yosys/passes/sat/recover_names.cc

725 lines
27 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2021 gatecat <gatecat@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/consteval.h"
#include "kernel/celltypes.h"
#include "kernel/utils.h"
#include "kernel/satgen.h"
#include <algorithm>
#include <queue>
#include <cinttypes>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
// xorshift128 params
#define INIT_X 123456789
#define INIT_Y 362436069
#define INIT_Z 521288629
#define INIT_W 88675123
// Similar to a SigBit; but module-independent
struct IdBit {
IdBit() : name(), bit(0) {};
IdBit(IdString name, int bit = 0) : name(name), bit(bit) {};
bool operator==(const IdBit &other) const { return name == other.name && bit == other.bit; };
bool operator!=(const IdBit &other) const { return name != other.name || bit != other.bit; };
unsigned hash() const
{
return mkhash_add(name.hash(), bit);
}
IdString name;
int bit;
};
// As above; but can be inverted
struct InvBit {
InvBit() : bit(), inverted(false) {};
explicit InvBit(IdBit bit, bool inverted = false) : bit(bit), inverted(inverted) {};
bool operator==(const InvBit &other) const { return bit == other.bit && inverted == other.inverted; };
bool operator!=(const InvBit &other) const { return bit != other.bit || inverted != other.inverted; };
unsigned hash() const
{
return mkhash(bit.hash(), inverted);
}
IdBit bit;
bool inverted;
};
typedef uint64_t equiv_cls_t;
static const int sim_length = sizeof(equiv_cls_t) * 8;
struct RecoverModuleWorker {
Design *design = nullptr;
Module *mod, *flat = nullptr;
RecoverModuleWorker(Module *mod) : design(mod->design), mod(mod) {};
ConstEval *ce = nullptr;
SigMap *sigmap = nullptr;
dict<IdBit, SigBit> flat2orig;
dict<IdBit, IdBit> bit2primary;
dict<IdBit, Cell*> bit2driver;
void prepare()
{
// Create a derivative of the module with whiteboxes flattened so we can
// run eval and sat on it
flat = design->addModule(NEW_ID);
mod->cloneInto(flat);
Pass::call_on_module(design, flat, "flatten -wb");
ce = new ConstEval(flat);
sigmap = new SigMap(flat);
// Create a mapping from primary name-bit in the box-flattened module to original sigbit
SigMap orig_sigmap(mod);
for (auto wire : mod->wires()) {
Wire *flat_wire = flat->wire(wire->name);
if (!flat_wire)
continue;
for (int i = 0; i < wire->width; i++) {
SigBit orig_sigbit = orig_sigmap(SigBit(wire, i));
SigBit flat_sigbit = (*sigmap)(SigBit(flat_wire, i));
if (!orig_sigbit.wire || !flat_sigbit.wire)
continue;
flat2orig[IdBit(flat_sigbit.wire->name, flat_sigbit.offset)] = orig_sigbit;
}
}
find_driven_bits();
}
void find_driven_bits()
{
// Add primary inputs
for (auto wire : flat->wires()) {
if (!wire->port_input)
continue;
for (int i = 0; i < wire->width; i++) {
SigBit bit(wire, i);
bit = (*sigmap)(bit);
if (bit.wire)
bit2driver[IdBit(bit.wire->name, bit.offset)] = nullptr;
}
}
// Add cell outputs
for (auto cell : flat->cells()) {
for (auto conn : cell->connections()) {
if (!cell->output(conn.first))
continue;
for (auto bit : conn.second) {
auto resolved = (*sigmap)(bit);
if (resolved.wire)
bit2driver[IdBit(resolved.wire->name, resolved.offset)] = cell;
}
}
}
// Setup bit2primary
for (auto wire : flat->wires()) {
for (int i = 0; i < wire->width; i++) {
SigBit bit(wire, i);
bit = (*sigmap)(bit);
if (bit.wire)
