yosys/techlibs/coolrunner2/coolrunner2_fixup.cc

521 lines
15 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2020 R. Ou <rqou@robertou.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
RTLIL::Wire *makexorbuffer(RTLIL::Module *module, SigBit inwire, const char *cellname)
{
RTLIL::Wire *outwire = nullptr;
if (inwire == SigBit(true))
{
// Constant 1
outwire = module->addWire(
module->uniquify(stringf("$xc2fix$%s_BUF1_XOR_OUT", cellname)));
auto xor_cell = module->addCell(
module->uniquify(stringf("$xc2fix$%s_BUF1_XOR", cellname)),
ID(MACROCELL_XOR));
xor_cell->setParam(ID(INVERT_OUT), true);
xor_cell->setPort(ID(OUT), outwire);
}
else if (inwire == SigBit(false))
{
// Constant 0
outwire = module->addWire(
module->uniquify(stringf("$xc2fix$%s_BUF0_XOR_OUT", cellname)));
auto xor_cell = module->addCell(
module->uniquify(stringf("$xc2fix$%s_BUF0_XOR", cellname)),
ID(MACROCELL_XOR));
xor_cell->setParam(ID(INVERT_OUT), false);
xor_cell->setPort(ID(OUT), outwire);
}
else if (inwire == SigBit(RTLIL::State::Sx))
{
// x; treat as 0
log_warning("While buffering, changing x to 0 into cell %s\n", cellname);
outwire = module->addWire(
module->uniquify(stringf("$xc2fix$%s_BUF0_XOR_OUT", cellname)));
auto xor_cell = module->addCell(
module->uniquify(stringf("$xc2fix$%s_BUF0_XOR", cellname)),
ID(MACROCELL_XOR));
xor_cell->setParam(ID(INVERT_OUT), false);
xor_cell->setPort(ID(OUT), outwire);
}
else
{
auto inwire_name = inwire.wire->name.c_str();
outwire = module->addWire(
module->uniquify(stringf("$xc2fix$%s_BUF_XOR_OUT", inwire_name)));
auto and_to_xor_wire = module->addWire(
module->uniquify(stringf("$xc2fix$%s_BUF_AND_OUT", inwire_name)));
auto and_cell = module->addCell(
module->uniquify(stringf("$xc2fix$%s_BUF_AND", inwire_name)),
ID(ANDTERM));
and_cell->setParam(ID(TRUE_INP), 1);
and_cell->setParam(ID(COMP_INP), 0);
and_cell->setPort(ID(OUT), and_to_xor_wire);
and_cell->setPort(ID(IN), inwire);
and_cell->setPort(ID(IN_B), SigSpec());
auto xor_cell = module->addCell(
module->uniquify(stringf("$xc2fix$%s_BUF_XOR", inwire_name)),
ID(MACROCELL_XOR));
xor_cell->setParam(ID(INVERT_OUT), false);
xor_cell->setPort(ID(IN_PTC), and_to_xor_wire);
xor_cell->setPort(ID(OUT), outwire);
}
return outwire;
}
RTLIL::Wire *makeptermbuffer(RTLIL::Module *module, SigBit inwire)
{
auto inwire_name = inwire.wire->name.c_str();
auto outwire = module->addWire(
module->uniquify(stringf("$xc2fix$%s_BUF_AND_OUT", inwire_name)));
auto and_cell = module->addCell(
module->uniquify(stringf("$xc2fix$%s_BUF_AND", inwire_name)),
ID(ANDTERM));
and_cell->setParam(ID(TRUE_INP), 1);
and_cell->setParam(ID(COMP_INP), 0);
and_cell->setPort(ID(OUT), outwire);
and_cell->setPort(ID(IN), inwire);
and_cell->setPort(ID(IN_B), SigSpec());
return outwire;
}
struct Coolrunner2FixupPass : public Pass {
Coolrunner2FixupPass() : Pass("coolrunner2_fixup", "insert necessary buffer cells for CoolRunner-II architecture") { }
void help() override
{
log("\n");
log(" coolrunner2_fixup [options] [selection]\n");
log("\n");
