
this->width = width;
check();
}
RTLIL::SigSpec::SigSpec(std::vector<RTLIL::SigBit> bits)
{
this->width = 0;
for (auto &bit : bits)
append_bit(bit);
check();
}
RTLIL::SigSpec::SigSpec(std::set<RTLIL::SigBit> bits)
{
this->width = 0;
for (auto &bit : bits)
append_bit(bit);
check();
}
void RTLIL::SigSpec::expand()
{
std::vector<RTLIL::SigChunk> new_chunks;
for (size_t i = 0; i < chunks.size(); i++) {
for (int j = 0; j < chunks[i].width; j++)
new_chunks.push_back(chunks[i].extract(j, 1));
}
chunks.swap(new_chunks);
check();
}
void RTLIL::SigSpec::optimize()
{
std::vector<RTLIL::SigChunk> new_chunks;
for (auto &c : chunks)
if (new_chunks.size() == 0) {
new_chunks.push_back(c);
} else {
RTLIL::SigChunk &cc = new_chunks.back();
if (c.wire == NULL && cc.wire == NULL)
cc.data.bits.insert(cc.data.bits.end(), c.data.bits.begin(), c.data.bits.end());
if (c.wire == cc.wire && (c.wire == NULL || cc.offset + cc.width == c.offset))
cc.width += c.width;
else
new_chunks.push_back(c);
}
chunks.swap(new_chunks);
check();
}
RTLIL::SigSpec RTLIL::SigSpec::optimized() const
{
RTLIL::SigSpec ret = *this;
ret.optimize();
return ret;
}
bool RTLIL::SigChunk::compare(const RTLIL::SigChunk &a, const RTLIL::SigChunk &b)
{
if (a.wire != b.wire) {
if (a.wire == NULL || b.wire == NULL)
return a.wire < b.wire;
else if (a.wire->name != b.wire->name)
return a.wire->name < b.wire->name;
else
return a.wire < b.wire;
}
if (a.offset != b.offset)
return a.offset < b.offset;
if (a.width != b.width)
return a.width < b.width;
return a.data.bits < b.data.bits;
}
void RTLIL::SigSpec::sort()
{
expand();
std::sort(chunks.begin(), chunks.end(), RTLIL::SigChunk::compare);
optimize();
}
void RTLIL::SigSpec::sort_and_unify()
{
expand();
std::sort(chunks.begin(), chunks.end(), RTLIL::SigChunk::compare);
for (size_t i = 1; i < chunks.size(); i++) {
RTLIL::SigChunk &ch1 = chunks[i-1];
RTLIL::SigChunk &ch2 = chunks[i];
if (!RTLIL::SigChunk::compare(ch1, ch2) && !RTLIL::SigChunk::compare(ch2, ch1)) {
chunks.erase(chunks.begin()+i);
width -= chunks[i].width;
i--;
}
}
optimize();
}
void RTLIL::SigSpec::replace(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec &with)
{
replace(pattern, with, this);
}
void RTLIL::SigSpec::replace(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec &with, RTLIL::SigSpec *other) const
{
int pos = 0, restart_pos = 0;
assert(other == NULL || width == other->width);
for (size_t i = 0; i < chunks.size(); i++) {
restart:
const RTLIL::SigChunk &ch1 = chunks[i];
if (chunks[i].wire != NULL && pos >= restart_pos)
for (size_t j = 0, poff = 0; j < pattern.chunks.size(); j++) {
const RTLIL::SigChunk &ch2 = pattern.chunks[j];
assert(ch2.wire != NULL);
if (ch1.wire == ch2.wire) {
int lower = std::max(ch1.offset, ch2.offset);
int upper = std::min(ch1.offset + ch1.width, ch2.offset + ch2.width);
if (lower < upper) {
restart_pos = pos+upper-ch1.offset;
other->replace(pos+lower-ch1.offset, with.extract(poff+lower-ch2.offset, upper-lower));
goto restart;
}
}
poff += ch2.width;
}
pos += chunks[i].width;
}
check();
}
void RTLIL::SigSpec::remove(const RTLIL::SigSpec &pattern)
