yosys/backends/autotest/autotest.cc

337 lines
12 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/log.h"
#include <stdlib.h>
#include <stdio.h>
#define NUM_ITER 1000
static std::string id(std::string internal_id)
{
const char *str = internal_id.c_str();
bool do_escape = false;
if (*str == '\\')
str++;
if ('0' <= *str && *str <= '9')
do_escape = true;
for (int i = 0; str[i]; i++) {
if ('0' <= str[i] && str[i] <= '9')
continue;
if ('a' <= str[i] && str[i] <= 'z')
continue;
if ('A' <= str[i] && str[i] <= 'Z')
continue;
if (str[i] == '_')
continue;
do_escape = true;
break;
}
if (do_escape)
return "\\" + std::string(str) + " ";
return std::string(str);
}
static std::string idx(std::string str)
{
if (str[0] == '\\')
return str.substr(1);
return str;
}
static std::string idy(std::string str1, std::string str2 = std::string(), std::string str3 = std::string())
{
str1 = idx(str1);
if (!str2.empty())
str1 += "_" + idx(str2);
if (!str3.empty())
str1 += "_" + idx(str3);
return id(str1);
}
static void autotest(FILE *f, RTLIL::Design *design)
{
fprintf(f, "module testbench;\n\n");
fprintf(f, "integer i;\n\n");
fprintf(f, "reg [31:0] xorshift128_x = 123456789;\n");
fprintf(f, "reg [31:0] xorshift128_y = 362436069;\n");
fprintf(f, "reg [31:0] xorshift128_z = 521288629;\n");
fprintf(f, "reg [31:0] xorshift128_w = 88675123;\n");
fprintf(f, "reg [31:0] xorshift128_t;\n\n");
fprintf(f, "task xorshift128;\n");
fprintf(f, "begin\n");
fprintf(f, "\txorshift128_t = xorshift128_x ^ (xorshift128_x << 11);\n");
fprintf(f, "\txorshift128_x = xorshift128_y;\n");
fprintf(f, "\txorshift128_y = xorshift128_z;\n");
fprintf(f, "\txorshift128_z = xorshift128_w;\n");
fprintf(f, "\txorshift128_w = xorshift128_w ^ (xorshift128_w >> 19) ^ xorshift128_t ^ (xorshift128_t >> 8);\n");
fprintf(f, "end\n");
fprintf(f, "endtask\n\n");
for (auto it = design->modules.begin(); it != design->modules.end(); it++)
{
std::map<std::string, int> signal_in;
std::map<std::string, std::string> signal_const;
std::map<std::string, int> signal_clk;
std::map<std::string, int> signal_out;
RTLIL::Module *mod = it->second;
if (mod->get_bool_attribute("\\gentb_skip"))
continue;
int count_ports = 0;
log("Generating test bench for module `%s'.\n", it->first.c_str());
for (auto it2 = mod->wires.begin(); it2 != mod->wires.end(); it2++) {
RTLIL::Wire *wire = it2->second;
if (wire->port_output) {
count_ports++;
signal_out[idy("sig", mod->name, wire->name)] = wire->width;
fprintf(f, "wire [%d:0] %s;\n", wire->width-1, idy("sig", mod->name, wire->name).c_str());
} else if (wire->port_input) {
count_ports++;
bool is_clksignal = wire->get_bool_attribute("\\gentb_clock");
for (auto it3 = mod->processes.begin(); it3 != mod->processes.end(); it3++)
for (auto it4 = it3->second->syncs.begin(); it4 != it3->second->syncs.end(); it4++) {
if ((*it4)->type == RTLIL::ST0 || (*it4)->type == RTLIL::ST1)
continue;
RTLIL::SigSpec &signal = (*it4)->signal;
for (size_t i = 0; i < signal.__chunks.size(); i++) {
if (signal.__chunks[i].wire == wire)
is_clksignal = true;
}
}
if (is_clksignal && wire->attributes.count("\\gentb_constant") == 0) {
signal_clk[idy("sig", mod->name, wire->name)] = wire->width;
} else {
signal_in[idy("sig", mod->name, wire->name)] = wire->width;
if (wire->attributes.count("\\gentb_constant") != 0)
signal_const[idy("sig", mod->name, wire->name)] = wire->attributes["\\gentb_constant"].as_string();
}
fprintf(f, "reg [%d:0] %s;\n", wire->width-1, idy("sig", mod->name, wire->name).c_str());
}
}