log("Insert necessary buffer cells for CoolRunner-II architecture.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing COOLRUNNER2_FIXUP pass (insert necessary buffer cells for CoolRunner-II architecture).\n");
extra_args(args, 1, design);
for (auto module : design->selected_modules())
{
SigMap sigmap(module);
// Find all the FF outputs
pool<SigBit> sig_fed_by_ff;
for (auto cell : module->selected_cells())
{
if (cell->type.in(ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N),
ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
{
auto output = sigmap(cell->getPort(ID::Q)[0]);
sig_fed_by_ff.insert(output);
}
}
// Find all the XOR outputs
pool<SigBit> sig_fed_by_xor;
for (auto cell : module->selected_cells())
{
if (cell->type == ID(MACROCELL_XOR))
{
auto output = sigmap(cell->getPort(ID(OUT))[0]);
sig_fed_by_xor.insert(output);
}
}
// Find all the input/inout outputs
pool<SigBit> sig_fed_by_io;
for (auto cell : module->selected_cells())
{
if (cell->type.in(ID(IBUF), ID(IOBUFE)))
{
if (cell->hasPort(ID::O)) {
auto output = sigmap(cell->getPort(ID::O)[0]);
sig_fed_by_io.insert(output);
}
}
}
// Find all the pterm outputs
pool<SigBit> sig_fed_by_pterm;
for (auto cell : module->selected_cells())
{
if (cell->type == ID(ANDTERM))
{
auto output = sigmap(cell->getPort(ID(OUT))[0]);
sig_fed_by_pterm.insert(output);
}
}
// Find all the bufg outputs
pool<SigBit> sig_fed_by_bufg;
for (auto cell : module->selected_cells())
{
if (cell->type == ID(BUFG))
{
auto output = sigmap(cell->getPort(ID::O)[0]);
sig_fed_by_bufg.insert(output);
}
}
// Find all the bufgsr outputs
pool<SigBit> sig_fed_by_bufgsr;
for (auto cell : module->selected_cells())
{
if (cell->type == ID(BUFGSR))
{
auto output = sigmap(cell->getPort(ID::O)[0]);
sig_fed_by_bufgsr.insert(output);
}
}
// Find all the bufgts outputs
pool<SigBit> sig_fed_by_bufgts;
for (auto cell : module->selected_cells())
{
if (cell->type == ID(BUFGTS))
{
auto output = sigmap(cell->getPort(ID::O)[0]);
sig_fed_by_bufgts.insert(output);
}
}
// This is used to fix the input -> FF -> output scenario
pool<SigBit> sig_fed_by_ibuf;
for (auto cell : module->selected_cells())
{
if (cell->type == ID(IBUF))
{
auto output = sigmap(cell->getPort(ID::O)[0]);
sig_fed_by_ibuf.insert(output);
}
}
// Find all of the sinks for each output from an IBUF
dict<SigBit, std::pair<int, RTLIL::Cell *>> ibuf_fanouts;
for (auto cell : module->selected_cells())
{
for (auto &conn : cell->connections())
{
if (cell->input(conn.first))
{
for (auto wire_in : sigmap(conn.second))
{
if (sig_fed_by_ibuf[wire_in])
{
auto existing_count = ibuf_fanouts[wire_in].first;
ibuf_fanouts[wire_in] =
std::pair<int, RTLIL::Cell *>(existing_count + 1, cell);
}
}
}
}
}
dict<SigBit, RTLIL::Cell *> ibuf_out_to_packed_reg_cell;
pool<SigBit> packed_reg_out;
for (auto x : ibuf_fanouts)
{
auto ibuf_out_wire = x.first;
auto fanout_count = x.second.first;
auto maybe_ff_cell = x.second.second;
// The register can be packed with the IBUF only if it's
// actually a register and it's the only fanout. Otherwise,
// the pad-to-zia path has to be used up and the register
// can't be packed with the ibuf.