{
remove2(pattern, NULL);
}
void RTLIL::SigSpec::remove(const RTLIL::SigSpec &pattern, RTLIL::SigSpec *other) const
{
RTLIL::SigSpec tmp = *this;
tmp.remove2(pattern, other);
}
void RTLIL::SigSpec::remove2(const RTLIL::SigSpec &pattern, RTLIL::SigSpec *other)
{
int pos = 0;
assert(other == NULL || width == other->width);
for (size_t i = 0; i < chunks.size(); i++) {
restart:
const RTLIL::SigChunk &ch1 = chunks[i];
if (chunks[i].wire != NULL)
for (size_t j = 0; j < pattern.chunks.size(); j++) {
const RTLIL::SigChunk &ch2 = pattern.chunks[j];
assert(ch2.wire != NULL);
if (ch1.wire == ch2.wire) {
int lower = std::max(ch1.offset, ch2.offset);
int upper = std::min(ch1.offset + ch1.width, ch2.offset + ch2.width);
if (lower < upper) {
if (other)
other->remove(pos+lower-ch1.offset, upper-lower);
remove(pos+lower-ch1.offset, upper-lower);
if (i == chunks.size())
break;
goto restart;
}
}
}
pos += chunks[i].width;
}
check();
}
RTLIL::SigSpec RTLIL::SigSpec::extract(RTLIL::SigSpec pattern, RTLIL::SigSpec *other) const
{
assert(other == NULL || width == other->width);
std::set<RTLIL::SigBit> pat = pattern.to_sigbit_set();
std::vector<RTLIL::SigBit> bits_match = to_sigbit_vector();
RTLIL::SigSpec ret;
if (other) {
std::vector<RTLIL::SigBit> bits_other = other ? other->to_sigbit_vector() : bits_match;
for (int i = 0; i < width; i++)
if (bits_match[i].wire && pat.count(bits_match[i]))
ret.append_bit(bits_other[i]);
} else {
for (int i = 0; i < width; i++)
if (bits_match[i].wire && pat.count(bits_match[i]))
ret.append_bit(bits_match[i]);
}
ret.check();
return ret;
}
void RTLIL::SigSpec::replace(int offset, const RTLIL::SigSpec &with)
{
int pos = 0;
assert(offset >= 0);
assert(with.width >= 0);
assert(offset+with.width <= width);
remove(offset, with.width);
for (size_t i = 0; i < chunks.size(); i++) {
if (pos == offset) {
chunks.insert(chunks.begin()+i, with.chunks.begin(), with.chunks.end());
width += with.width;
check();
return;
}
pos += chunks[i].width;
}
assert(pos == offset);
chunks.insert(chunks.end(), with.chunks.begin(), with.chunks.end());
width += with.width;
check();
}
void RTLIL::SigSpec::remove_const()
{
for (size_t i = 0; i < chunks.size(); i++) {
if (chunks[i].wire != NULL)
continue;
width -= chunks[i].width;
chunks.erase(chunks.begin() + (i--));
}
check();
}
void RTLIL::SigSpec::remove(int offset, int length)
{
int pos = 0;
assert(offset >= 0);
assert(length >= 0);
assert(offset+length <= width);
for (size_t i = 0; i < chunks.size(); i++) {
int orig_width = chunks[i].width;
if (pos+chunks[i].width > offset && pos < offset+length) {
int off = offset - pos;
int len = length;
if (off < 0) {
len += off;
off = 0;
}
if (len > chunks[i].width-off)
len = chunks[i].width-off;
RTLIL::SigChunk lsb_chunk = chunks[i].extract(0, off);
RTLIL::SigChunk msb_chunk = chunks[i].extract(off+len, chunks[i].width-off-len);
if (lsb_chunk.width == 0 && msb_chunk.width == 0) {
chunks.erase(chunks.begin()+i);
i--;
} else if (lsb_chunk.width == 0 && msb_chunk.width != 0) {
chunks[i] = msb_chunk;