bit2primary[IdBit(wire->name, i)] = IdBit(bit.wire->name, bit.offset);
}
}
}
// Mapping from bit to (candidate) equivalence classes
dict<IdBit, equiv_cls_t> bit2cls;
void sim_cycle(int t, const dict<IdBit, RTLIL::State> &anchors)
{
ce->clear();
for (auto anchor : anchors) {
SigBit bit = (*sigmap)(SigBit(flat->wire(anchor.first.name), anchor.first.bit));
// Ignore in the rare case that it's already determined
SigSpec res(bit);
if (ce->eval(res))
continue;
ce->set(bit, anchor.second);
}
// Only evaluate IdBits that exist in the non-flat design; as they are all we care about
for (auto idbit : flat2orig) {
if (anchors.count(idbit.first))
continue;
SigBit bit = (*sigmap)(SigBit(flat->wire(idbit.first.name), idbit.first.bit));
SigSpec res(bit);
if (!ce->eval(res))
continue;
if (res != State::S0 && res != State::S1)
continue;
// Update equivalence classes
if (res == State::S1)
bit2cls[idbit.first] = bit2cls[idbit.first] | (equiv_cls_t(1) << t);
}
}
// Update the equivalence class groupings
void group_classes(dict<equiv_cls_t, std::pair<pool<IdBit>, pool<InvBit>>> &cls2bits, bool is_gate)
{
equiv_cls_t all_ones = 0;
for (int i = 0; i < sim_length; i++) all_ones |= (equiv_cls_t(1) << i);
for (auto pair : bit2cls) {
if (pair.second == 0 || pair.second == all_ones)
continue; // skip stuck-ats
if (is_gate) {
// True doesn't exist in gold; but inverted does
if (!cls2bits.count(pair.second) && cls2bits.count(pair.second ^ all_ones))
cls2bits[pair.second ^ all_ones].second.emplace(pair.first, true);
else
cls2bits[pair.second].second.emplace(pair.first, false);
} else {
cls2bits[pair.second].first.insert(pair.first);
}
}
}
// Compute depths of IdBits
dict<IdBit, int> bit2depth;
void compute_depths(const dict<IdBit, IdBit> &anchor_bits)
{
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
for (auto cell : flat->cells())
for (auto conn : cell->connections())
{
for (auto bit : (*sigmap)(conn.second)) {
if (!bit.wire)
continue;
IdBit idbit(bit.wire->name, bit.offset);
if (anchor_bits.count(idbit))
continue;
if (cell->input(conn.first))
bit_users[bit].insert(cell->name);
if (cell->output(conn.first))
bit_drivers[bit].insert(cell->name);
}
toposort.node(cell->name);
}
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
toposort.sort();
for (auto cell_name : toposort.sorted) {
Cell *cell = flat->cell(cell_name);
int cell_depth = 0;
for (auto conn : cell->connections()) {
if (!cell->input(conn.first))
continue;
for (auto bit : (*sigmap)(conn.second)) {
if (!bit.wire)
continue;
IdBit idbit(bit.wire->name, bit.offset);
if (!bit2depth.count(idbit))
continue;
cell_depth = std::max(cell_depth, bit2depth.at(idbit));
}
}
for (auto conn : cell->connections()) {
if (!cell->output(conn.first))
continue;
for (auto bit : (*sigmap)(conn.second)) {
if (!bit.wire)
continue;
IdBit idbit(bit.wire->name, bit.offset);
bit2depth[idbit] = std::max(bit2depth[idbit], cell_depth + 1);
}
}
}
}
// SAT thresholds
const int max_sat_cells = 50;
SigBit id2bit(IdBit bit) { return SigBit(flat->wire(bit.name), bit.bit); }
// Set up the SAT problem for an IdBit
// the value side of 'anchors' will be populated with the SAT variable for anchor bits
int setup_sat(SatGen *sat, const std::string &prefix, IdBit bit, const dict<IdBit, IdBit> &anchor_bits, dict<IdBit, int> &anchor2var)
{
sat->setContext(sigmap, prefix);
