yosys/tests/cxxrtl/test_value_fuzz.cc

358 lines
7.6 KiB
C++

#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <exception>
#include <limits>
#include <random>
#include <type_traits>
#include "cxxrtl/cxxrtl.h"
template<typename T>
T rand_int(T min = std::numeric_limits<T>::min(), T max = std::numeric_limits<T>::max())
{
static_assert(std::is_integral<T>::value, "T must be an integral type.");
static_assert(!std::is_same<T, signed char>::value && !std::is_same<T, unsigned char>::value,
"Using char with uniform_int_distribution is undefined behavior.");
static std::mt19937 generator = [] {
std::random_device rd;
std::mt19937 mt{rd()};
return mt;
}();
std::uniform_int_distribution<T> dist(min, max);
return dist(generator);
}
int64_t sext(size_t bits, uint64_t value)
{
return (int64_t)(value << (64 - bits)) >> (64 - bits);
}
struct BinaryOperationBase
{
void tweak_input(uint64_t &a, uint64_t &b) {}
};
template<size_t Bits, typename Operation>
void test_binary_operation_for_bitsize(Operation &op)
{
constexpr int iteration_count = 10000000;
constexpr uint64_t mask = std::numeric_limits<uint64_t>::max() >> (64 - Bits);
using chunk_type = typename cxxrtl::value<Bits>::chunk::type;
constexpr size_t chunk_bits = cxxrtl::value<Bits>::chunk::bits;
for (int iteration = 0; iteration < iteration_count; iteration++) {
uint64_t ia = rand_int<uint64_t>() >> (64 - Bits);
uint64_t ib = rand_int<uint64_t>() >> (64 - Bits);
op.tweak_input(ia, ib);
cxxrtl::value<Bits> va, vb;
for (size_t i = 0; i * chunk_bits < Bits; i++) {
va.data[i] = (chunk_type)(ia >> (i * chunk_bits));
vb.data[i] = (chunk_type)(ib >> (i * chunk_bits));
}
uint64_t iresult = op.reference_impl(Bits, ia, ib) & mask;
cxxrtl::value<Bits> vresult = op.template testing_impl<Bits>(va, vb);
for (size_t i = 0; i * chunk_bits < Bits; i++) {
if ((chunk_type)(iresult >> (i * chunk_bits)) != vresult.data[i]) {
std::printf("Test failure:\n");
std::printf("Bits: %zu\n", Bits);
std::printf("a: %016" PRIx64 "\n", ia);
std::printf("b: %016" PRIx64 "\n", ib);
std::printf("iresult: %016" PRIx64 "\n", iresult);
std::printf("vresult: %016" PRIx64 "\n", vresult.template get<uint64_t>());
std::terminate();
}
}
}
std::printf("Test passed @ Bits = %zu.\n", Bits);
}
template<typename Operation>
void test_binary_operation(Operation &op)
{
// Test at a variety of bitwidths
test_binary_operation_for_bitsize<8>(op);
test_binary_operation_for_bitsize<32>(op);
test_binary_operation_for_bitsize<42>(op);
test_binary_operation_for_bitsize<63>(op);
test_binary_operation_for_bitsize<64>(op);
}
template<typename Operation>
struct UnaryOperationWrapper : BinaryOperationBase
{
Operation &op;
UnaryOperationWrapper(Operation &op) : op(op) {}
uint64_t reference_impl(size_t bits, uint64_t a, uint64_t b)
{
return op.reference_impl(bits, a);
}
template<size_t Bits>
cxxrtl::value<Bits> testing_impl(cxxrtl::value<Bits> a, cxxrtl::value<Bits> b)
{
return op.template testing_impl<Bits>(a);
}
};
template<typename Operation>
void test_unary_operation(Operation &op)
{
UnaryOperationWrapper<Operation> wrapped(op);
test_binary_operation(wrapped);
}
struct ShlTest : BinaryOperationBase
{
ShlTest()
{
std::printf("Randomized tests for value::shl:\n");
test_binary_operation(*this);
}
uint64_t reference_impl(size_t bits, uint64_t a, uint64_t b)
{
return b >= 64 ? 0 : a << b;
}
template<size_t Bits>
cxxrtl::value<Bits> testing_impl(cxxrtl::value<Bits> a, cxxrtl::value<Bits> b)
{
return a.shl(b);
}
void tweak_input(uint64_t &, uint64_t &b)
{
b &= 0x7f;
}
} shl;
struct ShrTest : BinaryOperationBase
{
ShrTest()
{
std::printf("Randomized tests for value::shr:\n");
test_binary_operation(*this);
}
uint64_t reference_impl(size_t bits, uint64_t a, uint64_t b)
{