fprintf(f, "%s %s(\n", id(mod->name).c_str(), idy("uut", mod->name).c_str());
for (auto it2 = mod->wires.begin(); it2 != mod->wires.end(); it2++) {
RTLIL::Wire *wire = it2->second;
if (wire->port_output || wire->port_input)
fprintf(f, "\t.%s(%s)%s\n", id(wire->name).c_str(),
idy("sig", mod->name, wire->name).c_str(), --count_ports ? "," : "");
}
fprintf(f, ");\n\n");
fprintf(f, "task %s;\n", idy(mod->name, "reset").c_str());
fprintf(f, "begin\n");
int delay_counter = 0;
for (auto it = signal_in.begin(); it != signal_in.end(); it++)
fprintf(f, "\t%s <= #%d 0;\n", it->first.c_str(), ++delay_counter*2);
for (auto it = signal_clk.begin(); it != signal_clk.end(); it++)
fprintf(f, "\t%s <= #%d 0;\n", it->first.c_str(), ++delay_counter*2);
for (auto it = signal_clk.begin(); it != signal_clk.end(); it++) {
fprintf(f, "\t#100; %s <= 1;\n", it->first.c_str());
fprintf(f, "\t#100; %s <= 0;\n", it->first.c_str());
}
delay_counter = 0;
for (auto it = signal_in.begin(); it != signal_in.end(); it++)
fprintf(f, "\t%s <= #%d ~0;\n", it->first.c_str(), ++delay_counter*2);
for (auto it = signal_clk.begin(); it != signal_clk.end(); it++) {
fprintf(f, "\t#100; %s <= 1;\n", it->first.c_str());
fprintf(f, "\t#100; %s <= 0;\n", it->first.c_str());
}
delay_counter = 0;
for (auto it = signal_in.begin(); it != signal_in.end(); it++) {
if (signal_const.count(it->first) == 0)
continue;
fprintf(f, "\t%s <= #%d 'b%s;\n", it->first.c_str(), ++delay_counter*2, signal_const[it->first].c_str());
}
fprintf(f, "end\n");
fprintf(f, "endtask\n\n");
fprintf(f, "task %s;\n", idy(mod->name, "update_data").c_str());
fprintf(f, "begin\n");
delay_counter = 0;
for (auto it = signal_in.begin(); it != signal_in.end(); it++) {
if (signal_const.count(it->first) > 0)
continue;
fprintf(f, "\txorshift128;\n");
fprintf(f, "\t%s <= #%d { xorshift128_x, xorshift128_y, xorshift128_z, xorshift128_w };\n", it->first.c_str(), ++delay_counter*2);
}
fprintf(f, "end\n");
fprintf(f, "endtask\n\n");
fprintf(f, "task %s;\n", idy(mod->name, "update_clock").c_str());
fprintf(f, "begin\n");
if (signal_clk.size()) {
fprintf(f, "\txorshift128;\n");
fprintf(f, "\t{");
int total_clock_bits = 0;
for (auto it = signal_clk.begin(); it != signal_clk.end(); it++) {
fprintf(f, "%s %s", it == signal_clk.begin() ? "" : ",", it->first.c_str());
total_clock_bits += it->second;
}
fprintf(f, " } = {");
for (auto it = signal_clk.begin(); it != signal_clk.end(); it++)
fprintf(f, "%s %s", it == signal_clk.begin() ? "" : ",", it->first.c_str());
fprintf(f, " } ^ (%d'b1 << (xorshift128_w %% %d));\n", total_clock_bits, total_clock_bits);
}
fprintf(f, "end\n");
fprintf(f, "endtask\n\n");
char shorthand = 'A';
std::vector<std::string> header1;
std::string header2 = "";
fprintf(f, "task %s;\n", idy(mod->name, "print_status").c_str());
fprintf(f, "begin\n");
fprintf(f, "\t$display(\"#OUT# %%b %%b %%b %%t %%d\", {");
if (signal_in.size())
for (auto it = signal_in.begin(); it != signal_in.end(); it++) {
fprintf(f, "%s %s", it == signal_in.begin() ? "" : ",", it->first.c_str());
int len = it->second;
if (len > 1)
header2 += "/", len--;
while (len > 1)
header2 += "-", len--;
if (len > 0)
header2 += shorthand, len--;
header1.push_back(" " + it->first);
header1.back()[0] = shorthand++;
}
else {
fprintf(f, " 1'bx");
header2 += "#";
}
fprintf(f, " }, {");
header2 += " ";
if (signal_clk.size()) {
for (auto it = signal_clk.begin(); it != signal_clk.end(); it++) {
fprintf(f, "%s %s", it == signal_clk.begin() ? "" : ",", it->first.c_str());
int len = it->second;
if (len > 1)
