yosys/tests/openmsp430/rtl/omsp_execution_unit.v

421 lines
20 KiB
Verilog

//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_execution_unit.v
//
// *Module Description:
// openMSP430 Execution unit
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 134 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_execution_unit (
// OUTPUTs
cpuoff, // Turns off the CPU
dbg_reg_din, // Debug unit CPU register data input
gie, // General interrupt enable
mab, // Memory address bus
mb_en, // Memory bus enable
mb_wr, // Memory bus write transfer
mdb_out, // Memory data bus output
oscoff, // Turns off LFXT1 clock input
pc_sw, // Program counter software value
pc_sw_wr, // Program counter software write
scg0, // System clock generator 1. Turns off the DCO
scg1, // System clock generator 1. Turns off the SMCLK
// INPUTs
dbg_halt_st, // Halt/Run status from CPU
dbg_mem_dout, // Debug unit data output
dbg_reg_wr, // Debug unit CPU register write
e_state, // Execution state
exec_done, // Execution completed
inst_ad, // Decoded Inst: destination addressing mode
inst_as, // Decoded Inst: source addressing mode
inst_alu, // ALU control signals
inst_bw, // Decoded Inst: byte width
inst_dest, // Decoded Inst: destination (one hot)
inst_dext, // Decoded Inst: destination extended instruction word
inst_irq_rst, // Decoded Inst: reset interrupt
inst_jmp, // Decoded Inst: Conditional jump
inst_mov, // Decoded Inst: mov instruction
inst_sext, // Decoded Inst: source extended instruction word
inst_so, // Decoded Inst: Single-operand arithmetic
inst_src, // Decoded Inst: source (one hot)
inst_type, // Decoded Instruction type
mclk, // Main system clock
mdb_in, // Memory data bus input
pc, // Program counter
pc_nxt, // Next PC value (for CALL & IRQ)
puc_rst, // Main system reset
scan_enable // Scan enable (active during scan shifting)
);
// OUTPUTs
//=========
output cpuoff; // Turns off the CPU
output [15:0] dbg_reg_din; // Debug unit CPU register data input
output gie; // General interrupt enable
output [15:0] mab; // Memory address bus
output mb_en; // Memory bus enable
output [1:0] mb_wr; // Memory bus write transfer
output [15:0] mdb_out; // Memory data bus output
output oscoff; // Turns off LFXT1 clock input
output [15:0] pc_sw; // Program counter software value
output pc_sw_wr; // Program counter software write
output scg0; // System clock generator 1. Turns off the DCO
output scg1; // System clock generator 1. Turns off the SMCLK
// INPUTs
//=========
input dbg_halt_st; // Halt/Run status from CPU
input [15:0] dbg_mem_dout; // Debug unit data output
input dbg_reg_wr; // Debug unit CPU register write
input [3:0] e_state; // Execution state
input exec_done; // Execution completed
input [7:0] inst_ad; // Decoded Inst: destination addressing mode
input [7:0] inst_as; // Decoded Inst: source addressing mode
input [11:0] inst_alu; // ALU control signals
input inst_bw; // Decoded Inst: byte width
input [15:0] inst_dest; // Decoded Inst: destination (one hot)
input [15:0] inst_dext; // Decoded Inst: destination extended instruction word
input inst_irq_rst; // Decoded Inst: reset interrupt
input [7:0] inst_jmp; // Decoded Inst: Conditional jump
input inst_mov; // Decoded Inst: mov instruction
input [15:0] inst_sext; // Decoded Inst: source extended instruction word
input [7:0] inst_so; // Decoded Inst: Single-operand arithmetic
input [15:0] inst_src; // Decoded Inst: source (one hot)
input [2:0] inst_type; // Decoded Instruction type
input mclk; // Main system clock
input [15:0] mdb_in; // Memory data bus input
input [15:0] pc; // Program counter
input [15:0] pc_nxt; // Next PC value (for CALL & IRQ)
input puc_rst; // Main system reset
input scan_enable; // Scan enable (active during scan shifting)
//=============================================================================
// 1) INTERNAL WIRES/REGISTERS/PARAMETERS DECLARATION
//=============================================================================
wire [15:0] alu_out;
wire [15:0] alu_out_add;
wire [3:0] alu_stat;
wire [3:0] alu_stat_wr;
wire [15:0] op_dst;
wire [15:0] op_src;
wire [15:0] reg_dest;
wire [15:0] reg_src;
wire [15:0] mdb_in_bw;
wire [15:0] mdb_in_val;
wire [3:0] status;
//=============================================================================
// 2) REGISTER FILE
//=============================================================================
wire reg_dest_wr = ((e_state==`E_EXEC) & (
(inst_type[`INST_TO] & inst_ad[`DIR] & ~inst_alu[`EXEC_NO_WR]) |
(inst_type[`INST_SO] & inst_as[`DIR] & ~(inst_so[`PUSH] | inst_so[`CALL] | inst_so[`RETI])) |
inst_type[`INST_JMP])) | dbg_reg_wr;
wire reg_sp_wr = (((e_state==`E_IRQ_1) | (e_state==`E_IRQ_3)) & ~inst_irq_rst) |
((e_state==`E_DST_RD) & ((inst_so[`PUSH] | inst_so[`CALL]) & ~inst_as[`IDX] & ~((inst_as[`INDIR] | inst_as[`INDIR_I]) & inst_src[1]))) |
((e_state==`E_SRC_AD) & ((inst_so[`PUSH] | inst_so[`CALL]) & inst_as[`IDX])) |
((e_state==`E_SRC_RD) & ((inst_so[`PUSH] | inst_so[`CALL]) & ((inst_as[`INDIR] | inst_as[`INDIR_I]) & inst_src[1])));
wire reg_sr_wr = (e_state==`E_DST_RD) & inst_so[`RETI];
wire reg_sr_clr = (e_state==`E_IRQ_2);
wire reg_pc_call = ((e_state==`E_EXEC) & inst_so[`CALL]) |
((e_state==`E_DST_WR) & inst_so[`RETI]);
wire reg_incr = (exec_done & inst_as[`INDIR_I]) |
((e_state==`E_SRC_RD) & inst_so[`RETI]) |
((e_state==`E_EXEC) & inst_so[`RETI]);
assign dbg_reg_din = reg_dest;
omsp_register_file register_file_0 (
// OUTPUTs
.cpuoff (cpuoff), // Turns off the CPU
.gie (gie), // General interrupt enable
.oscoff (oscoff), // Turns off LFXT1 clock input
.pc_sw (pc_sw), // Program counter software value
.pc_sw_wr (pc_sw_wr), // Program counter software write
.reg_dest (reg_dest), // Selected register destination content
.reg_src (reg_src), // Selected register source content
.scg0 (scg0), // System clock generator 1. Turns off the DCO
.scg1 (scg1), // System clock generator 1. Turns off the SMCLK
.status (status), // R2 Status {V,N,Z,C}
// INPUTs
.alu_stat (alu_stat), // ALU Status {V,N,Z,C}
.alu_stat_wr (alu_stat_wr), // ALU Status write {V,N,Z,C}
.inst_bw (inst_bw), // Decoded Inst: byte width
.inst_dest (inst_dest), // Register destination selection
.inst_src (inst_src), // Register source selection
.mclk (mclk), // Main system clock
.pc (pc), // Program counter
.puc_rst (puc_rst), // Main system reset
.reg_dest_val (alu_out), // Selected register destination value
.reg_dest_wr (reg_dest_wr), // Write selected register destination
.reg_pc_call (reg_pc_call), // Trigger PC update for a CALL instruction
.reg_sp_val (alu_out_add), // Stack Pointer next value
.reg_sp_wr (reg_sp_wr), // Stack Pointer write
.reg_sr_clr (reg_sr_clr), // Status register clear for interrupts
.reg_sr_wr (reg_sr_wr), // Status Register update for RETI instruction
.reg_incr (reg_incr), // Increment source register
.scan_enable (scan_enable) // Scan enable (active during scan shifting)
);
//=============================================================================
// 3) SOURCE OPERAND MUXING
//=============================================================================
// inst_as[`DIR] : Register direct. -> Source is in register
// inst_as[`IDX] : Register indexed. -> Source is in memory, address is register+offset
// inst_as[`INDIR] : Register indirect.
// inst_as[`INDIR_I]: Register indirect autoincrement.
// inst_as[`SYMB] : Symbolic (operand is in memory at address PC+x).
// inst_as[`IMM] : Immediate (operand is next word in the instruction stream).
// inst_as[`ABS] : Absolute (operand is in memory at address x).
// inst_as[`CONST] : Constant.
wire src_reg_src_sel = (e_state==`E_IRQ_0) |
(e_state==`E_IRQ_2) |
((e_state==`E_SRC_RD) & ~inst_as[`ABS]) |
((e_state==`E_SRC_WR) & ~inst_as[`ABS]) |
((e_state==`E_EXEC) & inst_as[`DIR] & ~inst_type[`INST_JMP]);
wire src_reg_dest_sel = (e_state==`E_IRQ_1) |
(e_state==`E_IRQ_3) |
((e_state==`E_DST_RD) & (inst_so[`PUSH] | inst_so[`CALL])) |
((e_state==`E_SRC_AD) & (inst_so[`PUSH] | inst_so[`CALL]) & inst_as[`IDX]);
wire src_mdb_in_val_sel = ((e_state==`E_DST_RD) & inst_so[`RETI]) |
((e_state==`E_EXEC) & (inst_as[`INDIR] | inst_as[`INDIR_I] |
inst_as[`IDX] | inst_as[`SYMB] |
inst_as[`ABS]));
wire src_inst_dext_sel = ((e_state==`E_DST_RD) & ~(inst_so[`PUSH] | inst_so[`CALL])) |
((e_state==`E_DST_WR) & ~(inst_so[`PUSH] | inst_so[`CALL] |
inst_so[`RETI]));
wire src_inst_sext_sel = ((e_state==`E_EXEC) & (inst_type[`INST_JMP] | inst_as[`IMM] |
inst_as[`CONST] | inst_so[`RETI]));
assign op_src = src_reg_src_sel ? reg_src :
src_reg_dest_sel ? reg_dest :
src_mdb_in_val_sel ? mdb_in_val :
src_inst_dext_sel ? inst_dext :
src_inst_sext_sel ? inst_sext : 16'h0000;
//=============================================================================
// 4) DESTINATION OPERAND MUXING
//=============================================================================
// inst_ad[`DIR] : Register direct.
// inst_ad[`IDX] : Register indexed.
// inst_ad[`SYMB] : Symbolic (operand is in memory at address PC+x).
// inst_ad[`ABS] : Absolute (operand is in memory at address x).
wire dst_inst_sext_sel = ((e_state==`E_SRC_RD) & (inst_as[`IDX] | inst_as[`SYMB] |
inst_as[`ABS])) |
((e_state==`E_SRC_WR) & (inst_as[`IDX] | inst_as[`SYMB] |
inst_as[`ABS]));
wire dst_mdb_in_bw_sel = ((e_state==`E_DST_WR) & inst_so[`RETI]) |
((e_state==`E_EXEC) & ~(inst_ad[`DIR] | inst_type[`INST_JMP] |
inst_type[`INST_SO]) & ~inst_so[`RETI]);
wire dst_fffe_sel = (e_state==`E_IRQ_0) |
(e_state==`E_IRQ_1) |
(e_state==`E_IRQ_3) |
((e_state==`E_DST_RD) & (inst_so[`PUSH] | inst_so[`CALL]) & ~inst_so[`RETI]) |
((e_state==`E_SRC_AD) & (inst_so[`PUSH] | inst_so[`CALL]) & inst_as[`IDX]) |
((e_state==`E_SRC_RD) & (inst_so[`PUSH] | inst_so[`CALL]) & (inst_as[`INDIR] | inst_as[`INDIR_I]) & inst_src[1]);
wire dst_reg_dest_sel = ((e_state==`E_DST_RD) & ~(inst_so[`PUSH] | inst_so[`CALL] | inst_ad[`ABS] | inst_so[`RETI])) |
((e_state==`E_DST_WR) & ~inst_ad[`ABS]) |
((e_state==`E_EXEC) & (inst_ad[`DIR] | inst_type[`INST_JMP] |
inst_type[`INST_SO]) & ~inst_so[`RETI]);
assign op_dst = dbg_halt_st ? dbg_mem_dout :
dst_inst_sext_sel ? inst_sext :
dst_mdb_in_bw_sel ? mdb_in_bw :
dst_reg_dest_sel ? reg_dest :
dst_fffe_sel ? 16'hfffe : 16'h0000;
//=============================================================================
// 5) ALU
//=============================================================================
wire exec_cycle = (e_state==`E_EXEC);
omsp_alu alu_0 (
// OUTPUTs
.alu_out (alu_out), // ALU output value
.alu_out_add (alu_out_add), // ALU adder output value
.alu_stat (alu_stat), // ALU Status {V,N,Z,C}
.alu_stat_wr (alu_stat_wr), // ALU Status write {V,N,Z,C}
// INPUTs
.dbg_halt_st (dbg_halt_st), // Halt/Run status from CPU
.exec_cycle (exec_cycle), // Instruction execution cycle
.inst_alu (inst_alu), // ALU control signals
.inst_bw (inst_bw), // Decoded Inst: byte width
.inst_jmp (inst_jmp), // Decoded Inst: Conditional jump
.inst_so (inst_so), // Single-operand arithmetic
.op_dst (op_dst), // Destination operand
.op_src (op_src), // Source operand
.status (status) // R2 Status {V,N,Z,C}
);
//=============================================================================
// 6) MEMORY INTERFACE
//=============================================================================
// Detect memory read/write access
assign mb_en = ((e_state==`E_IRQ_1) & ~inst_irq_rst) |
((e_state==`E_IRQ_3) & ~inst_irq_rst) |
((e_state==`E_SRC_RD) & ~inst_as[`IMM]) |
(e_state==`E_SRC_WR) |
((e_state==`E_EXEC) & inst_so[`RETI]) |
((e_state==`E_DST_RD) & ~inst_type[`INST_SO]
& ~inst_mov) |
(e_state==`E_DST_WR);
wire [1:0] mb_wr_msk = inst_alu[`EXEC_NO_WR] ? 2'b00 :
~inst_bw ? 2'b11 :
alu_out_add[0] ? 2'b10 : 2'b01;
assign mb_wr = ({2{(e_state==`E_IRQ_1)}} |
{2{(e_state==`E_IRQ_3)}} |
{2{(e_state==`E_DST_WR)}} |
{2{(e_state==`E_SRC_WR)}}) & mb_wr_msk;
// Memory address bus
assign mab = alu_out_add[15:0];
// Memory data bus output
reg [15:0] mdb_out_nxt;
`ifdef CLOCK_GATING
wire mdb_out_nxt_en = (e_state==`E_DST_RD) |
(((e_state==`E_EXEC) & ~inst_so[`CALL]) |
(e_state==`E_IRQ_0) | (e_state==`E_IRQ_2));
wire mclk_mdb_out_nxt;
omsp_clock_gate clock_gate_mdb_out_nxt (.gclk(mclk_mdb_out_nxt),
.clk (mclk), .enable(mdb_out_nxt_en), .scan_enable(scan_enable));
`else
wire mclk_mdb_out_nxt = mclk;
`endif
always @(posedge mclk_mdb_out_nxt or posedge puc_rst)
if (puc_rst) mdb_out_nxt <= 16'h0000;
else if (e_state==`E_DST_RD) mdb_out_nxt <= pc_nxt;
`ifdef CLOCK_GATING
else mdb_out_nxt <= alu_out;
`else
else if ((e_state==`E_EXEC & ~inst_so[`CALL]) |
(e_state==`E_IRQ_0) | (e_state==`E_IRQ_2)) mdb_out_nxt <= alu_out;
`endif
assign mdb_out = inst_bw ? {2{mdb_out_nxt[7:0]}} : mdb_out_nxt;
// Format memory data bus input depending on BW
reg mab_lsb;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) mab_lsb <= 1'b0;
else if (mb_en) mab_lsb <= alu_out_add[0];
assign mdb_in_bw = ~inst_bw ? mdb_in :
mab_lsb ? {2{mdb_in[15:8]}} : mdb_in;
// Memory data bus input buffer (buffer after a source read)
reg mdb_in_buf_en;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) mdb_in_buf_en <= 1'b0;
else mdb_in_buf_en <= (e_state==`E_SRC_RD);
reg mdb_in_buf_valid;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) mdb_in_buf_valid <= 1'b0;
else if (e_state==`E_EXEC) mdb_in_buf_valid <= 1'b0;
else if (mdb_in_buf_en) mdb_in_buf_valid <= 1'b1;
reg [15:0] mdb_in_buf;
`ifdef CLOCK_GATING
wire mclk_mdb_in_buf;
omsp_clock_gate clock_gate_mdb_in_buf (.gclk(mclk_mdb_in_buf),
.clk (mclk), .enable(mdb_in_buf_en), .scan_enable(scan_enable));
`else
wire mclk_mdb_in_buf = mclk;
`endif
always @(posedge mclk_mdb_in_buf or posedge puc_rst)
if (puc_rst) mdb_in_buf <= 16'h0000;
`ifdef CLOCK_GATING
else mdb_in_buf <= mdb_in_bw;
`else
else if (mdb_in_buf_en) mdb_in_buf <= mdb_in_bw;
`endif
assign mdb_in_val = mdb_in_buf_valid ? mdb_in_buf : mdb_in_bw;
endmodule // omsp_execution_unit
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif