yosys/kernel/rtlil.cc

1203 lines
29 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/rtlil.h"
#include "kernel/log.h"
#include "frontends/verilog/verilog_frontend.h"
#include <assert.h>
#include <algorithm>
int RTLIL::autoidx = 1;
RTLIL::Const::Const(std::string str) : str(str)
{
for (size_t i = 0; i < str.size(); i++) {
unsigned char ch = str[i];
for (int j = 0; j < 8; j++) {
bits.push_back((ch & 1) != 0 ? RTLIL::S1 : RTLIL::S0);
ch = ch >> 1;
}
}
}
RTLIL::Const::Const(int val, int width)
{
for (int i = 0; i < width; i++) {
bits.push_back((val & 1) != 0 ? RTLIL::S1 : RTLIL::S0);
val = val >> 1;
}
}
RTLIL::Const::Const(RTLIL::State bit, int width)
{
for (int i = 0; i < width; i++)
bits.push_back(bit);
}
bool RTLIL::Const::operator <(const RTLIL::Const &other) const
{
if (bits.size() != other.bits.size())
return bits.size() < other.bits.size();
for (size_t i = 0; i < bits.size(); i++)
if (bits[i] != other.bits[i])
return bits[i] < other.bits[i];
return false;
}
bool RTLIL::Const::operator ==(const RTLIL::Const &other) const
{
return bits == other.bits;
}
bool RTLIL::Const::operator !=(const RTLIL::Const &other) const
{
return bits != other.bits;
}
bool RTLIL::Const::as_bool() const
{
for (size_t i = 0; i < bits.size(); i++)
if (bits[i] == RTLIL::S1)
return true;
return false;
}
int RTLIL::Const::as_int() const
{
int ret = 0;
for (size_t i = 0; i < bits.size() && i < 32; i++)
if (bits[i] == RTLIL::S1)
ret |= 1 << i;
return ret;
}
std::string RTLIL::Const::as_string() const
{
std::string ret;
for (size_t i = bits.size(); i > 0; i--)
switch (bits[i-1]) {
case S0: ret += "0"; break;
case S1: ret += "1"; break;
case Sx: ret += "x"; break;
case Sz: ret += "z"; break;
case Sa: ret += "-"; break;
case Sm: ret += "m"; break;
}
return ret;
}
bool RTLIL::Selection::selected_module(RTLIL::IdString mod_name) const
{
if (full_selection)
return true;
if (selected_modules.count(mod_name) > 0)
return true;
if (selected_members.count(mod_name) > 0)
return true;
return false;
}
bool RTLIL::Selection::selected_whole_module(RTLIL::IdString mod_name) const
{
if (full_selection)
return true;
if (selected_modules.count(mod_name) > 0)
return true;
return false;
}
bool RTLIL::Selection::selected_member(RTLIL::IdString mod_name, RTLIL::IdString memb_name) const
{
if (full_selection)
return true;
if (selected_modules.count(mod_name) > 0)
return true;
if (selected_members.count(mod_name) > 0)
if (selected_members.at(mod_name).count(memb_name) > 0)
return true;
return false;
}
void RTLIL::Selection::optimize(RTLIL::Design *design)
{
if (full_selection) {
selected_modules.clear();
selected_members.clear();
return;
}
std::vector<RTLIL::IdString> del_list, add_list;
del_list.clear();
for (auto mod_name : selected_modules) {
if (design->modules.count(mod_name) == 0)
del_list.push_back(mod_name);
selected_members.erase(mod_name);
}
for (auto mod_name : del_list)
selected_modules.erase(mod_name);
del_list.clear();
for (auto &it : selected_members)
if (design->modules.count(it.first) == 0)
del_list.push_back(it.first);
for (auto mod_name : del_list)
selected_members.erase(mod_name);
for (auto &it : selected_members) {
del_list.clear();
for (auto memb_name : it.second)
if (design->modules[it.first]->count_id(memb_name) == 0)
del_list.push_back(memb_name);
for (auto memb_name : del_list)
it.second.erase(memb_name);
}
del_list.clear();
add_list.clear();
for (auto &it : selected_members)
if (it.second.size() == 0)
del_list.push_back(it.first);
else if (it.second.size() == design->modules[it.first]->wires.size() + design->modules[it.first]->memories.size() +
design->modules[it.first]->cells.size() + design->modules[it.first]->processes.size())
add_list.push_back(it.first);
for (auto mod_name : del_list)
selected_members.erase(mod_name);