header2 += "/", len--;
while (len > 1)
header2 += "-", len--;
if (len > 0)
header2 += shorthand, len--;
header1.push_back(" " + it->first);
header1.back()[0] = shorthand++;
}
} else {
fprintf(f, " 1'bx");
header2 += "#";
}
fprintf(f, " }, {");
header2 += " ";
if (signal_out.size()) {
for (auto it = signal_out.begin(); it != signal_out.end(); it++) {
fprintf(f, "%s %s", it == signal_out.begin() ? "" : ",", it->first.c_str());
int len = it->second;
if (len > 1)
header2 += "/", len--;
while (len > 1)
header2 += "-", len--;
if (len > 0)
header2 += shorthand, len--;
header1.push_back(" " + it->first);
header1.back()[0] = shorthand++;
}
} else {
fprintf(f, " 1'bx");
header2 += "#";
}
fprintf(f, " }, $time, i);\n");
fprintf(f, "end\n");
fprintf(f, "endtask\n\n");
fprintf(f, "task %s;\n", idy(mod->name, "print_header").c_str());
fprintf(f, "begin\n");
fprintf(f, "\t$display(\"#OUT#\");\n");
for (auto &hdr : header1)
fprintf(f, "\t$display(\"#OUT# %s\");\n", hdr.c_str());
fprintf(f, "\t$display(\"#OUT#\");\n");
fprintf(f, "\t$display(\"#OUT# %s\");\n", header2.c_str());
fprintf(f, "end\n");
fprintf(f, "endtask\n\n");
fprintf(f, "task %s;\n", idy(mod->name, "test").c_str());
fprintf(f, "begin\n");
fprintf(f, "\t$display(\"#OUT#\\n#OUT# ==== %s ====\");\n", idy(mod->name).c_str());
fprintf(f, "\t%s;\n", idy(mod->name, "reset").c_str());
fprintf(f, "\tfor (i=0; i<%d; i=i+1) begin\n", NUM_ITER);
fprintf(f, "\t\tif (i %% 20 == 0) %s;\n", idy(mod->name, "print_header").c_str());
fprintf(f, "\t\t#100; %s;\n", idy(mod->name, "update_data").c_str());
fprintf(f, "\t\t#100; %s;\n", idy(mod->name, "update_clock").c_str());
fprintf(f, "\t\t#100; %s;\n", idy(mod->name, "print_status").c_str());
fprintf(f, "\tend\n");
fprintf(f, "end\n");
fprintf(f, "endtask\n\n");
}
fprintf(f, "initial begin\n");
fprintf(f, "\t// $dumpfile(\"testbench.vcd\");\n");
fprintf(f, "\t// $dumpvars(0, testbench);\n");
for (auto it = design->modules.begin(); it != design->modules.end(); it++)
if (!it->second->get_bool_attribute("\\gentb_skip"))
fprintf(f, "\t%s;\n", idy(it->first, "test").c_str());
fprintf(f, "\t$finish;\n");
fprintf(f, "end\n\n");
fprintf(f, "endmodule\n");
}
struct AutotestBackend : public Backend {
AutotestBackend() : Backend("autotest", "generate simple test benches") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" write_autotest [filename]\n");
log("\n");
log("Automatically create primitive verilog test benches for all modules in the\n");
log("design. The generated testbenches toggle the input pins of the module in\n");
log("a semi-random manner and dumps the resulting output signals.\n");
log("\n");
log("This can be used to check the synthesis results for simple circuits by\n");
log("comparing the testbench output for the input files and the synthesis results.\n");
log("\n");
log("The backend automatically detects clock signals. Additionally a signal can\n");
log("be forced to be interpreted as clock signal by setting the attribute\n");
log("'gentb_clock' on the signal.\n");
log("\n");
log("The attribute 'gentb_constant' can be used to force a signal to a constant\n");
log("value after initialization. This can e.g. be used to force a reset signal\n");
log("low in order to explore more inner states in a state machine.\n");
log("\n");
}
virtual void execute(FILE *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design)
{
log_header("Executing AUTOTEST backend (auto-generate pseudo-random test benches).\n");
extra_args(f, filename, args, 1);
autotest(f, design);
}
} AutotestBackend;