} else if (lsb_chunk.width != 0 && msb_chunk.width == 0) {
chunks[i] = lsb_chunk;
} else if (lsb_chunk.width != 0 && msb_chunk.width != 0) {
chunks[i] = lsb_chunk;
chunks.insert(chunks.begin()+i+1, msb_chunk);
i++;
} else
assert(0);
width -= len;
}
pos += orig_width;
}
check();
}
RTLIL::SigSpec RTLIL::SigSpec::extract(int offset, int length) const
{
int pos = 0;
RTLIL::SigSpec ret;
assert(offset >= 0);
assert(length >= 0);
assert(offset+length <= width);
for (size_t i = 0; i < chunks.size(); i++) {
if (pos+chunks[i].width > offset && pos < offset+length) {
int off = offset - pos;
int len = length;
if (off < 0) {
len += off;
off = 0;
}
if (len > chunks[i].width-off)
len = chunks[i].width-off;
ret.chunks.push_back(chunks[i].extract(off, len));
ret.width += len;
offset += len;
length -= len;
}
pos += chunks[i].width;
}
assert(length == 0);
ret.check();
return ret;
}
void RTLIL::SigSpec::append(const RTLIL::SigSpec &signal)
{
for (size_t i = 0; i < signal.chunks.size(); i++) {
chunks.push_back(signal.chunks[i]);
width += signal.chunks[i].width;
}
// check();
}
void RTLIL::SigSpec::append_bit(const RTLIL::SigBit &bit)
{
if (chunks.size() == 0)
chunks.push_back(bit);
else
if (bit.wire == NULL)
if (chunks.back().wire == NULL) {
chunks.back().data.bits.push_back(bit.data);
chunks.back().width++;
} else
chunks.push_back(bit);
else
if (chunks.back().wire == bit.wire && chunks.back().offset + chunks.back().width == bit.offset)
chunks.back().width++;
else
chunks.push_back(bit);
width++;
// check();
}
bool RTLIL::SigSpec::combine(RTLIL::SigSpec signal, RTLIL::State freeState, bool override)
{
bool no_collisions = true;
assert(width == signal.width);
expand();
signal.expand();
for (size_t i = 0; i < chunks.size(); i++) {
bool self_free = chunks[i].wire == NULL && chunks[i].data.bits[0] == freeState;
bool other_free = signal.chunks[i].wire == NULL && signal.chunks[i].data.bits[0] == freeState;
if (!self_free && !other_free) {
if (override)
chunks[i] = signal.chunks[i];
else
chunks[i] = RTLIL::SigChunk(RTLIL::State::Sx, 1);
no_collisions = false;
}
if (self_free && !other_free)
chunks[i] = signal.chunks[i];
}
optimize();
return no_collisions;
}
void RTLIL::SigSpec::extend(int width, bool is_signed)
{
if (this->width > width)
remove(width, this->width - width);
if (this->width < width) {
RTLIL::SigSpec padding = this->width > 0 ? extract(this->width - 1, 1) : RTLIL::SigSpec(RTLIL::State::S0);
if (!is_signed && padding != RTLIL::SigSpec(RTLIL::State::Sx) && padding != RTLIL::SigSpec(RTLIL::State::Sz) &&
padding != RTLIL::SigSpec(RTLIL::State::Sa) && padding != RTLIL::SigSpec(RTLIL::State::Sm))
padding = RTLIL::SigSpec(RTLIL::State::S0);
while (this->width < width)
append(padding);
}
optimize();
}
void RTLIL::SigSpec::extend_u0(int width, bool is_signed)
{
if (this->width > width)
remove(width, this->width - width);
if (this->width < width) {
RTLIL::SigSpec padding = this->width > 0 ? extract(this->width - 1, 1) : RTLIL::SigSpec(RTLIL::State::S0);
if (!is_signed)
padding = RTLIL::SigSpec(RTLIL::State::S0);
while (this->width < width)
append(padding);