pool<IdString> imported_cells;
int result = sat->importSigBit(id2bit(bit));
// Recursively import driving cells
std::queue<IdBit> to_import;
to_import.push(bit);
while (!to_import.empty()) {
// Too many cells imported
if (GetSize(imported_cells) > max_sat_cells)
return -1;
IdBit cursor = to_import.front();
to_import.pop();
if (anchor_bits.count(cursor)) {
if (!anchor2var.count(cursor)) {
anchor2var[cursor] = sat->importSigBit(id2bit(cursor));
}
continue;
}
// Import driver if it exists
if (!bit2driver.count(cursor))
continue;
Cell *driver = bit2driver.at(cursor);
if (!driver || imported_cells.count(driver->name))
continue;
if (!sat->importCell(driver))
return -1; // cell can't be imported
imported_cells.insert(driver->name);
// Add cell inputs to queue
for (auto conn : driver->connections()) {
if (!driver->input(conn.first))
continue;
for (SigBit in_bit : (*sigmap)(conn.second)) {
if (!in_bit.wire)
continue;
IdBit in_idbit(in_bit.wire->name, in_bit.offset);
to_import.push(in_idbit);
}
}
}
return result;
}
void find_buffers(const pool<IdString> &buffer_types, dict<SigBit, pool<SigBit>> &root2buffered)
{
SigMap orig_sigmap(mod);
dict<SigBit, SigBit> buffer2root;
for (auto cell : mod->cells()) {
if (!buffer_types.count(cell->type))
continue;
SigBit in, out;
for (auto conn : cell->connections()) {
if (cell->input(conn.first)) {
in = orig_sigmap(conn.second[0]);
}
if (cell->output(conn.first)) {
out = orig_sigmap(conn.second[0]);
}
}
if (!in.wire || !out.wire)
continue;
SigBit root = in;
if (buffer2root.count(root))
root = buffer2root[root];
if (root2buffered.count(out)) {
for (auto out_sig : root2buffered.at(out))
root2buffered[root].insert(out_sig);
root2buffered.erase(out);
}
root2buffered[root].insert(out);
buffer2root[out] = root;
}
}
void do_rename(Module *gold, const dict<IdBit, InvBit> &gate2gold, const pool<IdString> &buffer_types)
{
dict<SigBit, std::vector<std::tuple<Cell*, IdString, int>>> bit2port;
pool<SigBit> unused_bits;
SigMap orig_sigmap(mod);
for (auto wire : mod->wires()) {
if (wire->port_input || wire->port_output)
continue;
for (int i = 0; i < wire->width; i++)
unused_bits.insert(orig_sigmap(SigBit(wire, i)));
}
for (auto cell : mod->cells()) {
for (auto conn : cell->connections()) {
for (int i = 0; i < GetSize(conn.second); i++) {
SigBit bit = orig_sigmap(conn.second[i]);
if (!bit.wire)
continue;
bit2port[bit].emplace_back(cell, conn.first, i);
unused_bits.erase(bit);
}
}
}
dict<SigBit, pool<SigBit>> root2buffered;
find_buffers(buffer_types, root2buffered);
// An extension of gate2gold that deals with buffers too
// gate sigbit --> (new name, invert, gold wire)
dict<SigBit, std::pair<InvBit, Wire*>> rename_map;
for (auto pair : gate2gold) {
SigBit gate_bit = flat2orig.at(pair.first);
Wire *gold_wire = gold->wire(pair.second.bit.name);
rename_map[gate_bit] = std::make_pair(pair.second, gold_wire);
if (root2buffered.count(gate_bit)) {
int buf_idx = 0;
for (auto buf_bit : root2buffered.at(gate_bit)) {
std::string buf_name_str = stringf("%s_buf_%d", pair.second.bit.name.c_str(), ++buf_idx);
if (buf_name_str[0] == '\\')
buf_name_str[0] = '$';
rename_map[buf_bit] = std::make_pair(
InvBit(IdBit(IdString(buf_name_str), pair.second.bit.bit), pair.second.inverted), gold_wire);
}
}
}
for (auto rule : rename_map) {
