yosys/techlibs/xilinx/abc_ff.v

220 lines
7.7 KiB
Verilog

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// ============================================================================
module FDRE (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
wire \$nextQ ;
\$__ABC_FDRE #(
.INIT(|0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_R_INVERTED(IS_R_INVERTED),
.\$abc_flop_clk_pol (!IS_C_INVERTED),
.\$abc_flop_en_pol (1'b1)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
endmodule
module FDRE_1 (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
wire \$nextQ ;
\$__ABC_FDRE_1 #(.INIT(|0),
.\$abc_flop_clk_pol (1'b1),
.\$abc_flop_en_pol (1'b1)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
endmodule
module FDCE (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
wire \$nextQ , \$currQ ;
\$__ABC_FDCE #(
.INIT(|0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_CLR_INVERTED(IS_CLR_INVERTED),
.\$abc_flop_clk_pol (!IS_C_INVERTED),
.\$abc_flop_en_pol (1'b1)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
generate
if (IS_CLR_INVERTED)
\$__ABC_FD_ASYNC_MUX abc_async_mux (.A(\$currQ ), .B(1'b0), .S(CLR), .Y(Q));
else
\$__ABC_FD_ASYNC_MUX abc_async_mux (.A(1'b0), .B(\$currQ ), .S(CLR), .Y(Q));
endgenerate
endmodule
module FDCE_1 (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
wire \$nextQ , \$currQ ;
\$__ABC_FDCE_1 #(
.INIT(|0),
.\$abc_flop_clk_pol (1'b1),
.\$abc_flop_en_pol (1'b1)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
\$__ABC_FD_ASYNC_MUX abc_async_mux (.A(\$currQ ), .B(1'b0), .S(CLR), .Y(Q));
endmodule
module FDPE (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
wire \$nextQ , \$currQ ;
\$__ABC_FDPE #(
.INIT(|0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_PRE_INVERTED),
.\$abc_flop_clk_pol (!IS_C_INVERTED),
.\$abc_flop_en_pol (1'b1)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
generate
if (IS_PRE_INVERTED)
\$__ABC_FD_ASYNC_MUX abc_async_mux (.A(\$currQ ), .B(1'b1), .S(PRE), .Y(Q));
else
\$__ABC_FD_ASYNC_MUX abc_async_mux (.A(1'b1), .B(\$currQ ), .S(PRE), .Y(Q));
endgenerate
endmodule
module FDPE_1 (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
wire \$nextQ , \$currQ ;
\$__ABC_FDPE_1 #(
.INIT(|0),
.\$abc_flop_clk_pol (1'b1),
.\$abc_flop_en_pol (1'b1)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
\$__ABC_FD_ASYNC_MUX abc_async_mux (.A(\$currQ ), .B(1'b1), .S(PRE), .Y(Q));
endmodule
`ifndef _ABC
module \$__ABC_FF_ (input C, D, output Q);
endmodule
(* abc_box_id = 1000 *)
module \$__ABC_FD_ASYNC_MUX (input A, B, S, output Q);
// assign Q = S ? B : A;
endmodule
(* abc_box_id = 1001, lib_whitebox, abc_flop = "FDRE" *)
module \$__ABC_FDRE ((* abc_flop_q *) output Q,
(* abc_flop_clk *) input C,
(* abc_flop_en *) input CE,
(* abc_flop_d *) input D,
input R, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
parameter \$abc_flop_clk_pol = ~IS_C_INVERTED;
parameter \$abc_flop_en_pol = 1'b1;
assign Q = (R ^ IS_R_INVERTED) ? 1'b0 : (CE ? (D ^ IS_D_INVERTED) : \$pastQ );
endmodule
(* abc_box_id = 1002, lib_whitebox, abc_flop = "FDRE_1" *)
module \$__ABC_FDRE_1 ((* abc_flop_q *) output Q,
(* abc_flop_clk *) input C,
(* abc_flop_en *) input CE,
(* abc_flop_d *) input D,
input R, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter \$abc_flop_clk_pol = 1'b0;
parameter \$abc_flop_en_pol = 1'b1;
assign Q = R ? 1'b0 : (CE ? D : \$pastQ );
endmodule
(* abc_box_id = 1003, lib_whitebox, abc_flop = "FDCE" *)
module \$__ABC_FDCE ((* abc_flop_q *) output Q,
(* abc_flop_clk *) input C,
(* abc_flop_en *) input CE,
(* abc_flop_d *) input D,
input CLR, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
parameter \$abc_flop_clk_pol = ~IS_C_INVERTED;
parameter \$abc_flop_en_pol = 1'b1;
assign Q = (CE && !(CLR ^ IS_CLR_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
endmodule
(* abc_box_id = 1004, lib_whitebox, abc_flop = "FDCE_1" *)
module \$__ABC_FDCE_1 ((* abc_flop_q *) output Q,
(* abc_flop_clk *) input C,
(* abc_flop_en *) input CE,
(* abc_flop_d *) input D,
input CLR, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter \$abc_flop_clk_pol = 1'b0;
parameter \$abc_flop_en_inv = 1'b1;
assign Q = (CE && !CLR) ? D : \$pastQ ;
endmodule
(* abc_box_id = 1005, lib_whitebox, abc_flop = "FDPE" *)
module \$__ABC_FDPE ((* abc_flop_q *) output Q,
(* abc_flop_clk *) input C,
(* abc_flop_en *) input CE,
(* abc_flop_d *) input D,
input PRE, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
parameter \$abc_flop_clk_pol = ~IS_C_INVERTED;
parameter \$abc_flop_en_pol = 1'b1;
assign Q = (CE && !(PRE ^ IS_PRE_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
endmodule
(* abc_box_id = 1006, lib_whitebox, abc_flop = "FDPE_1" *)
module \$__ABC_FDPE_1 ((* abc_flop_q *) output Q,
(* abc_flop_clk *) input C,
(* abc_flop_en *) input CE,
(* abc_flop_d *) input D,
input PRE, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter \$abc_flop_clk_pol = 1'b0;
parameter \$abc_flop_en_pol = 1'b1;
assign Q = (CE && !PRE) ? D : \$pastQ ;
endmodule
`endif