yosys/tests/openmsp430/rtl/omsp_multiplier.v

421 lines
14 KiB
Verilog

//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_multiplier.v
//
// *Module Description:
// 16x16 Hardware multiplier.
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 23 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2009-08-30 18:39:26 +0200 (Sun, 30 Aug 2009) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_multiplier (
// OUTPUTs
per_dout, // Peripheral data output
// INPUTs
mclk, // Main system clock
per_addr, // Peripheral address
per_din, // Peripheral data input
per_en, // Peripheral enable (high active)
per_we, // Peripheral write enable (high active)
puc_rst, // Main system reset
scan_enable // Scan enable (active during scan shifting)
);
// OUTPUTs
//=========
output [15:0] per_dout; // Peripheral data output
// INPUTs
//=========
input mclk; // Main system clock
input [13:0] per_addr; // Peripheral address
input [15:0] per_din; // Peripheral data input
input per_en; // Peripheral enable (high active)
input [1:0] per_we; // Peripheral write enable (high active)
input puc_rst; // Main system reset
input scan_enable; // Scan enable (active during scan shifting)
//=============================================================================
// 1) PARAMETER/REGISTERS & WIRE DECLARATION
//=============================================================================
// Register base address (must be aligned to decoder bit width)
parameter [14:0] BASE_ADDR = 15'h0130;
// Decoder bit width (defines how many bits are considered for address decoding)
parameter DEC_WD = 4;
// Register addresses offset
parameter [DEC_WD-1:0] OP1_MPY = 'h0,
OP1_MPYS = 'h2,
OP1_MAC = 'h4,
OP1_MACS = 'h6,
OP2 = 'h8,
RESLO = 'hA,
RESHI = 'hC,
SUMEXT = 'hE;
// Register one-hot decoder utilities
parameter DEC_SZ = (1 << DEC_WD);
parameter [DEC_SZ-1:0] BASE_REG = {{DEC_SZ-1{1'b0}}, 1'b1};
// Register one-hot decoder
parameter [DEC_SZ-1:0] OP1_MPY_D = (BASE_REG << OP1_MPY),
OP1_MPYS_D = (BASE_REG << OP1_MPYS),
OP1_MAC_D = (BASE_REG << OP1_MAC),
OP1_MACS_D = (BASE_REG << OP1_MACS),
OP2_D = (BASE_REG << OP2),
RESLO_D = (BASE_REG << RESLO),
RESHI_D = (BASE_REG << RESHI),
SUMEXT_D = (BASE_REG << SUMEXT);
// Wire pre-declarations
wire result_wr;
wire result_clr;
wire early_read;
//============================================================================
// 2) REGISTER DECODER
//============================================================================
// Local register selection
wire reg_sel = per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
// Register local address
wire [DEC_WD-1:0] reg_addr = {per_addr[DEC_WD-2:0], 1'b0};
// Register address decode
wire [DEC_SZ-1:0] reg_dec = (OP1_MPY_D & {DEC_SZ{(reg_addr == OP1_MPY )}}) |
(OP1_MPYS_D & {DEC_SZ{(reg_addr == OP1_MPYS )}}) |
(OP1_MAC_D & {DEC_SZ{(reg_addr == OP1_MAC )}}) |
(OP1_MACS_D & {DEC_SZ{(reg_addr == OP1_MACS )}}) |
(OP2_D & {DEC_SZ{(reg_addr == OP2 )}}) |
(RESLO_D & {DEC_SZ{(reg_addr == RESLO )}}) |
(RESHI_D & {DEC_SZ{(reg_addr == RESHI )}}) |
(SUMEXT_D & {DEC_SZ{(reg_addr == SUMEXT )}});
// Read/Write probes
wire reg_write = |per_we & reg_sel;
wire reg_read = ~|per_we & reg_sel;
// Read/Write vectors
wire [DEC_SZ-1:0] reg_wr = reg_dec & {DEC_SZ{reg_write}};
wire [DEC_SZ-1:0] reg_rd = reg_dec & {DEC_SZ{reg_read}};