return b >= 64 ? 0 : a >> b;
}
template<size_t Bits>
cxxrtl::value<Bits> testing_impl(cxxrtl::value<Bits> a, cxxrtl::value<Bits> b)
{
return a.shr(b);
}
void tweak_input(uint64_t &, uint64_t &b)
{
b &= 0x7f;
}
} shr;
struct SshrTest : BinaryOperationBase
{
SshrTest()
{
std::printf("Randomized tests for value::sshr:\n");
test_binary_operation(*this);
}
uint64_t reference_impl(size_t bits, uint64_t a, uint64_t b)
{
int64_t sa = (int64_t)(a << (64 - bits));
return sa >> (b >= bits ? 63 : (b + 64 - bits));
}
template<size_t Bits>
cxxrtl::value<Bits> testing_impl(cxxrtl::value<Bits> a, cxxrtl::value<Bits> b)
{
return a.sshr(b);
}
void tweak_input(uint64_t &, uint64_t &b)
{
b &= 0x7f;
}
} sshr;
struct AddTest : BinaryOperationBase
{
AddTest()
{
std::printf("Randomized tests for value::add:\n");
test_binary_operation(*this);
}
uint64_t reference_impl(size_t bits, uint64_t a, uint64_t b)
{
return a + b;
}
template<size_t Bits>
cxxrtl::value<Bits> testing_impl(cxxrtl::value<Bits> a, cxxrtl::value<Bits> b)
{
return a.add(b);
}
} add;
struct SubTest : BinaryOperationBase
{
SubTest()
{
std::printf("Randomized tests for value::sub:\n");
test_binary_operation(*this);
}
uint64_t reference_impl(size_t bits, uint64_t a, uint64_t b)
{
return a - b;
}
template<size_t Bits>
cxxrtl::value<Bits> testing_impl(cxxrtl::value<Bits> a, cxxrtl::value<Bits> b)
{
return a.sub(b);
}
} sub;
struct CtlzTest
{
CtlzTest()
{
std::printf("Randomized tests for value::ctlz:\n");
test_unary_operation(*this);
}
uint64_t reference_impl(size_t bits, uint64_t a)
{
if (a == 0)
return bits;
return __builtin_clzl(a) - (64 - bits);
}
template<size_t Bits>
cxxrtl::value<Bits> testing_impl(cxxrtl::value<Bits> a)
{
size_t result = a.ctlz();
return cxxrtl::value<Bits>((cxxrtl::chunk_t)result);
}
} ctlz;
struct UdivTest : BinaryOperationBase
{
UdivTest()
{
std::printf("Randomized tests for value::udivmod (div):\n");
test_binary_operation(*this);
}
uint64_t reference_impl(size_t bits, uint64_t a, uint64_t b)
{
return a / b;
}
template<size_t Bits>
cxxrtl::value<Bits> testing_impl(cxxrtl::value<Bits> a, cxxrtl::value<Bits> b)
{
return std::get<0>(a.udivmod(b));
}
void tweak_input(uint64_t &, uint64_t &b)
{
if (b == 0) b = 1; // Avoid divide by zero
}
} udiv;
struct UmodTest : BinaryOperationBase
{
UmodTest()
{
std::printf("Randomized tests for value::udivmod (mod):\n");
test_binary_operation(*this);
}
uint64_t reference_impl(size_t bits, uint64_t a, uint64_t b)
{
return a % b;
}
template<size_t Bits>
cxxrtl::value<Bits> testing_impl(cxxrtl::value<Bits> a, cxxrtl::value<Bits> b)
{
return std::get<1>(a.udivmod(b));
}
void tweak_input(uint64_t &, uint64_t &b)
{
if (b == 0) b = 1; // Avoid divide by zero
}
} umod;
struct SdivTest : BinaryOperationBase
{
SdivTest()
{
std::printf("Randomized tests for value::sdivmod (div):\n");
test_binary_operation(*this);
}
uint64_t reference_impl(size_t bits, uint64_t a, uint64_t b)
{
return (uint64_t)(sext(bits, a) / sext(bits, b));
}
template<size_t Bits>
cxxrtl::value<Bits> testing_impl(cxxrtl::value<Bits> a, cxxrtl::value<Bits> b)
{
return std::get<0>(a.sdivmod(b));
}
void tweak_input(uint64_t &, uint64_t &b)
{
if (b == 0) b = 1; // Avoid divide by zero
}
} sdiv;
struct SmodTest : BinaryOperationBase
{
SmodTest()
{
std::printf("Randomized tests for value::sdivmod (mod):\n");
test_binary_operation(*this);
}
uint64_t reference_impl(size_t bits, uint64_t a, uint64_t b)
{
return (uint64_t)(sext(bits, a) % sext(bits, b));
}
template<size_t Bits>
cxxrtl::value<Bits> testing_impl(cxxrtl::value<Bits> a, cxxrtl::value<Bits> b)
{
return std::get<1>(a.sdivmod(b));
}
void tweak_input(uint64_t &, uint64_t &b)
{
if (b == 0) b = 1; // Avoid divide by zero
}
} smod;
int main()
{
}