for (auto mod_name : add_list) {
selected_members.erase(mod_name);
selected_modules.insert(mod_name);
}
if (selected_modules.size() == design->modules.size()) {
full_selection = true;
selected_modules.clear();
selected_members.clear();
}
}
RTLIL::Design::~Design()
{
for (auto it = modules.begin(); it != modules.end(); it++)
delete it->second;
}
void RTLIL::Design::check()
{
#ifndef NDEBUG
for (auto &it : modules) {
assert(it.first == it.second->name);
assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$'));
it.second->check();
}
#endif
}
void RTLIL::Design::optimize()
{
for (auto &it : modules)
it.second->optimize();
for (auto &it : selection_stack)
it.optimize(this);
for (auto &it : selection_vars)
it.second.optimize(this);
}
bool RTLIL::Design::selected_module(RTLIL::IdString mod_name) const
{
if (!selected_active_module.empty() && mod_name != selected_active_module)
return false;
if (selection_stack.size() == 0)
return true;
return selection_stack.back().selected_module(mod_name);
}
bool RTLIL::Design::selected_whole_module(RTLIL::IdString mod_name) const
{
if (!selected_active_module.empty() && mod_name != selected_active_module)
return false;
if (selection_stack.size() == 0)
return true;
return selection_stack.back().selected_whole_module(mod_name);
}
bool RTLIL::Design::selected_member(RTLIL::IdString mod_name, RTLIL::IdString memb_name) const
{
if (!selected_active_module.empty() && mod_name != selected_active_module)
return false;
if (selection_stack.size() == 0)
return true;
return selection_stack.back().selected_member(mod_name, memb_name);
}
RTLIL::Module::~Module()
{
for (auto it = wires.begin(); it != wires.end(); it++)
delete it->second;
for (auto it = memories.begin(); it != memories.end(); it++)
delete it->second;
for (auto it = cells.begin(); it != cells.end(); it++)
delete it->second;
for (auto it = processes.begin(); it != processes.end(); it++)
delete it->second;
}
RTLIL::IdString RTLIL::Module::derive(RTLIL::Design*, std::map<RTLIL::IdString, RTLIL::Const>)
{
log_error("Module `%s' is used with parameters but is not parametric!\n", id2cstr(name));
}
void RTLIL::Module::update_auto_wires(std::map<RTLIL::IdString, int>)
{
log_error("Module `%s' has automatic wires bu no HDL backend to handle it!\n", id2cstr(name));
}
size_t RTLIL::Module::count_id(RTLIL::IdString id)
{
return wires.count(id) + memories.count(id) + cells.count(id) + processes.count(id);
}
void RTLIL::Module::check()
{
#ifndef NDEBUG
for (auto &it : wires) {
assert(it.first == it.second->name);
assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$'));
assert(it.second->width >= 0);
assert(it.second->port_id >= 0);
for (auto &it2 : it.second->attributes) {
assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$'));
}
}
for (auto &it : memories) {
assert(it.first == it.second->name);
assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$'));
assert(it.second->width >= 0);
assert(it.second->size >= 0);
for (auto &it2 : it.second->attributes) {
assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$'));
}
}
for (auto &it : cells) {
assert(it.first == it.second->name);
assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$'));
assert(it.second->type.size() > 0 && (it.second->type[0] == '\\' || it.second->type[0] == '$'));
for (auto &it2 : it.second->connections) {
assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$'));
it2.second.check();
}
for (auto &it2 : it.second->attributes) {
assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$'));
}
for (auto &it2 : it.second->parameters) {
assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$'));
}
}
for (auto &it : processes) {
assert(it.first == it.second->name);
assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$'));
// FIXME: More checks here..