// Pick a uniq new name
IdBit new_name = rule.second.first.bit;
int dup_idx = 0;
bool must_invert_name = rule.second.first.inverted;
while (must_invert_name ||
(mod->wire(new_name.name) && !unused_bits.count(SigBit(mod->wire(new_name.name), new_name.bit)))) {
std::string new_name_str = stringf("%s_%s_%d", rule.second.first.bit.name.c_str(),
rule.second.first.inverted ? "inv" : "dup", ++dup_idx);
if (new_name_str[0] == '\\')
new_name_str[0] = '$';
new_name.name = IdString(new_name_str);
must_invert_name = false;
}
// Create the wire if needed
Wire *new_wire = mod->wire(new_name.name);
if (!new_wire) {
Wire *gold_wire = rule.second.second;
new_wire = mod->addWire(new_name.name, gold_wire->width);
new_wire->start_offset = gold_wire->start_offset;
new_wire->upto = gold_wire->upto;
for (const auto &attr : gold_wire->attributes)
new_wire->attributes[attr.first] = attr.second;
for (int i = 0; i < new_wire->width; i++)
unused_bits.insert(SigBit(new_wire, i));
}
// Ensure it's wide enough
if (new_wire->width <= new_name.bit)
new_wire->width = new_name.bit + 1;
SigBit old_bit = rule.first;
SigBit new_bit(new_wire, new_name.bit);
unused_bits.erase(new_bit);
// Replace all users
if (bit2port.count(old_bit))
for (auto port_ref : bit2port.at(old_bit)) {
Cell *cell = std::get<0>(port_ref);
IdString port_name = std::get<1>(port_ref);
int port_bit = std::get<2>(port_ref);
SigSpec port_sig = cell->getPort(port_name);
port_sig.replace(port_bit, new_bit);
cell->unsetPort(port_name);
cell->setPort(port_name, port_sig);
}
}
}
~RecoverModuleWorker()
{
delete ce;
delete sigmap;
if (flat)
design->remove(flat);
}
};
struct RecoverNamesWorker {
Design *design, *gold_design = nullptr;
CellTypes ct_all;
RecoverNamesWorker(Design *design) : design(design) {}
pool<IdString> comb_whiteboxes, buffer_types;
// class -> (gold, (gate, inverted))
dict<equiv_cls_t, std::pair<pool<IdBit>, dict<IdBit, bool>>> cls2bits;
void analyse_boxes()
{
for (auto mod : design->modules()) {
if (!mod->get_bool_attribute(ID::whitebox))
continue;
bool is_comb = true;
for (auto cell : mod->cells()) {
if (ct_all.cell_evaluable(cell->type)) {
is_comb = false;
break;
}
}
if (!is_comb)
continue;
comb_whiteboxes.insert(mod->name);
// Buffers have one input and one output; exactly
SigBit in{}, out{};
ConstEval eval(mod);
for (auto wire : mod->wires()) {
if (wire->port_input) {
if (wire->width != 1 || in.wire)
goto not_buffer;
in = SigBit(wire, 0);
}
if (wire->port_output) {
if (wire->width != 1 || out.wire)
goto not_buffer;
out = SigBit(wire, 0);
}
}
if (!in.wire || !out.wire)
goto not_buffer;
// Buffer input mirrors output
for (auto bit : {State::S0, State::S1}) {
eval.clear();
eval.set(in, bit);
SigSpec result(out);
if (!eval.eval(result))
goto not_buffer;
if (result != bit)
goto not_buffer;
}
buffer_types.insert(mod->name);
if (false) {
not_buffer:
continue;
}
}
log_debug("Found %d combinational cells and %d buffer whiteboxes.\n", GetSize(comb_whiteboxes), GetSize(buffer_types));
}
uint32_t x, y, z, w, rng_val;
int rng_bit;
void rng_init()
{
x = INIT_X;
y = INIT_Y;
z = INIT_Z;
w = INIT_W;
rng_bit = 32;
}
uint32_t xorshift128()
{
uint32_t t = x ^ (x << 11);
x = y; y = z; z = w;
w ^= (w >> 19) ^ t ^ (t >> 8);
return w;
}
RTLIL::State next_randbit()
{
if (rng_bit >= 32) {
rng_bit = 0;
rng_val = xorshift128();
