mirror of https://github.com/YosysHQ/yosys.git
521 lines
15 KiB
C++
521 lines
15 KiB
C++
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2020 R. Ou <rqou@robertou.com>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "kernel/yosys.h"
|
|
#include "kernel/sigtools.h"
|
|
|
|
USING_YOSYS_NAMESPACE
|
|
PRIVATE_NAMESPACE_BEGIN
|
|
|
|
RTLIL::Wire *makexorbuffer(RTLIL::Module *module, SigBit inwire, const char *cellname)
|
|
{
|
|
RTLIL::Wire *outwire = nullptr;
|
|
|
|
if (inwire == SigBit(true))
|
|
{
|
|
// Constant 1
|
|
outwire = module->addWire(
|
|
module->uniquify(stringf("$xc2fix$%s_BUF1_XOR_OUT", cellname)));
|
|
auto xor_cell = module->addCell(
|
|
module->uniquify(stringf("$xc2fix$%s_BUF1_XOR", cellname)),
|
|
ID(MACROCELL_XOR));
|
|
xor_cell->setParam(ID(INVERT_OUT), true);
|
|
xor_cell->setPort(ID(OUT), outwire);
|
|
}
|
|
else if (inwire == SigBit(false))
|
|
{
|
|
// Constant 0
|
|
outwire = module->addWire(
|
|
module->uniquify(stringf("$xc2fix$%s_BUF0_XOR_OUT", cellname)));
|
|
auto xor_cell = module->addCell(
|
|
module->uniquify(stringf("$xc2fix$%s_BUF0_XOR", cellname)),
|
|
ID(MACROCELL_XOR));
|
|
xor_cell->setParam(ID(INVERT_OUT), false);
|
|
xor_cell->setPort(ID(OUT), outwire);
|
|
}
|
|
else if (inwire == SigBit(RTLIL::State::Sx))
|
|
{
|
|
// x; treat as 0
|
|
log_warning("While buffering, changing x to 0 into cell %s\n", cellname);
|
|
outwire = module->addWire(
|
|
module->uniquify(stringf("$xc2fix$%s_BUF0_XOR_OUT", cellname)));
|
|
auto xor_cell = module->addCell(
|
|
module->uniquify(stringf("$xc2fix$%s_BUF0_XOR", cellname)),
|
|
ID(MACROCELL_XOR));
|
|
xor_cell->setParam(ID(INVERT_OUT), false);
|
|
xor_cell->setPort(ID(OUT), outwire);
|
|
}
|
|
else
|
|
{
|
|
auto inwire_name = inwire.wire->name.c_str();
|
|
|
|
outwire = module->addWire(
|
|
module->uniquify(stringf("$xc2fix$%s_BUF_XOR_OUT", inwire_name)));
|
|
|
|
auto and_to_xor_wire = module->addWire(
|
|
module->uniquify(stringf("$xc2fix$%s_BUF_AND_OUT", inwire_name)));
|
|
|
|
auto and_cell = module->addCell(
|
|
module->uniquify(stringf("$xc2fix$%s_BUF_AND", inwire_name)),
|
|
ID(ANDTERM));
|
|
and_cell->setParam(ID(TRUE_INP), 1);
|
|
and_cell->setParam(ID(COMP_INP), 0);
|
|
and_cell->setPort(ID(OUT), and_to_xor_wire);
|
|
and_cell->setPort(ID(IN), inwire);
|
|
and_cell->setPort(ID(IN_B), SigSpec());
|
|
|
|
auto xor_cell = module->addCell(
|
|
module->uniquify(stringf("$xc2fix$%s_BUF_XOR", inwire_name)),
|
|
ID(MACROCELL_XOR));
|
|
xor_cell->setParam(ID(INVERT_OUT), false);
|
|
xor_cell->setPort(ID(IN_PTC), and_to_xor_wire);
|
|
xor_cell->setPort(ID(OUT), outwire);
|
|
}
|
|
|
|
return outwire;
|
|
}
|
|
|
|
RTLIL::Wire *makeptermbuffer(RTLIL::Module *module, SigBit inwire)
|
|
{
|
|
auto inwire_name = inwire.wire->name.c_str();
|
|
|
|
auto outwire = module->addWire(
|
|
module->uniquify(stringf("$xc2fix$%s_BUF_AND_OUT", inwire_name)));
|
|
|
|
auto and_cell = module->addCell(
|
|
module->uniquify(stringf("$xc2fix$%s_BUF_AND", inwire_name)),
|
|
ID(ANDTERM));
|
|
and_cell->setParam(ID(TRUE_INP), 1);
|
|
and_cell->setParam(ID(COMP_INP), 0);
|
|
and_cell->setPort(ID(OUT), outwire);
|
|
and_cell->setPort(ID(IN), inwire);
|
|
and_cell->setPort(ID(IN_B), SigSpec());
|
|
|
|
return outwire;
|
|
}
|
|
|
|
struct Coolrunner2FixupPass : public Pass {
|
|
Coolrunner2FixupPass() : Pass("coolrunner2_fixup", "insert necessary buffer cells for CoolRunner-II architecture") { }
|
|
void help() override
|
|
{
|
|
log("\n");
|
|
log(" coolrunner2_fixup [options] [selection]\n");
|
|
log("\n");
|
|
log("Insert necessary buffer cells for CoolRunner-II architecture.\n");
|
|
log("\n");
|
|
}
|
|
void execute(std::vector<std::string> args, RTLIL::Design *design) override
|
|
{
|
|
log_header(design, "Executing COOLRUNNER2_FIXUP pass (insert necessary buffer cells for CoolRunner-II architecture).\n");
|
|
extra_args(args, 1, design);
|
|
|
|
for (auto module : design->selected_modules())
|
|
{
|
|
SigMap sigmap(module);
|
|
|
|
// Find all the FF outputs
|
|
pool<SigBit> sig_fed_by_ff;
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
if (cell->type.in(ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N),
|
|
ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
|
|
{
|
|
auto output = sigmap(cell->getPort(ID::Q)[0]);
|
|
sig_fed_by_ff.insert(output);
|
|
}
|
|
}
|
|
|
|
// Find all the XOR outputs
|
|
pool<SigBit> sig_fed_by_xor;
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
if (cell->type == ID(MACROCELL_XOR))
|
|
{
|
|
auto output = sigmap(cell->getPort(ID(OUT))[0]);
|
|
sig_fed_by_xor.insert(output);
|
|
}
|
|
}
|
|
|
|
// Find all the input/inout outputs
|
|
pool<SigBit> sig_fed_by_io;
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
if (cell->type.in(ID(IBUF), ID(IOBUFE)))
|
|
{
|
|
if (cell->hasPort(ID::O)) {
|
|
auto output = sigmap(cell->getPort(ID::O)[0]);
|
|
sig_fed_by_io.insert(output);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find all the pterm outputs
|
|
pool<SigBit> sig_fed_by_pterm;
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
if (cell->type == ID(ANDTERM))
|
|
{
|
|
auto output = sigmap(cell->getPort(ID(OUT))[0]);
|
|
sig_fed_by_pterm.insert(output);
|
|
}
|
|
}
|
|
|
|
// Find all the bufg outputs
|
|
pool<SigBit> sig_fed_by_bufg;
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
if (cell->type == ID(BUFG))
|
|
{
|
|
auto output = sigmap(cell->getPort(ID::O)[0]);
|
|
sig_fed_by_bufg.insert(output);
|
|
}
|
|
}
|
|
|
|
// Find all the bufgsr outputs
|
|
pool<SigBit> sig_fed_by_bufgsr;
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
if (cell->type == ID(BUFGSR))
|
|
{
|
|
auto output = sigmap(cell->getPort(ID::O)[0]);
|
|
sig_fed_by_bufgsr.insert(output);
|
|
}
|
|
}
|
|
|
|
// Find all the bufgts outputs
|
|
pool<SigBit> sig_fed_by_bufgts;
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
if (cell->type == ID(BUFGTS))
|
|
{
|
|
auto output = sigmap(cell->getPort(ID::O)[0]);
|
|
sig_fed_by_bufgts.insert(output);
|
|
}
|
|
}
|
|
|
|
// This is used to fix the input -> FF -> output scenario
|
|
pool<SigBit> sig_fed_by_ibuf;
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
if (cell->type == ID(IBUF))
|
|
{
|
|
auto output = sigmap(cell->getPort(ID::O)[0]);
|
|
sig_fed_by_ibuf.insert(output);
|
|
}
|
|
}
|
|
|
|
// Find all of the sinks for each output from an IBUF
|
|
dict<SigBit, std::pair<int, RTLIL::Cell *>> ibuf_fanouts;
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
for (auto &conn : cell->connections())
|
|
{
|
|
if (cell->input(conn.first))
|
|
{
|
|
for (auto wire_in : sigmap(conn.second))
|
|
{
|
|
if (sig_fed_by_ibuf[wire_in])
|
|
{
|
|
auto existing_count = ibuf_fanouts[wire_in].first;
|
|
ibuf_fanouts[wire_in] =
|
|
std::pair<int, RTLIL::Cell *>(existing_count + 1, cell);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
dict<SigBit, RTLIL::Cell *> ibuf_out_to_packed_reg_cell;
|
|
pool<SigBit> packed_reg_out;
|
|
for (auto x : ibuf_fanouts)
|
|
{
|
|
auto ibuf_out_wire = x.first;
|
|
auto fanout_count = x.second.first;
|
|
auto maybe_ff_cell = x.second.second;
|
|
|
|
// The register can be packed with the IBUF only if it's
|
|
// actually a register and it's the only fanout. Otherwise,
|
|
// the pad-to-zia path has to be used up and the register
|
|
// can't be packed with the ibuf.
|
|
if (fanout_count == 1 && maybe_ff_cell->type.in(
|
|
ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N),
|
|
ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
|
|
{
|
|
SigBit input;
|
|
if (maybe_ff_cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP)))
|
|
input = sigmap(maybe_ff_cell->getPort(ID::T)[0]);
|
|
else
|
|
input = sigmap(maybe_ff_cell->getPort(ID::D)[0]);
|
|
SigBit output = sigmap(maybe_ff_cell->getPort(ID::Q)[0]);
|
|
|
|
if (input == ibuf_out_wire)
|
|
{
|
|
log("Found IBUF %s that can be packed with FF %s (type %s)\n",
|
|
ibuf_out_wire.wire->name.c_str(),
|
|
maybe_ff_cell->name.c_str(),
|
|
maybe_ff_cell->type.c_str());
|
|
|
|
ibuf_out_to_packed_reg_cell[ibuf_out_wire] = maybe_ff_cell;
|
|
packed_reg_out.insert(output);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
if (cell->type.in(ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N),
|
|
ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
|
|
{
|
|
// Buffering FF inputs. FF inputs can only come from either
|
|
// an IO pin or from an XOR. Otherwise AND/XOR cells need
|
|
// to be inserted.
|
|
SigBit input;
|
|
if (cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP)))
|
|
input = sigmap(cell->getPort(ID::T)[0]);
|
|
else
|
|
input = sigmap(cell->getPort(ID::D)[0]);
|
|
|
|
// If the input wasn't an XOR nor an IO, then a buffer
|
|
// definitely needs to be added.
|
|
// Otherwise, if it is an IO, only leave unbuffered
|
|
// if we're being packed with the IO.
|
|
if ((!sig_fed_by_xor[input] && !sig_fed_by_io[input]) ||
|
|
(sig_fed_by_io[input] && ibuf_out_to_packed_reg_cell[input] != cell))
|
|
{
|
|
log("Buffering input to \"%s\"\n", cell->name.c_str());
|
|
|
|
auto xor_to_ff_wire = makexorbuffer(module, input, cell->name.c_str());
|
|
|
|
if (cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP)))
|
|
cell->setPort(ID::T, xor_to_ff_wire);
|
|
else
|
|
cell->setPort(ID::D, xor_to_ff_wire);
|
|
}
|
|
|
|
// Buffering FF clocks. FF clocks can only come from either
|
|
// a pterm or a bufg. In some cases this will be handled
|
|
// in coolrunner2_sop (e.g. if clock is generated from
|
|
// AND-ing two signals) but not in all cases.