}
for (auto &it : connections) {
assert(it.first.width == it.second.width);
it.first.check();
it.second.check();
}
for (auto &it : attributes) {
assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$'));
}
#endif
}
void RTLIL::Module::optimize()
{
for (auto &it : cells)
it.second->optimize();
for (auto &it : processes)
it.second->optimize();
for (auto &it : connections) {
it.first.optimize();
it.second.optimize();
}
}
void RTLIL::Module::add(RTLIL::Wire *wire)
{
assert(!wire->name.empty());
assert(count_id(wire->name) == 0);
wires[wire->name] = wire;
}
void RTLIL::Module::add(RTLIL::Cell *cell)
{
assert(!cell->name.empty());
assert(count_id(cell->name) == 0);
cells[cell->name] = cell;
}
static bool fixup_ports_compare(const RTLIL::Wire *a, const RTLIL::Wire *b)
{
if (a->port_id && !b->port_id)
return true;
if (!a->port_id && b->port_id)
return false;
if (a->port_id == b->port_id)
return a->name < b->name;
return a->port_id < b->port_id;
}
void RTLIL::Module::fixup_ports()
{
std::vector<RTLIL::Wire*> all_ports;
for (auto &w : wires)
if (w.second->port_input || w.second->port_output)
all_ports.push_back(w.second);
else
w.second->port_id = 0;
std::sort(all_ports.begin(), all_ports.end(), fixup_ports_compare);
for (size_t i = 0; i < all_ports.size(); i++)
all_ports[i]->port_id = i+1;
}
RTLIL::Wire::Wire()
{
width = 1;
start_offset = 0;
port_id = 0;
port_input = false;
port_output = false;
auto_width = false;
}
RTLIL::Memory::Memory()
{
width = 1;
size = 0;
}
void RTLIL::Cell::optimize()
{
for (auto &it : connections)
it.second.optimize();
}
RTLIL::SigChunk::SigChunk()
{
wire = NULL;
width = 0;
offset = 0;
}
RTLIL::SigChunk::SigChunk(const RTLIL::Const &data)
{
wire = NULL;
this->data = data;
width = data.bits.size();
offset = 0;
}
RTLIL::SigChunk::SigChunk(RTLIL::Wire *wire, int width, int offset)
{
this->wire = wire;
this->width = width >= 0 ? width : wire->width;
this->offset = offset;
}
RTLIL::SigChunk::SigChunk(const std::string &str)
{
wire = NULL;
data = RTLIL::Const(str);
width = data.bits.size();
offset = 0;
}
RTLIL::SigChunk::SigChunk(int val, int width)
{
wire = NULL;
data = RTLIL::Const(val, width);
this->width = data.bits.size();
offset = 0;
}
RTLIL::SigChunk::SigChunk(RTLIL::State bit, int width)
{
wire = NULL;
data = RTLIL::Const(bit, width);
this->width = data.bits.size();
offset = 0;
}
RTLIL::SigChunk RTLIL::SigChunk::extract(int offset, int length) const
{
RTLIL::SigChunk ret;
if (wire) {
ret.wire = wire;
ret.offset = this->offset + offset;
ret.width = length;
} else {
for (int i = 0; i < length; i++)
ret.data.bits.push_back(data.bits[offset+i]);
ret.width = length;
}
return ret;
}
bool RTLIL::SigChunk::operator <(const RTLIL::SigChunk &other) const
{
if (wire && other.wire)
if (wire->name != other.wire->name)
return wire->name < other.wire->name;
if (wire != other.wire)
return wire < other.wire;
if (offset != other.offset)
return offset < other.offset;
if (width != other.width)
return width < other.width;
if (data.bits != other.data.bits)
return data.bits < other.data.bits;
return false;
}
bool RTLIL::SigChunk::operator ==(const RTLIL::SigChunk &other) const
{
if (wire != other.wire || width != other.width || offset != other.offset)
return false;