//============================================================================
// 3) REGISTERS
//============================================================================
// OP1 Register
//-----------------
reg [15:0] op1;
wire op1_wr = reg_wr[OP1_MPY] |
reg_wr[OP1_MPYS] |
reg_wr[OP1_MAC] |
reg_wr[OP1_MACS];
`ifdef CLOCK_GATING
wire mclk_op1;
omsp_clock_gate clock_gate_op1 (.gclk(mclk_op1),
.clk (mclk), .enable(op1_wr), .scan_enable(scan_enable));
`else
wire mclk_op1 = mclk;
`endif
always @ (posedge mclk_op1 or posedge puc_rst)
if (puc_rst) op1 <= 16'h0000;
`ifdef CLOCK_GATING
else op1 <= per_din;
`else
else if (op1_wr) op1 <= per_din;
`endif
wire [15:0] op1_rd = op1;
// OP2 Register
//-----------------
reg [15:0] op2;
wire op2_wr = reg_wr[OP2];
`ifdef CLOCK_GATING
wire mclk_op2;
omsp_clock_gate clock_gate_op2 (.gclk(mclk_op2),
.clk (mclk), .enable(op2_wr), .scan_enable(scan_enable));
`else
wire mclk_op2 = mclk;
`endif
always @ (posedge mclk_op2 or posedge puc_rst)
if (puc_rst) op2 <= 16'h0000;
`ifdef CLOCK_GATING
else op2 <= per_din;
`else
else if (op2_wr) op2 <= per_din;
`endif
wire [15:0] op2_rd = op2;
// RESLO Register
//-----------------
reg [15:0] reslo;
wire [15:0] reslo_nxt;
wire reslo_wr = reg_wr[RESLO];
`ifdef CLOCK_GATING
wire reslo_en = reslo_wr | result_clr | result_wr;
wire mclk_reslo;
omsp_clock_gate clock_gate_reslo (.gclk(mclk_reslo),
.clk (mclk), .enable(reslo_en), .scan_enable(scan_enable));
`else
wire mclk_reslo = mclk;
`endif
always @ (posedge mclk_reslo or posedge puc_rst)
if (puc_rst) reslo <= 16'h0000;
else if (reslo_wr) reslo <= per_din;
else if (result_clr) reslo <= 16'h0000;
`ifdef CLOCK_GATING
else reslo <= reslo_nxt;
`else
else if (result_wr) reslo <= reslo_nxt;
`endif
wire [15:0] reslo_rd = early_read ? reslo_nxt : reslo;
// RESHI Register
//-----------------
reg [15:0] reshi;
wire [15:0] reshi_nxt;
wire reshi_wr = reg_wr[RESHI];
`ifdef CLOCK_GATING
wire reshi_en = reshi_wr | result_clr | result_wr;
wire mclk_reshi;
omsp_clock_gate clock_gate_reshi (.gclk(mclk_reshi),
.clk (mclk), .enable(reshi_en), .scan_enable(scan_enable));
`else
wire mclk_reshi = mclk;
`endif
always @ (posedge mclk_reshi or posedge puc_rst)
if (puc_rst) reshi <= 16'h0000;
else if (reshi_wr) reshi <= per_din;
else if (result_clr) reshi <= 16'h0000;
`ifdef CLOCK_GATING
else reshi <= reshi_nxt;
`else
else if (result_wr) reshi <= reshi_nxt;
`endif
wire [15:0] reshi_rd = early_read ? reshi_nxt : reshi;
// SUMEXT Register
//-----------------
reg [1:0] sumext_s;
wire [1:0] sumext_s_nxt;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) sumext_s <= 2'b00;
else if (op2_wr) sumext_s <= 2'b00;
else if (result_wr) sumext_s <= sumext_s_nxt;
wire [15:0] sumext_nxt = {{14{sumext_s_nxt[1]}}, sumext_s_nxt};
wire [15:0] sumext = {{14{sumext_s[1]}}, sumext_s};
wire [15:0] sumext_rd = early_read ? sumext_nxt : sumext;
//============================================================================
// 4) DATA OUTPUT GENERATION
//============================================================================
// Data output mux
wire [15:0] op1_mux = op1_rd & {16{reg_rd[OP1_MPY] |
reg_rd[OP1_MPYS] |
reg_rd[OP1_MAC] |
reg_rd[OP1_MACS]}};
wire [15:0] op2_mux = op2_rd & {16{reg_rd[OP2]}};
wire [15:0] reslo_mux = reslo_rd & {16{reg_rd[RESLO]}};
wire [15:0] reshi_mux = reshi_rd & {16{reg_rd[RESHI]}};