|
|
SigBit clock;
|
|
if (cell->type.in(ID(LDCP), ID(LDCP_N)))
|
|
clock = sigmap(cell->getPort(ID::G)[0]);
|
|
else
|
|
clock = sigmap(cell->getPort(ID::C)[0]);
|
|
|
|
if (!sig_fed_by_pterm[clock] && !sig_fed_by_bufg[clock])
|
|
{
|
|
log("Buffering clock to \"%s\"\n", cell->name.c_str());
|
|
|
|
auto pterm_to_ff_wire = makeptermbuffer(module, clock);
|
|
|
|
if (cell->type.in(ID(LDCP), ID(LDCP_N)))
|
|
cell->setPort(ID::G, pterm_to_ff_wire);
|
|
else
|
|
cell->setPort(ID::C, pterm_to_ff_wire);
|
|
}
|
|
|
|
// Buffering FF set/reset. This can only come from either
|
|
// a pterm or a bufgsr.
|
|
SigBit set;
|
|
set = sigmap(cell->getPort(ID(PRE))[0]);
|
|
if (set != SigBit(false))
|
|
{
|
|
if (!sig_fed_by_pterm[set] && !sig_fed_by_bufgsr[set])
|
|
{
|
|
log("Buffering set to \"%s\"\n", cell->name.c_str());
|
|
|
|
auto pterm_to_ff_wire = makeptermbuffer(module, set);
|
|
|
|
cell->setPort(ID(PRE), pterm_to_ff_wire);
|
|
}
|
|
}
|
|
|
|
SigBit reset;
|
|
reset = sigmap(cell->getPort(ID::CLR)[0]);
|
|
if (reset != SigBit(false))
|
|
{
|
|
if (!sig_fed_by_pterm[reset] && !sig_fed_by_bufgsr[reset])
|
|
{
|
|
log("Buffering reset to \"%s\"\n", cell->name.c_str());
|
|
|
|
auto pterm_to_ff_wire = makeptermbuffer(module, reset);
|
|
|
|
cell->setPort(ID::CLR, pterm_to_ff_wire);
|
|
}
|
|
}
|
|
|
|
// Buffering FF clock enable
|
|
// FIXME: This doesn't fully fix PTC conflicts
|
|
// FIXME: Need to ensure constant enables are optimized out
|
|
if (cell->type.in(ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
|
|
{
|
|
SigBit ce;
|
|
ce = sigmap(cell->getPort(ID(CE))[0]);
|
|
if (!sig_fed_by_pterm[ce])
|
|
{
|
|
log("Buffering clock enable to \"%s\"\n", cell->name.c_str());
|
|
|
|
auto pterm_to_ff_wire = makeptermbuffer(module, ce);
|
|
|
|
cell->setPort(ID(CE), pterm_to_ff_wire);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
if (cell->type == ID(IOBUFE))
|
|
{
|
|
// Buffer IOBUFE inputs. This can only be fed from an XOR or FF.
|
|
SigBit input = sigmap(cell->getPort(ID::I)[0]);
|
|
|
|
if ((!sig_fed_by_xor[input] && !sig_fed_by_ff[input]) ||
|
|
packed_reg_out[input])
|
|
{
|
|
log("Buffering input to \"%s\"\n", cell->name.c_str());
|
|
|
|
auto xor_to_io_wire = makexorbuffer(module, input, cell->name.c_str());
|
|
|
|
cell->setPort(ID::I, xor_to_io_wire);
|
|
}
|
|
|
|
// Buffer IOBUFE enables. This can only be fed from a pterm
|
|
// or a bufgts.