if (data.bits != other.data.bits)
return false;
return true;
}
bool RTLIL::SigChunk::operator !=(const RTLIL::SigChunk &other) const
{
if (*this == other)
return false;
return true;
}
RTLIL::SigSpec::SigSpec()
{
width = 0;
}
RTLIL::SigSpec::SigSpec(const RTLIL::Const &data)
{
chunks.push_back(RTLIL::SigChunk(data));
width = chunks.back().width;
check();
}
RTLIL::SigSpec::SigSpec(const RTLIL::SigChunk &chunk)
{
chunks.push_back(chunk);
width = chunks.back().width;
check();
}
RTLIL::SigSpec::SigSpec(RTLIL::Wire *wire, int width, int offset)
{
chunks.push_back(RTLIL::SigChunk(wire, width, offset));
this->width = chunks.back().width;
check();
}
RTLIL::SigSpec::SigSpec(const std::string &str)
{
chunks.push_back(RTLIL::SigChunk(str));
width = chunks.back().width;
check();
}
RTLIL::SigSpec::SigSpec(int val, int width)
{
chunks.push_back(RTLIL::SigChunk(val, width));
this->width = chunks.back().width;
check();
}
RTLIL::SigSpec::SigSpec(RTLIL::State bit, int width)
{
chunks.push_back(RTLIL::SigChunk(bit, width));
this->width = chunks.back().width;
check();
}
void RTLIL::SigSpec::expand()
{
std::vector<RTLIL::SigChunk> new_chunks;
for (size_t i = 0; i < chunks.size(); i++) {
assert(chunks[i].data.str.empty());
for (int j = 0; j < chunks[i].width; j++)
new_chunks.push_back(chunks[i].extract(j, 1));
}
chunks.swap(new_chunks);
check();
}
void RTLIL::SigSpec::optimize()
{
for (size_t i = 0; i < chunks.size(); i++) {
if (chunks[i].wire && chunks[i].wire->auto_width)
continue;
if (chunks[i].width == 0)
chunks.erase(chunks.begin()+i--);
}
for (size_t i = 1; i < chunks.size(); i++) {
RTLIL::SigChunk &ch1 = chunks[i-1];
RTLIL::SigChunk &ch2 = chunks[i];
if (ch1.wire && ch1.wire->auto_width)
continue;
if (ch2.wire && ch2.wire->auto_width)
continue;
if (ch1.wire == ch2.wire) {
if (ch1.wire != NULL && ch1.offset+ch1.width == ch2.offset) {
ch1.width += ch2.width;
goto merged_with_next_chunk;
}
if (ch1.wire == NULL && ch1.data.str.empty() == ch2.data.str.empty()) {
ch1.data.str = ch2.data.str + ch1.data.str;
ch1.data.bits.insert(ch1.data.bits.end(), ch2.data.bits.begin(), ch2.data.bits.end());
ch1.width += ch2.width;
goto merged_with_next_chunk;
}
}
if (0) {
merged_with_next_chunk:
chunks.erase(chunks.begin()+i);
i--;
}
}
check();
}
bool RTLIL::SigChunk::compare(const RTLIL::SigChunk &a, const RTLIL::SigChunk &b)
{
if (a.wire != b.wire) {
if (a.wire == NULL || b.wire == NULL)
return a.wire < b.wire;
else if (a.wire->name != b.wire->name)
return a.wire->name < b.wire->name;
else
return a.wire < b.wire;
}
if (a.offset != b.offset)
return a.offset < b.offset;
if (a.width != b.width)
return a.width < b.width;
return a.data.bits < b.data.bits;
}
void RTLIL::SigSpec::sort()
{
expand();
std::sort(chunks.begin(), chunks.end(), RTLIL::SigChunk::compare);
optimize();
}
void RTLIL::SigSpec::sort_and_unify()
{
expand();
std::sort(chunks.begin(), chunks.end(), RTLIL::SigChunk::compare);
for (size_t i = 1; i < chunks.size(); i++) {
RTLIL::SigChunk &ch1 = chunks[i-1];
RTLIL::SigChunk &ch2 = chunks[i];
if (!RTLIL::SigChunk::compare(ch1, ch2) && !RTLIL::SigChunk::compare(ch2, ch1)) {
chunks.erase(chunks.begin()+i);
width -= chunks[i].width;
i--;
}
}
optimize();
}
void RTLIL::SigSpec::replace(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec &with)
