mirror of https://github.com/YosysHQ/yosys.git
362 lines
16 KiB
Verilog
362 lines
16 KiB
Verilog
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
|
|
* 2019 Eddie Hung <eddie@fpgeh.com>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
module \$__SHREG_ (input C, input D, input E, output Q);
|
|
parameter DEPTH = 0;
|
|
parameter [DEPTH-1:0] INIT = 0;
|
|
parameter CLKPOL = 1;
|
|
parameter ENPOL = 2;
|
|
|
|
\$__XILINX_SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(DEPTH-1), .E(E), .Q(Q));
|
|
endmodule
|
|
|
|
module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, output SO);
|
|
parameter DEPTH = 0;
|
|
parameter [DEPTH-1:0] INIT = 0;
|
|
parameter CLKPOL = 1;
|
|
parameter ENPOL = 2;
|
|
|
|
// shregmap's INIT parameter shifts out LSB first;
|
|
// however Xilinx expects MSB first
|
|
function [DEPTH-1:0] brev;
|
|
input [DEPTH-1:0] din;
|
|
integer i;
|
|
begin
|
|
for (i = 0; i < DEPTH; i=i+1)
|
|
brev[i] = din[DEPTH-1-i];
|
|
end
|
|
endfunction
|
|
localparam [DEPTH-1:0] INIT_R = brev(INIT);
|
|
|
|
parameter _TECHMAP_CONSTMSK_L_ = 0;
|
|
|
|
wire CE;
|
|
generate
|
|
if (ENPOL == 0)
|
|
assign CE = ~E;
|
|
else if (ENPOL == 1)
|
|
assign CE = E;
|
|
else
|
|
assign CE = 1'b1;
|
|
if (DEPTH == 1) begin
|
|
if (CLKPOL)
|
|
FDRE #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
|
|
else
|
|
FDRE_1 #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
|
|
end else
|
|
if (DEPTH <= 16) begin
|
|
SRL16E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(L[0]), .A1(L[1]), .A2(L[2]), .A3(L[3]), .CE(CE), .CLK(C), .D(D), .Q(Q));
|
|
end else
|
|
if (DEPTH > 17 && DEPTH <= 32) begin
|
|
SRLC32E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(Q));
|
|
end else
|
|
if (DEPTH > 33 && DEPTH <= 64) begin
|
|
wire T0, T1, T2;
|
|
SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
|
|
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-32-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L), .E(E), .Q(T2));
|
|
if (&_TECHMAP_CONSTMSK_L_)
|
|
assign Q = T2;
|
|
else
|
|
MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(L[5]));
|
|
end else
|
|
if (DEPTH > 65 && DEPTH <= 96) begin
|
|
wire T0, T1, T2, T3, T4, T5, T6;
|
|
SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
|
|
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
|
|
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4));
|
|
if (&_TECHMAP_CONSTMSK_L_)
|
|
assign Q = T4;
|
|
else
|
|
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(1'bx), .S0(L[5]), .S1(L[6]), .O(Q));
|
|
end else
|
|
if (DEPTH > 97 && DEPTH < 128) begin
|
|
wire T0, T1, T2, T3, T4, T5, T6, T7, T8;
|
|
SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
|
|
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
|
|
SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
|
|
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6));
|
|
if (&_TECHMAP_CONSTMSK_L_)
|
|
assign Q = T6;
|
|
else
|
|
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q));
|
|
end
|
|
else if (DEPTH == 128) begin
|
|
wire T0, T1, T2, T3, T4, T5, T6;
|
|
SRLC32E #(.INIT(INIT_R[ 32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
|
|
SRLC32E #(.INIT(INIT_R[ 64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
|
|
SRLC32E #(.INIT(INIT_R[ 96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
|
|
SRLC32E #(.INIT(INIT_R[128-1:96]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_3 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T5), .Q(T6), .Q31(SO));
|
|
if (&_TECHMAP_CONSTMSK_L_)
|
|
assign Q = T6;
|
|
else
|
|
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q));
|
|
end
|
|
// For fixed length, if just 1 over a convenient value, decompose
|
|
else if (DEPTH <= 129 && &_TECHMAP_CONSTMSK_L_) begin
|
|
wire T;
|
|
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-1), .INIT(INIT[DEPTH-1:1]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl (.C(C), .D(D), .L({32{1'b1}}), .E(E), .Q(T));
|
|
\$__XILINX_SHREG_ #(.DEPTH(1), .INIT(INIT[0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_last (.C(C), .D(T), .L(L), .E(E), .Q(Q));
|
|
end
|
|
// For variable length, if just 1 over a convenient value, then bump up one more
|
|
else if (DEPTH < 129 && ~&_TECHMAP_CONSTMSK_L_)
|
|
\$__XILINX_SHREG_ #(.DEPTH(DEPTH+1), .INIT({INIT,1'b0}), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q));
|
|
else begin
|
|
localparam depth0 = 128;
|
|
localparam num_srl128 = DEPTH / depth0;
|
|
localparam depthN = DEPTH % depth0;
|
|
wire [num_srl128 + (depthN > 0 ? 1 : 0) - 1:0] T;
|
|
wire [num_srl128 + (depthN > 0 ? 1 : 0) :0] S;
|
|
assign S[0] = D;
|
|
genvar i;
|
|
for (i = 0; i < num_srl128; i++)
|
|
\$__XILINX_SHREG_ #(.DEPTH(depth0), .INIT(INIT[DEPTH-1-i*depth0-:depth0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl (.C(C), .D(S[i]), .L(L[$clog2(depth0)-1:0]), .E(E), .Q(T[i]), .SO(S[i+1]));
|
|
|
|
if (depthN > 0)
|
|
\$__XILINX_SHREG_ #(.DEPTH(depthN), .INIT(INIT[depthN-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_last (.C(C), .D(S[num_srl128]), .L(L[$clog2(depth0)-1:0]), .E(E), .Q(T[num_srl128]));
|
|
|
|
if (&_TECHMAP_CONSTMSK_L_)
|
|
assign Q = T[num_srl128 + (depthN > 0 ? 1 : 0) - 1];
|
|
else
|
|
assign Q = T[L[DEPTH-1:$clog2(depth0)]];
|
|
end
|
|
endgenerate
|
|
endmodule
|
|
|
|
`ifdef MIN_MUX_INPUTS
|
|
module \$__XILINX_SHIFTX (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
(* force_downto *)
|
|
input [A_WIDTH-1:0] A;
|
|
(* force_downto *)
|
|
input [B_WIDTH-1:0] B;
|
|
(* force_downto *)
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
parameter [A_WIDTH-1:0] _TECHMAP_CONSTMSK_A_ = 0;
|
|
parameter [A_WIDTH-1:0] _TECHMAP_CONSTVAL_A_ = 0;
|
|
parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0;
|
|
parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0;
|
|
|
|
function integer A_WIDTH_trimmed;
|
|
input integer start;
|
|
begin
|
|
A_WIDTH_trimmed = start;
|
|
while (A_WIDTH_trimmed > 0 && _TECHMAP_CONSTMSK_A_[A_WIDTH_trimmed-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH_trimmed-1] === 1'bx)
|
|
A_WIDTH_trimmed = A_WIDTH_trimmed - 1;
|
|
end
|
|
endfunction
|
|
|
|
generate
|
|
genvar i, j;
|
|
// Bit-blast
|
|
if (Y_WIDTH > 1) begin
|
|
for (i = 0; i < Y_WIDTH; i++)
|
|
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH-Y_WIDTH+1), .B_WIDTH(B_WIDTH), .Y_WIDTH(1'd1)) bitblast (.A(A[A_WIDTH-Y_WIDTH+i:i]), .B(B), .Y(Y[i]));
|
|
end
|
|
// If the LSB of B is constant zero (and Y_WIDTH is 1) then
|
|
// we can optimise by removing every other entry from A
|
|
// and popping the constant zero from B
|
|
else if (_TECHMAP_CONSTMSK_B_[0] && !_TECHMAP_CONSTVAL_B_[0]) begin
|
|
wire [(A_WIDTH+1)/2-1:0] A_i;
|
|
for (i = 0; i < (A_WIDTH+1)/2; i++)
|
|
assign A_i[i] = A[i*2];
|
|
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH((A_WIDTH+1'd1)/2'd2), .B_WIDTH(B_WIDTH-1'd1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_i), .B(B[B_WIDTH-1:1]), .Y(Y));
|
|
end
|
|
// Trim off any leading 1'bx -es in A
|
|
else if (_TECHMAP_CONSTMSK_A_[A_WIDTH-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH-1] === 1'bx) begin
|
|
localparam A_WIDTH_new = A_WIDTH_trimmed(A_WIDTH-1);
|
|
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH_new), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A[A_WIDTH_new-1:0]), .B(B), .Y(Y));
|
|
end
|
|
else if (A_WIDTH < `MIN_MUX_INPUTS) begin
|
|
wire _TECHMAP_FAIL_ = 1;
|
|
end
|
|
else if (A_WIDTH == 2) begin
|
|
MUXF7 fpga_hard_mux (.I0(A[0]), .I1(A[1]), .S(B[0]), .O(Y));
|
|
end
|
|
else if (A_WIDTH <= 4) begin
|
|
wire [4-1:0] Ax;
|
|
if (A_WIDTH == 4)
|
|
assign Ax = A;
|
|
else
|
|
// Rather than extend with 1'bx which gets flattened to 1'b0
|
|
// causing the "don't care" status to get lost, extend with
|
|
// the same driver of F7B.I0 so that we can optimise F7B away
|
|
// later
|
|
assign Ax = {A[1], A};
|
|
\$__XILINX_MUXF78 fpga_hard_mux (.I0(Ax[0]), .I1(Ax[2]), .I2(Ax[1]), .I3(Ax[3]), .S0(B[1]), .S1(B[0]), .O(Y));
|
|
end
|
|
// Note that the following decompositions are 'backwards' in that
|
|
// the LSBs are placed on the hard resources, and the soft resources
|
|
// are used for MSBs.