|
|
if (cell->hasPort(ID::E))
|
|
{
|
|
SigBit oe;
|
|
oe = sigmap(cell->getPort(ID::E)[0]);
|
|
if (!sig_fed_by_pterm[oe] && !sig_fed_by_bufgts[oe])
|
|
{
|
|
log("Buffering output enable to \"%s\"\n", cell->name.c_str());
|
|
|
|
auto pterm_to_oe_wire = makeptermbuffer(module, oe);
|
|
|
|
cell->setPort(ID::E, pterm_to_oe_wire);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now we have to fix up some cases where shared logic can
|
|
// cause XORs to have multiple fanouts to something other than
|
|
// pterms (which is not ok)
|
|
|
|
// Find all the XOR outputs
|
|
dict<SigBit, RTLIL::Cell *> xor_out_to_xor_cell;
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
if (cell->type == ID(MACROCELL_XOR))
|
|
{
|
|
auto output = sigmap(cell->getPort(ID(OUT))[0]);
|
|
xor_out_to_xor_cell[output] = cell;
|
|
}
|
|
}
|
|
|
|
// Find all of the sinks for each output from an XOR
|
|
pool<SigBit> xor_fanout_once;
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
if (cell->type == ID(ANDTERM))
|
|
continue;
|
|
|
|
for (auto &conn : cell->connections())
|
|
{
|
|
if (cell->input(conn.first))
|
|
{
|
|
for (auto wire_in : sigmap(conn.second))
|
|
{
|
|
auto xor_cell = xor_out_to_xor_cell[wire_in];
|
|
if (xor_cell)
|
|
{
|
|
if (xor_fanout_once[wire_in])
|
|
{
|
|
log("Additional fanout found for %s into %s (type %s), duplicating\n",
|
|
xor_cell->name.c_str(),
|
|
cell->name.c_str(),
|
|
cell->type.c_str());
|
|
|
|
auto new_xor_cell = module->addCell(
|
|
module->uniquify(xor_cell->name), xor_cell);
|
|
auto new_wire = module->addWire(
|
|
module->uniquify(wire_in.wire->name));
|
|
new_xor_cell->setPort(ID(OUT), new_wire);
|
|
cell->setPort(conn.first, new_wire);
|
|
}
|
|
xor_fanout_once.insert(wire_in);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Do the same fanout fixing for OR terms. By doing this
|
|
// after doing XORs, both pieces will be duplicated when necessary.
|
|
|
|
// Find all the OR outputs
|
|
dict<SigBit, RTLIL::Cell *> or_out_to_or_cell;
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
if (cell->type == ID(ORTERM))
|
|
{
|
|
auto output = sigmap(cell->getPort(ID(OUT))[0]);
|
|
or_out_to_or_cell[output] = cell;
|
|
}
|
|
}
|
|
|
|
// Find all of the sinks for each output from an OR
|
|
pool<SigBit> or_fanout_once;
|
|
for (auto cell : module->selected_cells())
|
|
{
|
|
for (auto &conn : cell->connections())
|
|
{
|
|
if (cell->input(conn.first))
|
|
{
|
|
for (auto wire_in : sigmap(conn.second))
|
|
{
|
|
auto or_cell = or_out_to_or_cell[wire_in];
|
|
if (or_cell)
|
|
{
|
|
if (or_fanout_once[wire_in])
|
|
{
|
|
log("Additional fanout found for %s into %s (type %s), duplicating\n",
|
|
or_cell->name.c_str(),
|
|
cell->name.c_str(),
|
|
cell->type.c_str());
|
|
|
|
auto new_or_cell = module->addCell(
|
|
module->uniquify(or_cell->name), or_cell);
|
|
auto new_wire = module->addWire(
|
|
module->uniquify(wire_in.wire->name));
|
|
new_or_cell->setPort(ID(OUT), new_wire);
|
|
cell->setPort(conn.first, new_wire);
|
|
}
|
|
or_fanout_once.insert(wire_in);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} Coolrunner2FixupPass;
|
|
|
|
PRIVATE_NAMESPACE_END
|