{
replace(pattern, with, this);
}
void RTLIL::SigSpec::replace(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec &with, RTLIL::SigSpec *other) const
{
int pos = 0, restart_pos = 0;
assert(other == NULL || width == other->width);
for (size_t i = 0; i < chunks.size(); i++) {
restart:
const RTLIL::SigChunk &ch1 = chunks[i];
if (chunks[i].wire != NULL && pos >= restart_pos)
for (size_t j = 0, poff = 0; j < pattern.chunks.size(); j++) {
const RTLIL::SigChunk &ch2 = pattern.chunks[j];
assert(ch2.wire != NULL);
if (ch1.wire == ch2.wire) {
int lower = std::max(ch1.offset, ch2.offset);
int upper = std::min(ch1.offset + ch1.width, ch2.offset + ch2.width);
if (lower < upper) {
restart_pos = pos+upper-ch1.offset;
other->replace(pos+lower-ch1.offset, with.extract(poff+lower-ch2.offset, upper-lower));
goto restart;
}
}
poff += ch2.width;
}
pos += chunks[i].width;
}
check();
}
void RTLIL::SigSpec::remove(const RTLIL::SigSpec &pattern)
{
remove2(pattern, NULL);
}
void RTLIL::SigSpec::remove(const RTLIL::SigSpec &pattern, RTLIL::SigSpec *other) const
{
RTLIL::SigSpec tmp = *this;
tmp.remove2(pattern, other);
}
void RTLIL::SigSpec::remove2(const RTLIL::SigSpec &pattern, RTLIL::SigSpec *other)
{
int pos = 0;
assert(other == NULL || width == other->width);
for (size_t i = 0; i < chunks.size(); i++) {
restart:
const RTLIL::SigChunk &ch1 = chunks[i];
if (chunks[i].wire != NULL)
for (size_t j = 0; j < pattern.chunks.size(); j++) {
const RTLIL::SigChunk &ch2 = pattern.chunks[j];
assert(ch2.wire != NULL);
if (ch1.wire == ch2.wire) {
int lower = std::max(ch1.offset, ch2.offset);
int upper = std::min(ch1.offset + ch1.width, ch2.offset + ch2.width);
if (lower < upper) {
if (other)
other->remove(pos+lower-ch1.offset, upper-lower);
remove(pos+lower-ch1.offset, upper-lower);
if (i == chunks.size())
break;
goto restart;
}
}
}
pos += chunks[i].width;
}
check();
}
RTLIL::SigSpec RTLIL::SigSpec::extract(RTLIL::SigSpec pattern, RTLIL::SigSpec *other) const
{
int pos = 0;
RTLIL::SigSpec ret;
pattern.sort_and_unify();
assert(other == NULL || width == other->width);
for (size_t i = 0; i < chunks.size(); i++) {
const RTLIL::SigChunk &ch1 = chunks[i];
if (chunks[i].wire != NULL)
for (size_t j = 0; j < pattern.chunks.size(); j++) {
RTLIL::SigChunk &ch2 = pattern.chunks[j];
assert(ch2.wire != NULL);
if (ch1.wire == ch2.wire) {
int lower = std::max(ch1.offset, ch2.offset);
int upper = std::min(ch1.offset + ch1.width, ch2.offset + ch2.width);
if (lower < upper) {
if (other)
ret.append(other->extract(pos+lower-ch1.offset, upper-lower));
else
ret.append(extract(pos+lower-ch1.offset, upper-lower));
}
}
}
pos += chunks[i].width;
}
ret.check();
return ret;
}
void RTLIL::SigSpec::replace(int offset, const RTLIL::SigSpec &with)
{
int pos = 0;
assert(offset >= 0);
assert(with.width >= 0);
assert(offset+with.width <= width);
remove(offset, with.width);
for (size_t i = 0; i < chunks.size(); i++) {
if (pos == offset) {
chunks.insert(chunks.begin()+i, with.chunks.begin(), with.chunks.end());
width += with.width;
check();
return;
}
pos += chunks[i].width;
}
assert(pos == offset);
chunks.insert(chunks.end(), with.chunks.begin(), with.chunks.end());
width += with.width;
check();
}
void RTLIL::SigSpec::remove_const()
{
for (size_t i = 0; i < chunks.size(); i++) {
if (chunks[i].wire != NULL)
continue;
width -= chunks[i].width;
chunks.erase(chunks.begin() + (i--));
}
check();
}
void RTLIL::SigSpec::remove(int offset, int length)
{
int pos = 0;
assert(offset >= 0);
assert(length >= 0);
assert(offset+length <= width);
for (size_t i = 0; i < chunks.size(); i++) {
int orig_width = chunks[i].width;
if (pos+chunks[i].width > offset && pos < offset+length) {
int off = offset - pos;
int len = length;
if (off < 0) {
len += off;
off = 0;
}
if (len > chunks[i].width-off)
len = chunks[i].width-off;
RTLIL::SigChunk lsb_chunk = chunks[i].extract(0, off);
RTLIL::SigChunk msb_chunk = chunks[i].extract(off+len, chunks[i].width-off-len);
if (lsb_chunk.width == 0 && msb_chunk.width == 0) {
chunks.erase(chunks.begin()+i);
i--;
} else if (lsb_chunk.width == 0 && msb_chunk.width != 0) {
chunks[i] = msb_chunk;
} else if (lsb_chunk.width != 0 && msb_chunk.width == 0) {
chunks[i] = lsb_chunk;
} else if (lsb_chunk.width != 0 && msb_chunk.width != 0) {
chunks[i] = lsb_chunk;
chunks.insert(chunks.begin()+i+1, msb_chunk);
i++;
} else
assert(0);
width -= len;
}
pos += orig_width;
}
check();
}
RTLIL::SigSpec RTLIL::SigSpec::extract(int offset, int length) const
{
int pos = 0;
RTLIL::SigSpec ret;
assert(offset >= 0);
assert(length >= 0);
assert(offset+length <= width);
for (size_t i = 0; i < chunks.size(); i++) {
if (pos+chunks[i].width > offset && pos < offset+length) {
int off = offset - pos;
int len = length;
if (off < 0) {
len += off;
off = 0;
}
if (len > chunks[i].width-off)
len = chunks[i].width-off;
ret.chunks.push_back(chunks[i].extract(off, len));
ret.width += len;
offset += len;
length -= len;
}
pos += chunks[i].width;
}
assert(length == 0);
ret.check();
return ret;
}
void RTLIL::SigSpec::append(const RTLIL::SigSpec &signal)
{
for (size_t i = 0; i < signal.chunks.size(); i++) {
chunks.push_back(signal.chunks[i]);
width += signal.chunks[i].width;
}
check();
}
bool RTLIL::SigSpec::combine(RTLIL::SigSpec signal, RTLIL::State freeState, bool override)
{
bool no_collisions = true;
assert(width == signal.width);
expand();
signal.expand();
for (size_t i = 0; i < chunks.size(); i++) {
bool self_free = chunks[i].wire == NULL && chunks[i].data.bits[0] == freeState;
bool other_free = signal.chunks[i].wire == NULL && signal.chunks[i].data.bits[0] == freeState;
if (!self_free && !other_free) {
if (override)
chunks[i] = signal.chunks[i];
else
chunks[i] = RTLIL::SigChunk(RTLIL::State::Sx, 1);
no_collisions = false;
}
if (self_free && !other_free)
chunks[i] = signal.chunks[i];
}
optimize();
return no_collisions;
}
void RTLIL::SigSpec::extend(int width, bool is_signed)
{
if (this->width > width)
remove(width, this->width - width);
if (this->width < width) {
RTLIL::SigSpec padding = this->width > 0 ? extract(this->width - 1, 1) : RTLIL::SigSpec(RTLIL::State::S0);
if (!is_signed && padding != RTLIL::SigSpec(RTLIL::State::Sx) && padding != RTLIL::SigSpec(RTLIL::State::Sz) &&
padding != RTLIL::SigSpec(RTLIL::State::Sa) && padding != RTLIL::SigSpec(RTLIL::State::Sm))
padding = RTLIL::SigSpec(RTLIL::State::S0);
while (this->width < width)
append(padding);
}
optimize();
}
void RTLIL::SigSpec::check() const