}
return ((rng_val >> (rng_bit++)) & 0x1) ? RTLIL::State::S1 : RTLIL::State::S0;
}
int popcount(equiv_cls_t cls) {
int result = 0;
for (unsigned i = 0; i < 8*sizeof(equiv_cls_t); i++)
if ((cls >> i) & 0x1)
++result;
return result;
}
bool prove_equiv(RecoverModuleWorker &gold_worker, RecoverModuleWorker &gate_worker,
const dict<IdBit, IdBit> &gold_anchors, const dict<IdBit, IdBit> &gate_anchors,
IdBit gold_bit, IdBit gate_bit, bool invert) {
ezSatPtr ez;
SatGen satgen(ez.get(), nullptr);
dict<IdBit, int> anchor2var_gold, anchor2var_gate;
int gold_var = gold_worker.setup_sat(&satgen, "gold", gold_bit, gold_anchors, anchor2var_gold);
if (gold_var == -1)
return false;
int gate_var = gate_worker.setup_sat(&satgen, "gate", gate_bit, gate_anchors, anchor2var_gate);
if (gate_var == -1)
return false;
// Assume anchors are equal
for (auto anchor : anchor2var_gate) {
IdBit gold_anchor = gate_anchors.at(anchor.first);
if (!anchor2var_gold.count(gold_anchor))
continue;
ez->assume(ez->IFF(anchor.second, anchor2var_gold.at(gold_anchor)));
}
// Prove equivalence
return !ez->solve(ez->NOT(ez->IFF(gold_var, invert ? ez->NOT(gate_var) : gate_var)));
}
void analyse_mod(Module *gate_mod)
{
Module *gold_mod = gold_design->module(gate_mod->name);
if (!gold_mod)
return;
RecoverModuleWorker gold_worker(gold_mod);
RecoverModuleWorker gate_worker(gate_mod);
gold_worker.prepare();
gate_worker.prepare();
// Find anchors (same-name wire-bits driven in both gold and gate)
dict<IdBit, IdBit> gold_anchors, gate_anchors;
for (auto gold_bit : gold_worker.bit2driver) {
if (gate_worker.bit2primary.count(gold_bit.first)) {
IdBit gate_bit = gate_worker.bit2primary.at(gold_bit.first);
if (!gate_worker.bit2driver.count(gate_bit))
continue;
gold_anchors[gold_bit.first] = gate_bit;
gate_anchors[gate_bit] = gold_bit.first;
}
}
// Run a random-value combinational simulation to find candidate equivalence classes
dict<IdBit, RTLIL::State> gold_anchor_vals, gate_anchor_vals;
rng_init();
for (int t = 0; t < sim_length; t++) {
for (auto anchor : gold_anchors) {
gold_anchor_vals[anchor.first] = next_randbit();
gate_anchor_vals[anchor.second] = gold_anchor_vals[anchor.first];
}
gold_worker.sim_cycle(t, gold_anchor_vals);
gate_worker.sim_cycle(t, gate_anchor_vals);
}
log_debug("%d candidate equiv classes in gold; %d in gate\n", GetSize(gold_worker.bit2cls), GetSize(gate_worker.bit2cls));
// Group bits by equivalence classes together
dict<equiv_cls_t, std::pair<pool<IdBit>, pool<InvBit>>> cls2bits;
gold_worker.group_classes(cls2bits, false);
gate_worker.group_classes(cls2bits, true);
gate_worker.compute_depths(gate_anchors);
// Sort equivalence classes by shallowest first (so we have as many anchors as possible when reaching deeper bits)
std::vector<std::pair<equiv_cls_t, int>> cls_depth;
for (auto &cls : cls2bits) {
if (cls.second.second.empty())
continue;
int depth = 0;
for (auto gate_bit : cls.second.second) {
if (!gate_worker.bit2depth.count(gate_bit.bit))
continue;
depth = std::max(depth, gate_worker.bit2depth.at(gate_bit.bit));
}
cls_depth.emplace_back(cls.first, depth);
}
std::stable_sort(cls_depth.begin(), cls_depth.end(),
[](const std::pair<equiv_cls_t, int> &a, const std::pair<equiv_cls_t, int> &b) {
return a.second < b.second;
});
// The magic result we've worked hard for....