if (fanout_count == 1 && maybe_ff_cell->type.in(
ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N),
ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
{
SigBit input;
if (maybe_ff_cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP)))
input = sigmap(maybe_ff_cell->getPort(ID::T)[0]);
else
input = sigmap(maybe_ff_cell->getPort(ID::D)[0]);
SigBit output = sigmap(maybe_ff_cell->getPort(ID::Q)[0]);
if (input == ibuf_out_wire)
{
log("Found IBUF %s that can be packed with FF %s (type %s)\n",
ibuf_out_wire.wire->name.c_str(),
maybe_ff_cell->name.c_str(),
maybe_ff_cell->type.c_str());
ibuf_out_to_packed_reg_cell[ibuf_out_wire] = maybe_ff_cell;
packed_reg_out.insert(output);
}
}
}
for (auto cell : module->selected_cells())
{
if (cell->type.in(ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N),
ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
{
// Buffering FF inputs. FF inputs can only come from either
// an IO pin or from an XOR. Otherwise AND/XOR cells need
// to be inserted.
SigBit input;
if (cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP)))
input = sigmap(cell->getPort(ID::T)[0]);
else
input = sigmap(cell->getPort(ID::D)[0]);
// If the input wasn't an XOR nor an IO, then a buffer
// definitely needs to be added.
// Otherwise, if it is an IO, only leave unbuffered
// if we're being packed with the IO.
if ((!sig_fed_by_xor[input] && !sig_fed_by_io[input]) ||
(sig_fed_by_io[input] && ibuf_out_to_packed_reg_cell[input] != cell))
{
log("Buffering input to \"%s\"\n", cell->name.c_str());
auto xor_to_ff_wire = makexorbuffer(module, input, cell->name.c_str());
if (cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP)))
cell->setPort(ID::T, xor_to_ff_wire);
else
cell->setPort(ID::D, xor_to_ff_wire);
}
// Buffering FF clocks. FF clocks can only come from either
// a pterm or a bufg. In some cases this will be handled
// in coolrunner2_sop (e.g. if clock is generated from
// AND-ing two signals) but not in all cases.
SigBit clock;
if (cell->type.in(ID(LDCP), ID(LDCP_N)))
clock = sigmap(cell->getPort(ID::G)[0]);
else
clock = sigmap(cell->getPort(ID::C)[0]);
if (!sig_fed_by_pterm[clock] && !sig_fed_by_bufg[clock])
{
log("Buffering clock to \"%s\"\n", cell->name.c_str());
auto pterm_to_ff_wire = makeptermbuffer(module, clock);
if (cell->type.in(ID(LDCP), ID(LDCP_N)))
cell->setPort(ID::G, pterm_to_ff_wire);
else
cell->setPort(ID::C, pterm_to_ff_wire);
}
// Buffering FF set/reset. This can only come from either
// a pterm or a bufgsr.
SigBit set;
set = sigmap(cell->getPort(ID(PRE))[0]);
if (set != SigBit(false))
{
if (!sig_fed_by_pterm[set] && !sig_fed_by_bufgsr[set])
{
log("Buffering set to \"%s\"\n", cell->name.c_str());
auto pterm_to_ff_wire = makeptermbuffer(module, set);
cell->setPort(ID(PRE), pterm_to_ff_wire);
}
}
SigBit reset;
reset = sigmap(cell->getPort(ID::CLR)[0]);
if (reset != SigBit(false))
{
if (!sig_fed_by_pterm[reset] && !sig_fed_by_bufgsr[reset])
{
log("Buffering reset to \"%s\"\n", cell->name.c_str());
auto pterm_to_ff_wire = makeptermbuffer(module, reset);
cell->setPort(ID::CLR, pterm_to_ff_wire);
}
}
// Buffering FF clock enable
// FIXME: This doesn't fully fix PTC conflicts
// FIXME: Need to ensure constant enables are optimized out
if (cell->type.in(ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
{
SigBit ce;
ce = sigmap(cell->getPort(ID(CE))[0]);
if (!sig_fed_by_pterm[ce])
{
log("Buffering clock enable to \"%s\"\n", cell->name.c_str());
auto pterm_to_ff_wire = makeptermbuffer(module, ce);
cell->setPort(ID(CE), pterm_to_ff_wire);
}
}
}
}
for (auto cell : module->selected_cells())
{
if (cell->type == ID(IOBUFE))
{
// Buffer IOBUFE inputs. This can only be fed from an XOR or FF.