{
int w = 0;
for (size_t i = 0; i < chunks.size(); i++) {
const RTLIL::SigChunk chunk = chunks[i];
if (chunk.wire == NULL) {
assert(chunk.offset == 0);
assert(chunk.data.bits.size() == (size_t)chunk.width);
assert(chunk.data.str.size() == 0 || chunk.data.str.size()*8 == chunk.data.bits.size());
} else {
assert(chunk.offset >= 0);
assert(chunk.width >= 0);
assert(chunk.offset + chunk.width <= chunk.wire->width);
assert(chunk.data.bits.size() == 0);
assert(chunk.data.str.size() == 0);
}
w += chunk.width;
}
assert(w == width);
}
bool RTLIL::SigSpec::operator <(const RTLIL::SigSpec &other) const
{
if (width != other.width)
return width < other.width;
RTLIL::SigSpec a = *this, b = other;
a.optimize();
b.optimize();
if (a.chunks.size() != b.chunks.size())
return a.chunks.size() < b.chunks.size();
for (size_t i = 0; i < a.chunks.size(); i++)
if (a.chunks[i] != b.chunks[i])
return a.chunks[i] < b.chunks[i];
return false;
}
bool RTLIL::SigSpec::operator ==(const RTLIL::SigSpec &other) const
{
if (width != other.width)
return false;
RTLIL::SigSpec a = *this, b = other;
a.optimize();
b.optimize();
if (a.chunks.size() != b.chunks.size())
return false;
for (size_t i = 0; i < a.chunks.size(); i++)
if (a.chunks[i] != b.chunks[i])
return false;
return true;
}
bool RTLIL::SigSpec::operator !=(const RTLIL::SigSpec &other) const
{
if (*this == other)
return false;
return true;
}
bool RTLIL::SigSpec::is_fully_const() const
{
for (auto it = chunks.begin(); it != chunks.end(); it++)
if (it->width > 0 && it->wire != NULL)
return false;
return true;
}
bool RTLIL::SigSpec::is_fully_def() const
{
for (auto it = chunks.begin(); it != chunks.end(); it++) {
if (it->width > 0 && it->wire != NULL)
return false;
for (size_t i = 0; i < it->data.bits.size(); i++)
if (it->data.bits[i] != RTLIL::State::S0 && it->data.bits[i] != RTLIL::State::S1)
return false;
}
return true;
}
bool RTLIL::SigSpec::is_fully_undef() const
{
for (auto it = chunks.begin(); it != chunks.end(); it++) {
if (it->width > 0 && it->wire != NULL)
return false;
for (size_t i = 0; i < it->data.bits.size(); i++)
if (it->data.bits[i] != RTLIL::State::Sx && it->data.bits[i] != RTLIL::State::Sz)
return false;
}
return true;
}
bool RTLIL::SigSpec::has_marked_bits() const
{
for (auto it = chunks.begin(); it != chunks.end(); it++)
if (it->width > 0 && it->wire == NULL) {
for (size_t i = 0; i < it->data.bits.size(); i++)
if (it->data.bits[i] == RTLIL::State::Sm)
return true;
}
return false;
}
bool RTLIL::SigSpec::as_bool() const
{
assert(is_fully_const());
SigSpec sig = *this;
sig.optimize();
if (sig.width)
return sig.chunks[0].data.as_bool();
return false;
}
int RTLIL::SigSpec::as_int() const
{
assert(is_fully_const());
SigSpec sig = *this;
sig.optimize();
if (sig.width)
return sig.chunks[0].data.as_int();
return 0;
}
std::string RTLIL::SigSpec::as_string() const
{
std::string str;
for (size_t i = chunks.size(); i > 0; i--) {
const RTLIL::SigChunk &chunk = chunks[i-1];
if (chunk.wire != NULL)
for (int j = 0; j < chunk.width; j++)
str += "?";
else
str += chunk.data.as_string();
}
return str;
}
RTLIL::Const RTLIL::SigSpec::as_const() const
{
assert(is_fully_const());
SigSpec sig = *this;
sig.optimize();
if (sig.width)
return sig.chunks[0].data;