dict<IdBit, InvBit> gate2gold;
// Solve starting from shallowest
for (auto cls : cls_depth) {
int pop = popcount(cls.first);
// Equivalence classes with only one set bit are invariably a waste of SAT time
if (pop == 1 || pop == (8*sizeof(equiv_cls_t) - 1))
continue;
log_debug("equivalence class: %016" PRIx64 "\n", cls.first);
const pool<IdBit> &gold_bits = cls2bits.at(cls.first).first;
const pool<InvBit> &gate_bits = cls2bits.at(cls.first).second;
if (gold_bits.empty() || gate_bits.empty())
continue;
pool<IdBit> solved_gate;
if (GetSize(gold_bits) > 10)
continue; // large equivalence classes are not very interesting; skip
for (IdBit gold_bit : gold_bits) {
for (auto gate_bit : gate_bits) {
if (solved_gate.count(gate_bit.bit))
continue;
log_debug(" attempting to prove %s[%d] == %s%s[%d]\n", log_id(gold_bit.name), gold_bit.bit,
gate_bit.inverted ? "" : "!", log_id(gate_bit.bit.name), gate_bit.bit.bit);
if (!prove_equiv(gold_worker, gate_worker, gold_anchors, gate_anchors, gold_bit, gate_bit.bit, gate_bit.inverted))
continue;
log_debug(" success!\n");
// Success!
gate2gold[gate_bit.bit] = InvBit(gold_bit, gate_bit.inverted);
if (!gate_bit.inverted) {
// Only add as anchor if not inverted
gold_anchors[gold_bit] = gate_bit.bit;
gate_anchors[gate_bit.bit] = gold_bit;
}
solved_gate.insert(gate_bit.bit);
}
// All solved...
if (GetSize(solved_gate) == GetSize(gate_bits))
break;
}
}
log("Recovered %d net name pairs in module `%s' out.\n", GetSize(gate2gold), log_id(gate_mod));
gate_worker.do_rename(gold_mod, gate2gold, buffer_types);
}
void operator()(string command)
{
// Make a backup copy of the pre-mapping design for later
gold_design = new RTLIL::Design;
for (auto mod : design->modules())
gold_design->add(mod->clone());
run_pass(command, design);
analyse_boxes();
// keeping our own std::vector here avoids modify-while-iterating issues
std::vector<Module *> to_analyse;
for (auto mod : design->modules())
if (!mod->get_blackbox_attribute())
to_analyse.push_back(mod);
for (auto mod : to_analyse)
analyse_mod(mod);
}
~RecoverNamesWorker() {
delete gold_design;
}
};
struct RecoverNamesPass : public Pass {
RecoverNamesPass() : Pass("recover_names", "Execute a lossy mapping command and recover original netnames") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" recover_names [command]\n");
log("\n");
log("This pass executes a lossy mapping command and uses a combination of simulation\n");
log(" to find candidate equivalences and SAT to recover exact original net names.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing RECOVER_NAMES pass (run mapping and recover original names).\n");
string command;
size_t argidx = 1;
for (; argidx < args.size(); argidx++) {
if (command.empty()) {
if (args[argidx].compare(0, 1, "-") == 0)
cmd_error(args, argidx, "Unknown option.");
} else {
command += " ";
}
command += args[argidx];
}
if (command.empty())
log_cmd_error("No mapping pass specified!\n");
RecoverNamesWorker worker(design);
worker(command);
}
} RecoverNamesPass;
PRIVATE_NAMESPACE_END