yosys/passes/techmap/iopadmap.cc

541 lines
20 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
void split_portname_pair(std::string &port1, std::string &port2)
{
size_t pos = port1.find_first_of(':');
if (pos != std::string::npos) {
port2 = port1.substr(pos+1);
port1 = port1.substr(0, pos);
}
}
struct IopadmapPass : public Pass {
IopadmapPass() : Pass("iopadmap", "technology mapping of i/o pads (or buffers)") { }
void help() override
{
log("\n");
log(" iopadmap [options] [selection]\n");
log("\n");
log("Map module inputs/outputs to PAD cells from a library. This pass\n");
log("can only map to very simple PAD cells. Use 'techmap' to further map\n");
log("the resulting cells to more sophisticated PAD cells.\n");
log("\n");
log(" -inpad <celltype> <in_port>[:<ext_port>]\n");
log(" Map module input ports to the given cell type with the\n");
log(" given output port name. if a 2nd portname is given, the\n");
log(" signal is passed through the pad cell, using the 2nd\n");
log(" portname as the port facing the module port.\n");
log("\n");
log(" -outpad <celltype> <out_port>[:<ext_port>]\n");
log(" -inoutpad <celltype> <io_port>[:<ext_port>]\n");
log(" Similar to -inpad, but for output and inout ports.\n");
log("\n");
log(" -toutpad <celltype> <oe_port>:<out_port>[:<ext_port>]\n");
log(" Merges $_TBUF_ cells into the output pad cell. This takes precedence\n");
log(" over the other -outpad cell. The first portname is the enable input\n");
log(" of the tristate driver, which can be prefixed with `~` for negative\n");
log(" polarity enable.\n");
log("\n");
log(" -tinoutpad <celltype> <oe_port>:<in_port>:<out_port>[:<ext_port>]\n");
log(" Merges $_TBUF_ cells into the inout pad cell. This takes precedence\n");
log(" over the other -inoutpad cell. The first portname is the enable input\n");
log(" of the tristate driver and the 2nd portname is the internal output\n");
log(" buffering the external signal. Like with `-toutpad`, the enable can\n");
log(" be marked as negative polarity by prefixing the name with `~`.\n");
log("\n");
log(" -ignore <celltype> <portname>[:<portname>]*\n");
log(" Skips mapping inputs/outputs that are already connected to given\n");
log(" ports of the given cell. Can be used multiple times. This is in\n");
log(" addition to the cells specified as mapping targets.\n");
log("\n");
log(" -widthparam <param_name>\n");
log(" Use the specified parameter name to set the port width.\n");
log("\n");
log(" -nameparam <param_name>\n");
log(" Use the specified parameter to set the port name.\n");
log("\n");
log(" -bits\n");
log(" create individual bit-wide buffers even for ports that\n");
log(" are wider. (the default behavior is to create word-wide\n");
log(" buffers using -widthparam to set the word size on the cell.)\n");
log("\n");
log("Tristate PADS (-toutpad, -tinoutpad) always operate in -bits mode.\n");
log("\n");
}
void module_queue(Design *design, Module *module, std::vector<Module *> &modules_sorted, pool<Module *> &modules_processed) {
if (modules_processed.count(module))
return;
for (auto cell : module->cells()) {
Module *submodule = design->module(cell->type);
if (!submodule)
continue;
module_queue(design, submodule, modules_sorted, modules_processed);
}
modules_sorted.push_back(module);
modules_processed.insert(module);
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing IOPADMAP pass (mapping inputs/outputs to IO-PAD cells).\n");
std::string inpad_celltype, inpad_portname_o, inpad_portname_pad;
std::string outpad_celltype, outpad_portname_i, outpad_portname_pad;
std::string inoutpad_celltype, inoutpad_portname_io, inoutpad_portname_pad;
std::string toutpad_celltype, toutpad_portname_oe, toutpad_portname_i, toutpad_portname_pad;
std::string tinoutpad_celltype, tinoutpad_portname_oe, tinoutpad_portname_o, tinoutpad_portname_i, tinoutpad_portname_pad;
bool toutpad_neg_oe = false, tinoutpad_neg_oe = false;
std::string widthparam, nameparam;
pool<pair<IdString, IdString>> ignore;
bool flag_bits = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
std::string arg = args[argidx];
if (arg == "-inpad" && argidx+2 < args.size()) {
inpad_celltype = args[++argidx];
inpad_portname_o = args[++argidx];
split_portname_pair(inpad_portname_o, inpad_portname_pad);
continue;
}
if (arg == "-outpad" && argidx+2 < args.size()) {
outpad_celltype = args[++argidx];
outpad_portname_i = args[++argidx];
split_portname_pair(outpad_portname_i, outpad_portname_pad);
continue;
}
if (arg == "-inoutpad" && argidx+2 < args.size()) {
inoutpad_celltype = args[++argidx];
inoutpad_portname_io = args[++argidx];
split_portname_pair(inoutpad_portname_io, inoutpad_portname_pad);
continue;
}
if (arg == "-toutpad" && argidx+2 < args.size()) {
toutpad_celltype = args[++argidx];
toutpad_portname_oe = args[++argidx];
split_portname_pair(toutpad_portname_oe, toutpad_portname_i);
split_portname_pair(toutpad_portname_i, toutpad_portname_pad);
if (toutpad_portname_oe[0] == '~') {
toutpad_neg_oe = true;
toutpad_portname_oe = toutpad_portname_oe.substr(1);
}
continue;
}
if (arg == "-tinoutpad" && argidx+2 < args.size()) {
tinoutpad_celltype = args[++argidx];
tinoutpad_portname_oe = args[++argidx];
split_portname_pair(tinoutpad_portname_oe, tinoutpad_portname_o);
split_portname_pair(tinoutpad_portname_o, tinoutpad_portname_i);
split_portname_pair(tinoutpad_portname_i, tinoutpad_portname_pad);
if (tinoutpad_portname_oe[0] == '~') {
tinoutpad_neg_oe = true;
tinoutpad_portname_oe = tinoutpad_portname_oe.substr(1);
}
continue;
}
if (arg == "-ignore" && argidx+2 < args.size()) {
std::string ignore_celltype = args[++argidx];
std::string ignore_portname = args[++argidx];
std::string ignore_portname2;
while (!ignore_portname.empty()) {
split_portname_pair(ignore_portname, ignore_portname2);
ignore.insert(make_pair(RTLIL::escape_id(ignore_celltype), RTLIL::escape_id(ignore_portname)));
ignore_portname = ignore_portname2;
}
continue;
}
if (arg == "-widthparam" && argidx+1 < args.size()) {
widthparam = args[++argidx];
continue;
}
if (arg == "-nameparam" && argidx+1 < args.size()) {
nameparam = args[++argidx];
continue;
}
if (arg == "-bits") {
flag_bits = true;
continue;
}
break;
}
extra_args(args, argidx, design);
if (!inpad_portname_pad.empty())
ignore.insert(make_pair(RTLIL::escape_id(inpad_celltype), RTLIL::escape_id(inpad_portname_pad)));
if (!outpad_portname_pad.empty())
ignore.insert(make_pair(RTLIL::escape_id(outpad_celltype), RTLIL::escape_id(outpad_portname_pad)));
if (!inoutpad_portname_pad.empty())
ignore.insert(make_pair(RTLIL::escape_id(inoutpad_celltype), RTLIL::escape_id(inoutpad_portname_pad)));
if (!toutpad_portname_pad.empty())
ignore.insert(make_pair(RTLIL::escape_id(toutpad_celltype), RTLIL::escape_id(toutpad_portname_pad)));
if (!tinoutpad_portname_pad.empty())
ignore.insert(make_pair(RTLIL::escape_id(tinoutpad_celltype), RTLIL::escape_id(tinoutpad_portname_pad)));
// Recursively collect list of (module, port, bit) triples that already have buffers.
pool<pair<IdString, pair<IdString, int>>> buf_ports;
// Process submodules before module using them.
std::vector<Module *> modules_sorted;
pool<Module *> modules_processed;
for (auto module : design->selected_modules())
module_queue(design, module, modules_sorted, modules_processed);
for (auto module : modules_sorted)
{
pool<SigBit> buf_bits;
SigMap sigmap(module);
// Collect explicitly-marked already-buffered SigBits.
for (auto wire : module->wires())
if (wire->get_bool_attribute(ID::iopad_external_pin) || ignore.count(make_pair(module->name, wire->name)))
for (int i = 0; i < GetSize(wire); i++)
buf_bits.insert(sigmap(SigBit(wire, i)));
// Collect SigBits connected to already-buffered ports.
for (auto cell : module->cells())
for (auto port : cell->connections())
for (int i = 0; i < port.second.size(); i++)
if (buf_ports.count(make_pair(cell->type, make_pair(port.first, i))))
buf_bits.insert(sigmap(port.second[i]));
// Now fill buf_ports.
for (auto wire : module->wires())
if (wire->port_input || wire->port_output)
for (int i = 0; i < GetSize(wire); i++)
if (buf_bits.count(sigmap(SigBit(wire, i)))) {
buf_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
log("Marking already mapped port: %s.%s[%d].\n", log_id(module), log_id(wire), i);
}
}
// Now do the actual buffer insertion.
for (auto module : design->selected_modules())
{
dict<Wire *, dict<int, pair<Cell *, IdString>>> rewrite_bits;
dict<SigSig, pool<int>> remove_conns;
if (!toutpad_celltype.empty() || !tinoutpad_celltype.empty())
{
dict<SigBit, Cell *> tbuf_bits;
pool<SigBit> driven_bits;
dict<SigBit, std::pair<SigSig, int>> z_conns;
// Gather tristate buffers and always-on drivers.
for (auto cell : module->cells())
if (cell->type == ID($_TBUF_)) {
SigBit bit = cell->getPort(ID::Y).as_bit();
tbuf_bits[bit] = cell;
} else {
for (auto port : cell->connections())
if (!cell->known() || cell->output(port.first))
for (auto bit : port.second)
driven_bits.insert(bit);
}
// If a wire is a target of an assignment, it is driven, unless the source is 'z.
for (auto &conn : module->connections())
for (int i = 0; i < GetSize(conn.first); i++) {
SigBit dstbit = conn.first[i];
SigBit srcbit = conn.second[i];
if (!srcbit.wire && srcbit.data == State::Sz) {
z_conns[dstbit] = {conn, i};
continue;
}
driven_bits.insert(dstbit);
}
for (auto wire : module->selected_wires())
{
if (!wire->port_output)
continue;
// Don't handle inout ports if we have no suitable buffer type.
if (wire->port_input && tinoutpad_celltype.empty())
continue;
// likewise for output ports.
if (!wire->port_input && toutpad_celltype.empty())
continue;
for (int i = 0; i < GetSize(wire); i++)
{
SigBit wire_bit(wire, i);
Cell *tbuf_cell = nullptr;
if (buf_ports.count(make_pair(module->name, make_pair(wire->name, i))))
continue;
if (tbuf_bits.count(wire_bit))
tbuf_cell = tbuf_bits.at(wire_bit);
SigBit en_sig;
SigBit data_sig;
bool is_driven = driven_bits.count(wire_bit);
if (tbuf_cell != nullptr) {
// Found a tristate buffer — use it.
en_sig = tbuf_cell->getPort(ID::E).as_bit();
data_sig = tbuf_cell->getPort(ID::A).as_bit();
} else if (is_driven) {
// No tristate buffer, but an always-on driver is present.
// If this is an inout port, we're creating a tinoutpad
// anyway, just with a constant 1 as enable.
if (!wire->port_input)
continue;
en_sig = SigBit(State::S1);
data_sig = wire_bit;
} else {
// No driver on a wire. Create a tristate pad with always-0
// enable.
en_sig = SigBit(State::S0);
data_sig = SigBit(State::Sx);
auto it = z_conns.find(wire_bit);
if (it != z_conns.end())
remove_conns[it->second.first].insert(it->second.second);
}
if (wire->port_input)
{
log("Mapping port %s.%s[%d] using %s.\n", log_id(module), log_id(wire), i, tinoutpad_celltype.c_str());
Cell *cell = module->addCell(
module->uniquify(stringf("$iopadmap$%s.%s[%d]", log_id(module), log_id(wire), i)),
RTLIL::escape_id(tinoutpad_celltype));
if (tinoutpad_neg_oe)
en_sig = module->NotGate(NEW_ID, en_sig);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_oe), en_sig);
cell->attributes[ID::keep] = RTLIL::Const(1);
if (tbuf_cell) {
module->remove(tbuf_cell);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_o), wire_bit);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_i), data_sig);
} else if (is_driven) {
cell->setPort(RTLIL::escape_id(tinoutpad_portname_i), wire_bit);
} else {
cell->setPort(RTLIL::escape_id(tinoutpad_portname_o), wire_bit);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_i), data_sig);
}
if (!tinoutpad_portname_pad.empty())
rewrite_bits[wire][i] = make_pair(cell, RTLIL::escape_id(tinoutpad_portname_pad));
} else {
log("Mapping port %s.%s[%d] using %s.\n", log_id(module), log_id(wire), i, toutpad_celltype.c_str());
Cell *cell = module->addCell(
module->uniquify(stringf("$iopadmap$%s.%s[%d]", log_id(module), log_id(wire), i)),
RTLIL::escape_id(toutpad_celltype));
if (toutpad_neg_oe)
en_sig = module->NotGate(NEW_ID, en_sig);
cell->setPort(RTLIL::escape_id(toutpad_portname_oe), en_sig);
cell->setPort(RTLIL::escape_id(toutpad_portname_i), data_sig);
cell->attributes[ID::keep] = RTLIL::Const(1);
if (tbuf_cell) {
module->remove(tbuf_cell);
module->connect(wire_bit, data_sig);
}
if (!toutpad_portname_pad.empty())
rewrite_bits[wire][i] = make_pair(cell, RTLIL::escape_id(toutpad_portname_pad));
}
buf_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
}
}
}
for (auto wire : module->selected_wires())
{
if (!wire->port_id)
continue;
std::string celltype, portname_int, portname_pad;
pool<int> skip_bit_indices;
for (int i = 0; i < GetSize(wire); i++)
if (buf_ports.count(make_pair(module->name, make_pair(wire->name, i))))
skip_bit_indices.insert(i);
if (GetSize(wire) == GetSize(skip_bit_indices))
continue;
if (wire->port_input && !wire->port_output) {
if (inpad_celltype.empty()) {
log("Don't map input port %s.%s: Missing option -inpad.\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire->name));
continue;
}
celltype = inpad_celltype;
portname_int = inpad_portname_o;
portname_pad = inpad_portname_pad;
} else
if (!wire->port_input && wire->port_output) {
if (outpad_celltype.empty()) {
log("Don't map output port %s.%s: Missing option -outpad.\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire->name));
continue;
}
celltype = outpad_celltype;
portname_int = outpad_portname_i;
portname_pad = outpad_portname_pad;
} else
if (wire->port_input && wire->port_output) {
if (inoutpad_celltype.empty()) {
log("Don't map inout port %s.%s: Missing option -inoutpad.\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire->name));
continue;
}
celltype = inoutpad_celltype;
portname_int = inoutpad_portname_io;
portname_pad = inoutpad_portname_pad;
} else
log_abort();
if (!flag_bits && wire->width != 1 && widthparam.empty()) {
log("Don't map multi-bit port %s.%s: Missing option -widthparam or -bits.\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire->name));
continue;
}
log("Mapping port %s.%s using %s.\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire->name), celltype.c_str());
if (flag_bits)
{
for (int i = 0; i < wire->width; i++)
{
if (skip_bit_indices.count(i))
continue;
SigBit wire_bit(wire, i);
RTLIL::Cell *cell = module->addCell(
module->uniquify(stringf("$iopadmap$%s.%s", log_id(module->name), log_id(wire->name))),
RTLIL::escape_id(celltype));
cell->setPort(RTLIL::escape_id(portname_int), wire_bit);
if (!portname_pad.empty())
rewrite_bits[wire][i] = make_pair(cell, RTLIL::escape_id(portname_pad));
if (!widthparam.empty())
cell->parameters[RTLIL::escape_id(widthparam)] = RTLIL::Const(1);
if (!nameparam.empty())
cell->parameters[RTLIL::escape_id(nameparam)] = RTLIL::Const(stringf("%s[%d]", RTLIL::id2cstr(wire->name), i));
cell->attributes[ID::keep] = RTLIL::Const(1);
}
}
else
{
RTLIL::Cell *cell = module->addCell(
module->uniquify(stringf("$iopadmap$%s.%s", log_id(module->name), log_id(wire->name))),
RTLIL::escape_id(celltype));
cell->setPort(RTLIL::escape_id(portname_int), RTLIL::SigSpec(wire));
if (!portname_pad.empty()) {
RTLIL::Wire *new_wire = NULL;
new_wire = module->addWire(
module->uniquify(stringf("$iopadmap$%s", log_id(wire))),
wire);
module->swap_names(new_wire, wire);
wire->attributes.clear();
cell->setPort(RTLIL::escape_id(portname_pad), RTLIL::SigSpec(new_wire));
}
if (!widthparam.empty())
cell->parameters[RTLIL::escape_id(widthparam)] = RTLIL::Const(wire->width);
if (!nameparam.empty())
cell->parameters[RTLIL::escape_id(nameparam)] = RTLIL::Const(RTLIL::id2cstr(wire->name));
cell->attributes[ID::keep] = RTLIL::Const(1);
}
if (!rewrite_bits.count(wire)) {
wire->port_id = 0;
wire->port_input = false;
wire->port_output = false;
}
}
if (!remove_conns.empty()) {
std::vector<SigSig> new_conns;
for (auto &conn : module->connections()) {
auto it = remove_conns.find(conn);
if (it == remove_conns.end()) {
new_conns.push_back(conn);
} else {
SigSpec lhs, rhs;
for (int i = 0; i < GetSize(conn.first); i++) {
if (!it->second.count(i)) {
lhs.append(conn.first[i]);
rhs.append(conn.second[i]);
}
}
new_conns.push_back(SigSig(lhs, rhs));
}
}
module->new_connections(new_conns);
}
for (auto &it : rewrite_bits) {
RTLIL::Wire *wire = it.first;
RTLIL::Wire *new_wire = module->addWire(
module->uniquify(stringf("$iopadmap$%s", log_id(wire))),
wire);
module->swap_names(new_wire, wire);
wire->attributes.clear();
for (int i = 0; i < wire->width; i++)
{
SigBit wire_bit(wire, i);
if (!it.second.count(i)) {
if (wire->port_output)
module->connect(SigSpec(new_wire, i), SigSpec(wire, i));
else
module->connect(SigSpec(wire, i), SigSpec(new_wire, i));
} else {
auto &new_conn = it.second.at(i);
new_conn.first->setPort(new_conn.second, RTLIL::SigSpec(new_wire, i));
}
}
if (wire->port_output) {
auto jt = new_wire->attributes.find(ID::init);
// For output ports, move \init attributes from old wire to new wire
if (jt != new_wire->attributes.end()) {
wire->attributes[ID::init] = std::move(jt->second);
new_wire->attributes.erase(jt);
}
}
wire->port_id = 0;
wire->port_input = false;
wire->port_output = false;
}
module->fixup_ports();
}
}
} IopadmapPass;
PRIVATE_NAMESPACE_END