return RTLIL::Const();
}
bool RTLIL::SigSpec::match(std::string pattern) const
{
std::string str = as_string();
assert(pattern.size() == str.size());
for (size_t i = 0; i < pattern.size(); i++) {
if (pattern[i] == ' ')
continue;
if (pattern[i] == '*') {
if (str[i] != 'z' && str[i] != 'x')
return false;
continue;
}
if (pattern[i] != str[i])
return false;
}
return true;
}
static void sigspec_parse_split(std::vector<std::string> &tokens, const std::string &text, char sep)
{
size_t start = 0, end = 0;
while ((end = text.find(sep, start)) != std::string::npos) {
tokens.push_back(text.substr(start, end - start));
start = end + 1;
}
tokens.push_back(text.substr(start));
}
static int sigspec_parse_get_dummy_line_num()
{
return 0;
}
bool RTLIL::SigSpec::parse(RTLIL::SigSpec &sig, RTLIL::Module *module, std::string str)
{
std::vector<std::string> tokens;
sigspec_parse_split(tokens, str, ',');
sig = RTLIL::SigSpec();
for (auto &tok : tokens)
{
std::string netname = tok;
std::string indices;
if (netname.size() == 0)
continue;
if ('0' <= netname[0] && netname[0] <= '9') {
AST::get_line_num = sigspec_parse_get_dummy_line_num;
AST::AstNode *ast = VERILOG_FRONTEND::const2ast(netname);
if (ast == NULL)
return false;
sig.append(RTLIL::Const(ast->bits));
delete ast;
continue;
}
if (netname[0] != '$' && netname[0] != '\\')
netname = "\\" + netname;
if (module->wires.count(netname) == 0) {
size_t indices_pos = netname.size()-1;
if (indices_pos > 2 && netname[indices_pos] == ']')
{
indices_pos--;
while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--;
if (indices_pos > 0 && netname[indices_pos] == ':') {
indices_pos--;
while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--;
}
if (indices_pos > 0 && netname[indices_pos] == '[') {
indices = netname.substr(indices_pos);
netname = netname.substr(0, indices_pos);
}
}
}
if (module->wires.count(netname) == 0)
return false;
RTLIL::Wire *wire = module->wires.at(netname);
if (!indices.empty()) {
std::vector<std::string> index_tokens;
sigspec_parse_split(index_tokens, indices.substr(1, indices.size()-2), ':');
if (index_tokens.size() == 1)
sig.append(RTLIL::SigSpec(wire, 1, atoi(index_tokens.at(0).c_str())));
else {
int a = atoi(index_tokens.at(0).c_str());
int b = atoi(index_tokens.at(1).c_str());
if (a > b) {
int tmp = a;
a = b, b = tmp;
}
sig.append(RTLIL::SigSpec(wire, b-a+1, a));
}
} else
sig.append(wire);
}
return true;
}
RTLIL::CaseRule::~CaseRule()
{
for (auto it = switches.begin(); it != switches.end(); it++)
delete *it;
}
void RTLIL::CaseRule::optimize()
{
for (auto it : switches)
it->optimize();
for (auto &it : compare)
it.optimize();
for (auto &it : actions) {
it.first.optimize();
it.second.optimize();
}
}
RTLIL::SwitchRule::~SwitchRule()
{
for (auto it = cases.begin(); it != cases.end(); it++)
delete *it;
}
void RTLIL::SwitchRule::optimize()
{
signal.optimize();
for (auto it : cases)
it->optimize();
}
void RTLIL::SyncRule::optimize()
{
signal.optimize();
for (auto &it : actions) {
it.first.optimize();
it.second.optimize();
}
}
RTLIL::Process::~Process()
{
for (auto it = syncs.begin(); it != syncs.end(); it++)
delete *it;
}
void RTLIL::Process::optimize()
{
root_case.optimize();
for (auto it : syncs)
it->optimize();
}