|
|
// This has the effect of more effectively utilising the hard mux;
|
|
// take for example a 5:1 multiplexer, currently this would map as:
|
|
//
|
|
// A[0] \___ __ A[0] \__ __
|
|
// A[4] / \| \ whereas the more A[1] / \| \
|
|
// A[1] _____| | obvious mapping A[2] \___| |
|
|
// A[2] _____| |-- of MSBs to hard A[3] / | |__
|
|
// A[3]______| | resources would A[4] ____| |
|
|
// |__/ lead to: 1'bx ____| |
|
|
// || |__/
|
|
// || ||
|
|
// B[1:0] B[1:2]
|
|
//
|
|
// Expectation would be that the 'forward' mapping (right) is more
|
|
// area efficient (consider a 9:1 multiplexer using 2x4:1 multiplexers
|
|
// on its I0 and I1 inputs, and A[8] and 1'bx on its I2 and I3 inputs)
|
|
// but that the 'backwards' mapping (left) is more delay efficient
|
|
// since smaller LUTs are faster than wider ones.
|
|
else if (A_WIDTH <= 8) begin
|
|
wire [8-1:0] Ax = {{{8-A_WIDTH}{1'bx}}, A};
|
|
wire T0 = B[2] ? Ax[4] : Ax[0];
|
|
wire T1 = B[2] ? Ax[5] : Ax[1];
|
|
wire T2 = B[2] ? Ax[6] : Ax[2];
|
|
wire T3 = B[2] ? Ax[7] : Ax[3];
|
|
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y));
|
|
end
|
|
else if (A_WIDTH <= 16) begin
|
|
wire [16-1:0] Ax = {{{16-A_WIDTH}{1'bx}}, A};
|
|
wire T0 = B[2] ? B[3] ? Ax[12] : Ax[4]
|
|
: B[3] ? Ax[ 8] : Ax[0];
|
|
wire T1 = B[2] ? B[3] ? Ax[13] : Ax[5]
|
|
: B[3] ? Ax[ 9] : Ax[1];
|
|
wire T2 = B[2] ? B[3] ? Ax[14] : Ax[6]
|
|
: B[3] ? Ax[10] : Ax[2];
|
|
wire T3 = B[2] ? B[3] ? Ax[15] : Ax[7]
|
|
: B[3] ? Ax[11] : Ax[3];
|
|
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y));
|
|
end
|
|
else begin
|
|
localparam num_mux16 = (A_WIDTH+15) / 16;
|
|
localparam clog2_num_mux16 = $clog2(num_mux16);
|
|
wire [num_mux16-1:0] T;
|
|
wire [num_mux16*16-1:0] Ax = {{(num_mux16*16-A_WIDTH){1'bx}}, A};
|
|
for (i = 0; i < num_mux16; i++)
|
|
\$__XILINX_SHIFTX #(
|
|
.A_SIGNED(A_SIGNED),
|
|
.B_SIGNED(B_SIGNED),
|
|
.A_WIDTH(16),
|
|
.B_WIDTH(4),
|
|
.Y_WIDTH(Y_WIDTH)
|
|
) fpga_mux (
|
|
.A(Ax[i*16+:16]),
|
|
.B(B[3:0]),
|
|
.Y(T[i])
|
|
);
|
|
\$__XILINX_SHIFTX #(
|
|
.A_SIGNED(A_SIGNED),
|
|
.B_SIGNED(B_SIGNED),
|
|
.A_WIDTH(num_mux16),
|
|
.B_WIDTH(clog2_num_mux16),
|
|
.Y_WIDTH(Y_WIDTH)
|
|
) _TECHMAP_REPLACE_ (
|
|
.A(T),
|
|
.B(B[B_WIDTH-1-:clog2_num_mux16]),
|
|
.Y(Y));
|
|
end
|
|
endgenerate
|
|
endmodule
|
|
|
|
(* techmap_celltype = "$__XILINX_SHIFTX" *)
|
|
module _90__XILINX_SHIFTX (A, B, Y);
|
|
parameter A_SIGNED = 0;
|
|
parameter B_SIGNED = 0;
|
|
parameter A_WIDTH = 1;
|
|
parameter B_WIDTH = 1;
|
|
parameter Y_WIDTH = 1;
|
|
|
|
(* force_downto *)
|
|
input [A_WIDTH-1:0] A;
|
|
(* force_downto *)
|
|
input [B_WIDTH-1:0] B;
|
|
(* force_downto *)
|
|
output [Y_WIDTH-1:0] Y;
|
|
|
|
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A), .B(B), .Y(Y));