SigBit input = sigmap(cell->getPort(ID::I)[0]);
if ((!sig_fed_by_xor[input] && !sig_fed_by_ff[input]) ||
packed_reg_out[input])
{
log("Buffering input to \"%s\"\n", cell->name.c_str());
auto xor_to_io_wire = makexorbuffer(module, input, cell->name.c_str());
cell->setPort(ID::I, xor_to_io_wire);
}
// Buffer IOBUFE enables. This can only be fed from a pterm
// or a bufgts.
if (cell->hasPort(ID::E))
{
SigBit oe;
oe = sigmap(cell->getPort(ID::E)[0]);
if (!sig_fed_by_pterm[oe] && !sig_fed_by_bufgts[oe])
{
log("Buffering output enable to \"%s\"\n", cell->name.c_str());
auto pterm_to_oe_wire = makeptermbuffer(module, oe);
cell->setPort(ID::E, pterm_to_oe_wire);
}
}
}
}
// Now we have to fix up some cases where shared logic can
// cause XORs to have multiple fanouts to something other than
// pterms (which is not ok)
// Find all the XOR outputs
dict<SigBit, RTLIL::Cell *> xor_out_to_xor_cell;
for (auto cell : module->selected_cells())
{
if (cell->type == ID(MACROCELL_XOR))
{
auto output = sigmap(cell->getPort(ID(OUT))[0]);
xor_out_to_xor_cell[output] = cell;
}
}
// Find all of the sinks for each output from an XOR
pool<SigBit> xor_fanout_once;
for (auto cell : module->selected_cells())
{
if (cell->type == ID(ANDTERM))
continue;
for (auto &conn : cell->connections())
{
if (cell->input(conn.first))
{
for (auto wire_in : sigmap(conn.second))
{
auto xor_cell = xor_out_to_xor_cell[wire_in];
if (xor_cell)
{
if (xor_fanout_once[wire_in])
{
log("Additional fanout found for %s into %s (type %s), duplicating\n",
xor_cell->name.c_str(),
cell->name.c_str(),
cell->type.c_str());
auto new_xor_cell = module->addCell(
module->uniquify(xor_cell->name), xor_cell);
auto new_wire = module->addWire(
module->uniquify(wire_in.wire->name));
new_xor_cell->setPort(ID(OUT), new_wire);
cell->setPort(conn.first, new_wire);
}
xor_fanout_once.insert(wire_in);
}
}
}
}
}
// Do the same fanout fixing for OR terms. By doing this
// after doing XORs, both pieces will be duplicated when necessary.
// Find all the OR outputs
dict<SigBit, RTLIL::Cell *> or_out_to_or_cell;
for (auto cell : module->selected_cells())
{
if (cell->type == ID(ORTERM))
{
auto output = sigmap(cell->getPort(ID(OUT))[0]);
or_out_to_or_cell[output] = cell;
}
}
// Find all of the sinks for each output from an OR
pool<SigBit> or_fanout_once;
for (auto cell : module->selected_cells())
{
for (auto &conn : cell->connections())
{
if (cell->input(conn.first))
{
for (auto wire_in : sigmap(conn.second))
{
auto or_cell = or_out_to_or_cell[wire_in];
if (or_cell)
{
if (or_fanout_once[wire_in])
{
log("Additional fanout found for %s into %s (type %s), duplicating\n",
or_cell->name.c_str(),
cell->name.c_str(),
cell->type.c_str());
auto new_or_cell = module->addCell(
module->uniquify(or_cell->name), or_cell);
auto new_wire = module->addWire(
module->uniquify(wire_in.wire->name));
new_or_cell->setPort(ID(OUT), new_wire);
cell->setPort(conn.first, new_wire);
}
or_fanout_once.insert(wire_in);
}
}
}
}
}
}
}
} Coolrunner2FixupPass;
PRIVATE_NAMESPACE_END