}
optimize();
}
void RTLIL::SigSpec::check() const
{
int w = 0;
for (size_t i = 0; i < chunks.size(); i++) {
const RTLIL::SigChunk chunk = chunks[i];
if (chunk.wire == NULL) {
assert(chunk.offset == 0);
assert(chunk.data.bits.size() == (size_t)chunk.width);
} else {
assert(chunk.offset >= 0);
assert(chunk.width >= 0);
assert(chunk.offset + chunk.width <= chunk.wire->width);
assert(chunk.data.bits.size() == 0);
}
w += chunk.width;
}
assert(w == width);
}
bool RTLIL::SigSpec::operator <(const RTLIL::SigSpec &other) const
{
if (width != other.width)
return width < other.width;
RTLIL::SigSpec a = *this, b = other;
a.optimize();
b.optimize();
if (a.chunks.size() != b.chunks.size())
return a.chunks.size() < b.chunks.size();
for (size_t i = 0; i < a.chunks.size(); i++)
if (a.chunks[i] != b.chunks[i])
return a.chunks[i] < b.chunks[i];
return false;
}
bool RTLIL::SigSpec::operator ==(const RTLIL::SigSpec &other) const
{
if (width != other.width)
return false;
RTLIL::SigSpec a = *this, b = other;
a.optimize();
b.optimize();
if (a.chunks.size() != b.chunks.size())
return false;
for (size_t i = 0; i < a.chunks.size(); i++)
if (a.chunks[i] != b.chunks[i])
return false;
return true;
}
bool RTLIL::SigSpec::operator !=(const RTLIL::SigSpec &other) const
{
if (*this == other)
return false;
return true;
}
bool RTLIL::SigSpec::is_fully_const() const
{
for (auto it = chunks.begin(); it != chunks.end(); it++)
if (it->width > 0 && it->wire != NULL)
return false;
return true;
}
bool RTLIL::SigSpec::is_fully_def() const
{
for (auto it = chunks.begin(); it != chunks.end(); it++) {
if (it->width > 0 && it->wire != NULL)
return false;
for (size_t i = 0; i < it->data.bits.size(); i++)
if (it->data.bits[i] != RTLIL::State::S0 && it->data.bits[i] != RTLIL::State::S1)
return false;
}
return true;
}
bool RTLIL::SigSpec::is_fully_undef() const
{
for (auto it = chunks.begin(); it != chunks.end(); it++) {
if (it->width > 0 && it->wire != NULL)
return false;
for (size_t i = 0; i < it->data.bits.size(); i++)
if (it->data.bits[i] != RTLIL::State::Sx && it->data.bits[i] != RTLIL::State::Sz)
return false;
}
return true;
}
bool RTLIL::SigSpec::has_marked_bits() const
{
for (auto it = chunks.begin(); it != chunks.end(); it++)
if (it->width > 0 && it->wire == NULL) {
for (size_t i = 0; i < it->data.bits.size(); i++)
if (it->data.bits[i] == RTLIL::State::Sm)
return true;
}
return false;
}
bool RTLIL::SigSpec::as_bool() const
{
assert(is_fully_const());
SigSpec sig = *this;
sig.optimize();
if (sig.width)
return sig.chunks[0].data.as_bool();
return false;
}
int RTLIL::SigSpec::as_int() const
{
assert(is_fully_const());
SigSpec sig = *this;
sig.optimize();
if (sig.width)
return sig.chunks[0].data.as_int();
return 0;
}
std::string RTLIL::SigSpec::as_string() const
{
std::string str;
for (size_t i = chunks.size(); i > 0; i--) {
const RTLIL::SigChunk &chunk = chunks[i-1];
if (chunk.wire != NULL)
for (int j = 0; j < chunk.width; j++)
str += "?";
else
str += chunk.data.as_string();
}
return str;
}
RTLIL::Const RTLIL::SigSpec::as_const() const
{
assert(is_fully_const());
SigSpec sig = *this;
sig.optimize();
if (sig.width)
return sig.chunks[0].data;
return RTLIL::Const();
}
bool RTLIL::SigSpec::match(std::string pattern) const
{
std::string str = as_string();
assert(pattern.size() == str.size());
for (size_t i = 0; i < pattern.size(); i++) {
if (pattern[i] == ' ')
continue;
if (pattern[i] == '*') {
if (str[i] != 'z' && str[i] != 'x')
return false;
continue;
}
if (pattern[i] != str[i])
return false;
}
return true;
}
std::set<RTLIL::SigBit> RTLIL::SigSpec::to_sigbit_set() const
{
std::set<RTLIL::SigBit> sigbits;
for (auto &c : chunks)
for (int i = 0; i < c.width; i++)
sigbits.insert(RTLIL::SigBit(c, i));
return sigbits;
}
std::vector<RTLIL::SigBit> RTLIL::SigSpec::to_sigbit_vector() const
{
std::vector<RTLIL::SigBit> sigbits;
sigbits.reserve(width);
for (auto &c : chunks)
for (int i = 0; i < c.width; i++)
sigbits.push_back(RTLIL::SigBit(c, i));
return sigbits;
}
RTLIL::SigBit RTLIL::SigSpec::to_single_sigbit() const
{
log_assert(width == 1);
for (auto &c : chunks)
if (c.width)
return RTLIL::SigBit(c);
log_abort();
}
static void sigspec_parse_split(std::vector<std::string> &tokens, const std::string &text, char sep)
{
size_t start = 0, end = 0;
while ((end = text.find(sep, start)) != std::string::npos) {
tokens.push_back(text.substr(start, end - start));
start = end + 1;
}
tokens.push_back(text.substr(start));
}
static int sigspec_parse_get_dummy_line_num()
{
return 0;
}
bool RTLIL::SigSpec::parse(RTLIL::SigSpec &sig, RTLIL::Module *module, std::string str)
{
std::vector<std::string> tokens;
sigspec_parse_split(tokens, str, ',');
sig = RTLIL::SigSpec();
for (int tokidx = int(tokens.size())-1; tokidx >= 0; tokidx--)
{
std::string netname = tokens[tokidx];
std::string indices;
if (netname.size() == 0)
continue;
if ('0' <= netname[0] && netname[0] <= '9') {
AST::get_line_num = sigspec_parse_get_dummy_line_num;
AST::AstNode *ast = VERILOG_FRONTEND::const2ast(netname);
if (ast == NULL)
return false;
sig.append(RTLIL::Const(ast->bits));
delete ast;
continue;
}
if (module == NULL)
return false;
if (netname[0] != '$' && netname[0] != '\\')
netname = "\\" + netname;
if (module->wires.count(netname) == 0) {
size_t indices_pos = netname.size()-1;
if (indices_pos > 2 && netname[indices_pos] == ']')
{
indices_pos--;
while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--;
if (indices_pos > 0 && netname[indices_pos] == ':') {
indices_pos--;
while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--;
}
if (indices_pos > 0 && netname[indices_pos] == '[') {
indices = netname.substr(indices_pos);
netname = netname.substr(0, indices_pos);
}
}
}
if (module->wires.count(netname) == 0)
return false;
RTLIL::Wire *wire = module->wires.at(netname);
if (!indices.empty()) {
std::vector<std::string> index_tokens;
sigspec_parse_split(index_tokens, indices.substr(1, indices.size()-2), ':');
if (index_tokens.size() == 1)
sig.append(RTLIL::SigSpec(wire, 1, atoi(index_tokens.at(0).c_str())));
else {
int a = atoi(index_tokens.at(0).c_str());
int b = atoi(index_tokens.at(1).c_str());
if (a > b) {
int tmp = a;
a = b, b = tmp;
}
sig.append(RTLIL::SigSpec(wire, b-a+1, a));
}
} else
sig.append(wire);
}
return true;
}
bool RTLIL::SigSpec::parse_sel(RTLIL::SigSpec &sig, RTLIL::Design *design, RTLIL::Module *module, std::string str)
{
if (str.empty() || str[0] != '@')
return parse(sig, module, str);
str = RTLIL::escape_id(str.substr(1));
if (design->selection_vars.count(str) == 0)
return false;
sig = RTLIL::SigSpec();
RTLIL::Selection &sel = design->selection_vars.at(str);
for (auto &it : module->wires)
if (sel.selected_member(module->name, it.first))
sig.append(it.second);
return true;
}
bool RTLIL::SigSpec::parse_rhs(const RTLIL::SigSpec &lhs, RTLIL::SigSpec &sig, RTLIL::Module *module, std::string str)
{
if (str == "0") {
sig = RTLIL::SigSpec(RTLIL::State::S0, lhs.width);
return true;
}
if (str == "~0") {
sig = RTLIL::SigSpec(RTLIL::State::S1, lhs.width);
return true;
}
if (lhs.chunks.size() == 1) {
char *p = (char*)str.c_str(), *endptr;
long long int val = strtoll(p, &endptr, 10);
if (endptr && endptr != p && *endptr == 0) {
sig = RTLIL::SigSpec(val, lhs.width);
return true;
}
}
return parse(sig, module, str);
}
RTLIL::CaseRule::~CaseRule()
{
for (auto it = switches.begin(); it != switches.end(); it++)
delete *it;
}
void RTLIL::CaseRule::optimize()
{
for (auto it : switches)
it->optimize();
for (auto &it : compare)
it.optimize();
for (auto &it : actions) {
it.first.optimize();
it.second.optimize();
}
}
RTLIL::CaseRule *RTLIL::CaseRule::clone() const
{
RTLIL::CaseRule *new_caserule = new RTLIL::CaseRule;
new_caserule->compare = compare;
new_caserule->actions = actions;
for (auto &it : switches)
new_caserule->switches.push_back(it->clone());
return new_caserule;
}
RTLIL::SwitchRule::~SwitchRule()
{
for (auto it = cases.begin(); it != cases.end(); it++)
delete *it;
}
void RTLIL::SwitchRule::optimize()
{
signal.optimize();
for (auto it : cases)
it->optimize();
}
RTLIL::SwitchRule *RTLIL::SwitchRule::clone() const
{
RTLIL::SwitchRule *new_switchrule = new RTLIL::SwitchRule;
new_switchrule->signal = signal;
new_switchrule->attributes = attributes;
for (auto &it : cases)
new_switchrule->cases.push_back(it->clone());
return new_switchrule;
}
void RTLIL::SyncRule::optimize()
{
signal.optimize();
for (auto &it : actions) {
it.first.optimize();
it.second.optimize();
}
}
RTLIL::SyncRule *RTLIL::SyncRule::clone() const
{
RTLIL::SyncRule *new_syncrule = new RTLIL::SyncRule;
new_syncrule->type = type;
new_syncrule->signal = signal;
new_syncrule->actions = actions;
return new_syncrule;
}
RTLIL::Process::~Process()
{
for (auto it = syncs.begin(); it != syncs.end(); it++)
delete *it;
}
void RTLIL::Process::optimize()
{
root_case.optimize();
for (auto it : syncs)
it->optimize();
}
RTLIL::Process *RTLIL::Process::clone() const
{
RTLIL::Process *new_proc = new RTLIL::Process;
new_proc->name = name;
new_proc->attributes = attributes;
RTLIL::CaseRule *rc_ptr = root_case.clone();
new_proc->root_case = *rc_ptr;
rc_ptr->switches.clear();
delete rc_ptr;
for (auto &it : syncs)
new_proc->syncs.push_back(it->clone());
return new_proc;
}