|
|
endmodule
|
|
|
|
module \$_MUX_ (A, B, S, Y);
|
|
input A, B, S;
|
|
output Y;
|
|
generate
|
|
if (`MIN_MUX_INPUTS == 2)
|
|
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(2), .B_WIDTH(1), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({B,A}), .B(S), .Y(Y));
|
|
else
|
|
wire _TECHMAP_FAIL_ = 1;
|
|
endgenerate
|
|
endmodule
|
|
|
|
module \$_MUX4_ (A, B, C, D, S, T, Y);
|
|
input A, B, C, D, S, T;
|
|
output Y;
|
|
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(4), .B_WIDTH(2), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({D,C,B,A}), .B({T,S}), .Y(Y));
|
|
endmodule
|
|
|
|
module \$_MUX8_ (A, B, C, D, E, F, G, H, S, T, U, Y);
|
|
input A, B, C, D, E, F, G, H, S, T, U;
|
|
output Y;
|
|
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(8), .B_WIDTH(3), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({H,G,F,E,D,C,B,A}), .B({U,T,S}), .Y(Y));
|
|
endmodule
|
|
|
|
module \$_MUX16_ (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V, Y);
|
|
input A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V;
|
|
output Y;
|
|
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(16), .B_WIDTH(4), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A}), .B({V,U,T,S}), .Y(Y));
|
|
endmodule
|
|
`endif
|
|
|
|
module \$__XILINX_MUXF78 (O, I0, I1, I2, I3, S0, S1);
|
|
output O;
|
|
input I0, I1, I2, I3, S0, S1;
|
|
wire T0, T1;
|
|
parameter _TECHMAP_BITS_CONNMAP_ = 0;
|
|
parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I0_ = 0;
|
|
parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I1_ = 0;
|
|
parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I2_ = 0;
|
|
parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I3_ = 0;
|
|
parameter _TECHMAP_CONSTMSK_S0_ = 0;
|
|
parameter _TECHMAP_CONSTVAL_S0_ = 0;
|
|
parameter _TECHMAP_CONSTMSK_S1_ = 0;
|
|
parameter _TECHMAP_CONSTVAL_S1_ = 0;
|
|
if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1)
|
|
assign T0 = I1;
|
|
else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_)
|
|
assign T0 = I0;
|
|
else
|
|
MUXF7 mux7a (.I0(I0), .I1(I1), .S(S0), .O(T0));
|
|
if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1)
|
|
assign T1 = I3;
|
|
else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_)
|
|
assign T1 = I2;
|
|
else
|
|
MUXF7 mux7b (.I0(I2), .I1(I3), .S(S0), .O(T1));
|
|
if (_TECHMAP_CONSTMSK_S1_ && _TECHMAP_CONSTVAL_S1_ === 1'b1)
|
|
assign O = T1;
|
|
else if (_TECHMAP_CONSTMSK_S1_ || (_TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_ && _TECHMAP_CONNMAP_I1_ === _TECHMAP_CONNMAP_I2_ && _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_))
|
|
assign O = T0;
|
|
else
|
|
MUXF8 mux8 (.I0(T0), .I1(T1), .S(S1), .O(O));
|
|
endmodule
|