wire [15:0] sumext_mux = sumext_rd & {16{reg_rd[SUMEXT]}};
wire [15:0] per_dout = op1_mux |
op2_mux |
reslo_mux |
reshi_mux |
sumext_mux;
//============================================================================
// 5) HARDWARE MULTIPLIER FUNCTIONAL LOGIC
//============================================================================
// Multiplier configuration
//--------------------------
// Detect signed mode
reg sign_sel;
always @ (posedge mclk_op1 or posedge puc_rst)
if (puc_rst) sign_sel <= 1'b0;
`ifdef CLOCK_GATING
else sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
`else
else if (op1_wr) sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
`endif
// Detect accumulate mode
reg acc_sel;
always @ (posedge mclk_op1 or posedge puc_rst)
if (puc_rst) acc_sel <= 1'b0;
`ifdef CLOCK_GATING
else acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS];
`else
else if (op1_wr) acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS];
`endif
// Detect whenever the RESHI and RESLO registers should be cleared
assign result_clr = op2_wr & ~acc_sel;
// Combine RESHI & RESLO
wire [31:0] result = {reshi, reslo};
// 16x16 Multiplier (result computed in 1 clock cycle)
//-----------------------------------------------------
`ifdef MPY_16x16
// Detect start of a multiplication
reg cycle;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) cycle <= 1'b0;
else cycle <= op2_wr;
assign result_wr = cycle;
// Expand the operands to support signed & unsigned operations
wire signed [16:0] op1_xp = {sign_sel & op1[15], op1};
wire signed [16:0] op2_xp = {sign_sel & op2[15], op2};
// 17x17 signed multiplication
wire signed [33:0] product = op1_xp * op2_xp;
// Accumulate
wire [32:0] result_nxt = {1'b0, result} + {1'b0, product[31:0]};
// Next register values
assign reslo_nxt = result_nxt[15:0];
assign reshi_nxt = result_nxt[31:16];
assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} :
{1'b0, result_nxt[32]};
// Since the MAC is completed within 1 clock cycle,
// an early read can't happen.
assign early_read = 1'b0;
// 16x8 Multiplier (result computed in 2 clock cycles)
//-----------------------------------------------------
`else
// Detect start of a multiplication
reg [1:0] cycle;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) cycle <= 2'b00;
else cycle <= {cycle[0], op2_wr};
assign result_wr = |cycle;
// Expand the operands to support signed & unsigned operations
wire signed [16:0] op1_xp = {sign_sel & op1[15], op1};
wire signed [8:0] op2_hi_xp = {sign_sel & op2[15], op2[15:8]};
wire signed [8:0] op2_lo_xp = { 1'b0, op2[7:0]};
wire signed [8:0] op2_xp = cycle[0] ? op2_hi_xp : op2_lo_xp;
// 17x9 signed multiplication
wire signed [25:0] product = op1_xp * op2_xp;
wire [31:0] product_xp = cycle[0] ? {product[23:0], 8'h00} :
{{8{sign_sel & product[23]}}, product[23:0]};
// Accumulate
wire [32:0] result_nxt = {1'b0, result} + {1'b0, product_xp[31:0]};
// Next register values
assign reslo_nxt = result_nxt[15:0];
assign reshi_nxt = result_nxt[31:16];
assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} :
{1'b0, result_nxt[32] | sumext_s[0]};
// Since the MAC is completed within 2 clock cycle,
// an early read can happen during the second cycle.
assign early_read = cycle[1];
`endif
endmodule // omsp_multiplier
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif