yosys/techlibs/quicklogic/ql_dsp.pmg

267 lines
7.5 KiB
Plaintext

// derived from passes/pmgen/xilinx_dsp.pmg
pattern ql_dsp_pack_regs
state <SigBit> clock reset
state <bool> clock_inferred
// Variables used for subpatterns
state <SigSpec> argQ argD
udata <SigSpec> dffD dffQ
udata <SigBit> dffclock dffreset
udata <Cell*> dff
match dsp
select dsp->type == \dspv2_32x18x64_cfg_ports
endmatch
code clock_inferred clock reset
clock_inferred = false;
clock = port(dsp, \clock_i);
reset = port(dsp, \reset_i);
endcode
// try packing on Z output
code argD clock_inferred clock reset
if (port(dsp, \output_select_i)[2] == RTLIL::S0 &&
(!dsp->hasPort(\z_cout_o) || nusers(port(dsp, \z_cout_o)) == 1) &&
nusers(port(dsp, \z_o)) == 2) {
argD = port(dsp, \z_o);
subpattern(out_dffe);
if (dff) {
clock_inferred = true;
clock = dffclock;
reset = dffreset;
log("%s: inferring Z path register from flip-flop %s\n", log_id(dsp), log_id(dff));
dsp->connections_[\output_select_i][2] = RTLIL::S1;
dsp->setPort(\z_o, dffQ);
}
}
endcode
// try packing on B input
code argQ clock_inferred clock reset
if ((!dsp->hasPort(\b_cout_o) || nusers(port(dsp, \b_cout_o)) == 1) &&
!param(dsp, \B_REG).as_bool() &&
nusers(port(dsp, \b_i)) == 2) {
argQ = port(dsp, \b_i);
subpattern(in_dffe);
if (dff) {
clock_inferred = true;
clock = dffclock;
reset = dffreset;
log("%s: inferring B path register from flip-flop %s\n", log_id(dsp), log_id(dff));
dsp->parameters[\B_REG] = true;
dsp->setPort(\b_i, dffD);
}
}
endcode
// try packing on A input
code argQ clock_inferred clock reset
if ((!dsp->hasPort(\a_cout_o) || nusers(port(dsp, \a_cout_o)) == 1) &&
!param(dsp, \A_REG).as_bool() &&
nusers(port(dsp, \a_i)) == 2) {
argQ = port(dsp, \a_i);
subpattern(in_dffe);
if (dff) {
clock_inferred = true;
clock = dffclock;
reset = dffreset;
log("%s: inferring A path register from flip-flop %s\n", log_id(dsp), log_id(dff));
dsp->parameters[\A_REG] = true;
dsp->setPort(\a_i, dffD);
}
}
endcode
code
if (clock_inferred) {
dsp->setPort(\clock_i, clock);
dsp->setPort(\reset_i, reset);
}
endcode
// #######################
// Subpattern for matching against input registers, based on knowledge of the
// 'Q' output.
subpattern in_dffe
arg argQ clock reset
code
dff = nullptr;
if (argQ.empty())
reject;
for (const auto &c : argQ.chunks()) {
if (!c.wire) {
// Abandon matches when constant Q bits are non-zero
// (doesn't match DSPv2 init/reset behavior)
if (!SigSpec(c).is_fully_zero())
reject;
continue;
}
// Abandon matches when 'Q' has the keep attribute set
if (c.wire->get_bool_attribute(\keep))
reject;
// Abandon matches when 'Q' has a non-zero init attribute set (not supported by DSPv2)
Const init = c.wire->attributes.at(\init, Const());
if (!init.empty())
for (auto b : init.extract(c.offset, c.width))
if (b != State::Sx && b != State::S0)
reject;
}
endcode
match ff
select ff->type.in($dff, $dffe, $adff, $adffe)
// DSPv2 does not support polarity inversion
select param(ff, \CLK_POLARITY).as_bool()
// Check that reset value, if present, is fully 0.
filter ff->type.in($dff, $dffe) || param(ff, \ARST_VALUE).is_fully_zero()
// Check reset polarity, if present
filter ff->type.in($dff, $dffe) || param(ff, \ARST_POLARITY).as_bool()
// Check that the LSB argQ bit is present (the rest follow by the nusers(...)=2 condition)
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \Q)[offset] === argQ[0]
define <SigBit> ff_reset (ff->type.in($dff, $dffe) ? RTLIL::S0 : port(ff, \ARST))
filter clock == RTLIL::Sx || port(ff, \CLK)[0] == clock
filter clock == RTLIL::Sx || ff_reset == reset
endmatch
code argD
dff = ff;
dffclock = port(ff, \CLK);
dffreset = (ff->type.in($dff, $dffe) ? RTLIL::S0 : port(ff, \ARST));
dffD = argQ;
dffD.replace(port(ff, \Q), port(ff, \D));
endcode
// #######################
// Subpattern for matching against output registers, based on knowledge of the
// 'D' input.
subpattern out_dffe
arg argD clock reset
code
dff = nullptr;
if (argD.empty())
reject;
for (const auto &c : argD.chunks()) {
// Abandon matches when 'D' has the keep attribute set
if (!c.wire || c.wire->get_bool_attribute(\keep))
reject;
}
endcode
match ff
select ff->type.in($dff, $dffe, $adff, $adffe)
// DSPv2 does not support polarity inversion
select param(ff, \CLK_POLARITY).as_bool()
// Check that reset value, if present, is fully 0.
filter ff->type.in($dff, $dffe) || param(ff, \ARST_VALUE).is_fully_zero()
// Check reset polarity, if present
filter ff->type.in($dff, $dffe) || param(ff, \ARST_POLARITY).as_bool()
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \D)[offset] === argD[0]
define <SigBit> ff_reset (ff->type.in($dff, $dffe) ? RTLIL::S0 : port(ff, \ARST))
filter clock == RTLIL::Sx || port(ff, \CLK)[0] == clock
filter clock == RTLIL::Sx || ff_reset == reset
endmatch
code
dff = ff;
dffclock = port(ff, \CLK);
dffreset = (ff->type.in($dff, $dffe) ? RTLIL::S0 : port(ff, \ARST));
dffQ = argD;
dffQ.replace(port(ff, \D), port(ff, \Q));
// Abandon matches when 'Q' has a defined init attribute set
// (not supported by DSPv2)
for (auto c : dffQ.chunks()) {
Const init = c.wire->attributes.at(\init, Const());
if (!init.empty())
for (auto b : init.extract(c.offset, c.width))
if (b != State::Sx)
reject;
}
{
// Rewire retired flip-flop slice
SigSpec D = port(ff, \D);
SigSpec Q = port(ff, \Q);
D.replace(argD, module->addWire(NEW_ID, argD.size()), &Q);
D.replace(argD, Const(RTLIL::Sx, argD.size()));
ff->setPort(\D, D);
ff->setPort(\Q, Q);
}
endcode
pattern ql_dsp_cascade
match dsp1
select dsp1->type == \dspv2_32x18x64_cfg_ports
filter !dsp1->hasPort(\z_cout_o) || nusers(port(dsp1, \z_cout_o)) == 1
endmatch
match dsp2
select dsp2->type == \dspv2_32x18x64_cfg_ports
filter port(dsp2, \output_select_i).is_fully_const()
define <int> output_sel port(dsp2, \output_select_i).as_int()
filter output_sel == 3 || (output_sel == 4 && !param(dsp2, \M_REG).as_bool())
// expect `dsp2` and `add` for exclusive users
filter nusers(port(dsp2, \z_o)) == 2
filter !dsp2->hasPort(\z_cout_o) || nusers(port(dsp2, \z_cout_o)) == 1
endmatch
match add
select add->type.in($add, $sub)
define <int> width param(add, \Y_WIDTH).as_int()
index <SigBit> port(add, \A)[0] === port(dsp1, \z_o)[0]
filter port(add, \A).size() >= width && port(dsp1, \z_o).size() >= width
filter port(add, \A).extract(0, width) == port(dsp1, \z_o).extract(0, width)
index <SigBit> port(add, \B)[0] === port(dsp2, \z_o)[0]
filter port(add, \B).size() >= width && port(dsp2, \z_o).size() >= width
filter port(add, \B).extract(0, width) == port(dsp2, \z_o).extract(0, width)
endmatch
code
endcode
code
const int z_width = 50;
log("%s: inferring post-adder from %s (type %s)\n", log_id(dsp2), log_id(add), log_id(add->type));
// link up z_cout_o of dsp1 to z_cin_i of dsp2
Wire *link = module->addWire(NEW_ID, z_width);
dsp1->setPort(\z_cout_o, link);
dsp2->setPort(\z_cin_i, link);
// configure the path inside dsp2
if (port(dsp2, \output_select_i).as_int() == 4) {
log("%s: inferring M register\n", log_id(dsp2));
dsp2->setParam(\M_REG, Const(1, 1));
}
dsp2->setParam(\SUBTRACT, Const(add->type == $sub, 1));
dsp2->setPort(\feedback_i, Const(3, 3));
dsp2->setPort(\output_select_i, Const(3, 3));
dsp2->setParam(\ROUND, Const(0, 3));
dsp2->setParam(\SHIFT_REG, Const(0, 6));
dsp2->setParam(\SATURATE, Const(0, 1));
dsp2->setPort(\z_o, {port(dsp2, \z_o).extract_end(port(add, \Y).size()), port(add, \Y)});
module->remove(add);
endcode