yosys/passes/opt/opt_muxtree.cc

507 lines
15 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "kernel/celltypes.h"
#include <stdlib.h>
#include <stdio.h>
#include <set>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
using RTLIL::id2cstr;
struct OptMuxtreeWorker
{
RTLIL::Design *design;
RTLIL::Module *module;
SigMap assign_map;
int removed_count;
int glob_abort_cnt = 100000;
struct bitinfo_t {
bool seen_non_mux;
pool<int> mux_users;
pool<int> mux_drivers;
};
idict<SigBit> bit2num;
vector<bitinfo_t> bit2info;
struct portinfo_t {
int ctrl_sig;
pool<int> input_sigs;
pool<int> input_muxes;
bool const_activated;
bool const_deactivated;
bool enabled;
};
struct muxinfo_t {
RTLIL::Cell *cell;
vector<portinfo_t> ports;
};
vector<muxinfo_t> mux2info;
vector<bool> root_muxes;
vector<bool> root_enable_muxes;
pool<int> root_mux_rerun;
OptMuxtreeWorker(RTLIL::Design *design, RTLIL::Module *module) :
design(design), module(module), assign_map(module), removed_count(0)
{
log("Running muxtree optimizer on module %s..\n", module->name.c_str());
log(" Creating internal representation of mux trees.\n");
// Populate bit2info[]:
// .seen_non_mux
// .mux_users
// .mux_drivers
// Populate mux2info[].ports[]:
// .ctrl_sig
// .input_sigs
// .const_activated
// .const_deactivated
for (auto cell : module->cells())
{
if (cell->type.in(ID($mux), ID($pmux)))
{
RTLIL::SigSpec sig_a = cell->getPort(ID::A);
RTLIL::SigSpec sig_b = cell->getPort(ID::B);
RTLIL::SigSpec sig_s = cell->getPort(ID::S);
RTLIL::SigSpec sig_y = cell->getPort(ID::Y);
muxinfo_t muxinfo;
muxinfo.cell = cell;
for (int i = 0; i < GetSize(sig_s); i++) {
RTLIL::SigSpec sig = sig_b.extract(i*GetSize(sig_a), GetSize(sig_a));
RTLIL::SigSpec ctrl_sig = assign_map(sig_s.extract(i, 1));
portinfo_t portinfo;
portinfo.ctrl_sig = sig2bits(ctrl_sig, false).front();
for (int idx : sig2bits(sig)) {
bit2info[idx].mux_users.insert(GetSize(mux2info));
portinfo.input_sigs.insert(idx);
}
portinfo.const_activated = ctrl_sig.is_fully_const() && ctrl_sig.as_bool();
portinfo.const_deactivated = ctrl_sig.is_fully_const() && !ctrl_sig.as_bool();
portinfo.enabled = false;
muxinfo.ports.push_back(portinfo);
}
portinfo_t portinfo;
for (int idx : sig2bits(sig_a)) {
bit2info[idx].mux_users.insert(GetSize(mux2info));
portinfo.input_sigs.insert(idx);
}
portinfo.ctrl_sig = -1;
portinfo.const_activated = false;
portinfo.const_deactivated = false;
portinfo.enabled = false;
muxinfo.ports.push_back(portinfo);
for (int idx : sig2bits(sig_y))
bit2info[idx].mux_drivers.insert(GetSize(mux2info));
for (int idx : sig2bits(sig_s))
bit2info[idx].seen_non_mux = true;
mux2info.push_back(muxinfo);
}
else
{
for (auto &it : cell->connections()) {
for (int idx : sig2bits(it.second))
bit2info[idx].seen_non_mux = true;
}
}
}
for (auto wire : module->wires()) {
if (wire->port_output || wire->get_bool_attribute(ID::keep))
for (int idx : sig2bits(RTLIL::SigSpec(wire)))
bit2info[idx].seen_non_mux = true;
}
if (mux2info.empty()) {
log(" No muxes found in this module.\n");
return;
}
// Populate mux2info[].ports[]:
// .input_muxes
for (int i = 0; i < GetSize(bit2info); i++)
for (int j : bit2info[i].mux_users)
for (auto &p : mux2info[j].ports) {
if (p.input_sigs.count(i))
for (int k : bit2info[i].mux_drivers)
p.input_muxes.insert(k);
}
log(" Evaluating internal representation of mux trees.\n");
dict<int, pool<int>> mux_to_users;
root_muxes.resize(GetSize(mux2info));
root_enable_muxes.resize(GetSize(mux2info));
for (auto &bi : bit2info) {
for (int i : bi.mux_drivers)
for (int j : bi.mux_users)
mux_to_users[i].insert(j);
if (!bi.seen_non_mux)
continue;
for (int mux_idx : bi.mux_drivers) {
root_muxes.at(mux_idx) = true;
root_enable_muxes.at(mux_idx) = true;
}
}
for (auto &it : mux_to_users)
if (GetSize(it.second) > 1)
root_muxes.at(it.first) = true;
for (int mux_idx = 0; mux_idx < GetSize(root_muxes); mux_idx++)
if (root_muxes.at(mux_idx)) {
log_debug(" Root of a mux tree: %s%s\n", log_id(mux2info[mux_idx].cell), root_enable_muxes.at(mux_idx) ? " (pure)" : "");
root_mux_rerun.erase(mux_idx);
eval_root_mux(mux_idx);
if (glob_abort_cnt == 0) {
log(" Giving up (too many iterations)\n");
return;
}
}
while (!root_mux_rerun.empty()) {
int mux_idx = *root_mux_rerun.begin();
log_debug(" Root of a mux tree: %s (rerun as non-pure)\n", log_id(mux2info[mux_idx].cell));
log_assert(root_enable_muxes.at(mux_idx));
root_mux_rerun.erase(mux_idx);
eval_root_mux(mux_idx);
if (glob_abort_cnt == 0) {
log(" Giving up (too many iterations)\n");
return;
}
}
log(" Analyzing evaluation results.\n");
log_assert(glob_abort_cnt > 0);
for (auto &mi : mux2info)
{
vector<int> live_ports;
for (int port_idx = 0; port_idx < GetSize(mi.ports); port_idx++) {
portinfo_t &pi = mi.ports[port_idx];
if (pi.enabled) {
live_ports.push_back(port_idx);
} else {
log(" dead port %d/%d on %s %s.\n", port_idx+1, GetSize(mi.ports),
mi.cell->type.c_str(), mi.cell->name.c_str());
removed_count++;
}
}
if (GetSize(live_ports) == GetSize(mi.ports))
continue;
if (live_ports.empty()) {
module->remove(mi.cell);
continue;
}
RTLIL::SigSpec sig_a = mi.cell->getPort(ID::A);
RTLIL::SigSpec sig_b = mi.cell->getPort(ID::B);
RTLIL::SigSpec sig_s = mi.cell->getPort(ID::S);
RTLIL::SigSpec sig_y = mi.cell->getPort(ID::Y);
RTLIL::SigSpec sig_ports = sig_b;
sig_ports.append(sig_a);
if (GetSize(live_ports) == 1)
{
RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[0]*GetSize(sig_a), GetSize(sig_a));
module->connect(RTLIL::SigSig(sig_y, sig_in));
module->remove(mi.cell);
}
else
{
RTLIL::SigSpec new_sig_a, new_sig_b, new_sig_s;
for (int i = 0; i < GetSize(live_ports); i++) {
RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[i]*GetSize(sig_a), GetSize(sig_a));
if (i == GetSize(live_ports)-1) {
new_sig_a = sig_in;
} else {
new_sig_b.append(sig_in);
new_sig_s.append(sig_s.extract(live_ports[i], 1));
}
}
mi.cell->setPort(ID::A, new_sig_a);
mi.cell->setPort(ID::B, new_sig_b);
mi.cell->setPort(ID::S, new_sig_s);
if (GetSize(new_sig_s) == 1) {
mi.cell->type = ID($mux);
mi.cell->parameters.erase(ID::S_WIDTH);
} else {
mi.cell->parameters[ID::S_WIDTH] = RTLIL::Const(GetSize(new_sig_s));
}
}
}
}
vector<int> sig2bits(RTLIL::SigSpec sig, bool skip_non_wires = true)
{
vector<int> results;
assign_map.apply(sig);
for (auto &bit : sig)
if (bit.wire != NULL) {
if (bit2num.count(bit) == 0) {
bitinfo_t info;
info.seen_non_mux = false;
bit2num.expect(bit, GetSize(bit2info));
bit2info.push_back(info);
}
results.push_back(bit2num.at(bit));
} else if (!skip_non_wires)
results.push_back(-1);
return results;
}
struct knowledge_t
{
// database of known inactive signals
// the payload is a reference counter used to manage the
// list. when it is non-zero the signal in known to be inactive
vector<int> known_inactive;
// database of known active signals
vector<int> known_active;
// this is just used to keep track of visited muxes in order to prohibit
// endless recursion in mux loops
vector<bool> visited_muxes;
};
void eval_mux_port(knowledge_t &knowledge, int mux_idx, int port_idx, bool do_replace_known, bool do_enable_ports, int abort_count)
{
if (glob_abort_cnt == 0)
return;
muxinfo_t &muxinfo = mux2info[mux_idx];
if (do_enable_ports)
muxinfo.ports[port_idx].enabled = true;
for (int i = 0; i < GetSize(muxinfo.ports); i++) {
if (i == port_idx)
continue;
if (muxinfo.ports[i].ctrl_sig >= 0)
knowledge.known_inactive.at(muxinfo.ports[i].ctrl_sig)++;
}
if (port_idx < GetSize(muxinfo.ports)-1 && !muxinfo.ports[port_idx].const_activated)
knowledge.known_active.at(muxinfo.ports[port_idx].ctrl_sig)++;
vector<int> parent_muxes;
for (int m : muxinfo.ports[port_idx].input_muxes) {
if (knowledge.visited_muxes[m])
continue;
knowledge.visited_muxes[m] = true;
parent_muxes.push_back(m);
}
for (int m : parent_muxes) {
if (root_enable_muxes.at(m))
continue;
else if (root_muxes.at(m)) {
if (abort_count == 0) {
root_mux_rerun.insert(m);
root_enable_muxes.at(m) = true;
log_debug(" Removing pure flag from root mux %s.\n", log_id(mux2info[m].cell));
} else
eval_mux(knowledge, m, false, do_enable_ports, abort_count - 1);
} else
eval_mux(knowledge, m, do_replace_known, do_enable_ports, abort_count);
if (glob_abort_cnt == 0)
return;
}
for (int m : parent_muxes)
knowledge.visited_muxes[m] = false;
if (port_idx < GetSize(muxinfo.ports)-1 && !muxinfo.ports[port_idx].const_activated)
knowledge.known_active.at(muxinfo.ports[port_idx].ctrl_sig)--;
for (int i = 0; i < GetSize(muxinfo.ports); i++) {
if (i == port_idx)
continue;
if (muxinfo.ports[i].ctrl_sig >= 0)
knowledge.known_inactive.at(muxinfo.ports[i].ctrl_sig)--;
}
}
void replace_known(knowledge_t &knowledge, muxinfo_t &muxinfo, IdString portname)
{
SigSpec sig = muxinfo.cell->getPort(portname);
bool did_something = false;
int width = 0;
idict<int> ctrl_bits;
if (portname == ID::B)
width = GetSize(muxinfo.cell->getPort(ID::A));
for (int bit : sig2bits(muxinfo.cell->getPort(ID::S), false))
ctrl_bits(bit);
int port_idx = 0, port_off = 0;
vector<int> bits = sig2bits(sig, false);
for (int i = 0; i < GetSize(bits); i++) {
if (bits[i] >= 0) {
if (knowledge.known_inactive.at(bits[i])) {
sig[i] = State::S0;
did_something = true;
} else
if (knowledge.known_active.at(bits[i])) {
sig[i] = State::S1;
did_something = true;
}
if (ctrl_bits.count(bits[i])) {
if (width) {
sig[i] = ctrl_bits.at(bits[i]) == port_idx ? State::S1 : State::S0;
} else {
sig[i] = State::S0;
}
did_something = true;
}
}
if (width) {
if (++port_off == width)
port_idx++, port_off=0;
}
}
if (did_something) {
log(" Replacing known input bits on port %s of cell %s: %s -> %s\n", log_id(portname),
log_id(muxinfo.cell), log_signal(muxinfo.cell->getPort(portname)), log_signal(sig));
muxinfo.cell->setPort(portname, sig);
}
}
void eval_mux(knowledge_t &knowledge, int mux_idx, bool do_replace_known, bool do_enable_ports, int abort_count)
{
if (glob_abort_cnt == 0)
return;
glob_abort_cnt--;
muxinfo_t &muxinfo = mux2info[mux_idx];
// set input ports to constants if we find known active or inactive signals
if (do_replace_known) {
replace_known(knowledge, muxinfo, ID::A);
replace_known(knowledge, muxinfo, ID::B);
}
// if there is a constant activated port we just use it
for (int port_idx = 0; port_idx < GetSize(muxinfo.ports); port_idx++)
{
portinfo_t &portinfo = muxinfo.ports[port_idx];
if (portinfo.const_activated) {
eval_mux_port(knowledge, mux_idx, port_idx, do_replace_known, do_enable_ports, abort_count);
return;
}
}
// compare ports with known_active signals. if we find a match, only this
// port can be active. do not include the last port (its the default port
// that has no control signals).
for (int port_idx = 0; port_idx < GetSize(muxinfo.ports)-1; port_idx++)
{
portinfo_t &portinfo = muxinfo.ports[port_idx];
if (portinfo.const_deactivated)
continue;
if (knowledge.known_active.at(portinfo.ctrl_sig)) {
eval_mux_port(knowledge, mux_idx, port_idx, do_replace_known, do_enable_ports, abort_count);
return;
}
}
// eval all ports that could be activated (control signal is not in
// known_inactive or const_deactivated).
for (int port_idx = 0; port_idx < GetSize(muxinfo.ports); port_idx++)
{
portinfo_t &portinfo = muxinfo.ports[port_idx];
if (portinfo.const_deactivated)
continue;
if (port_idx < GetSize(muxinfo.ports)-1)
if (knowledge.known_inactive.at(portinfo.ctrl_sig))
continue;
eval_mux_port(knowledge, mux_idx, port_idx, do_replace_known, do_enable_ports, abort_count);
if (glob_abort_cnt == 0)
return;
}
}
void eval_root_mux(int mux_idx)
{
log_assert(glob_abort_cnt > 0);
knowledge_t knowledge;
knowledge.known_inactive.resize(GetSize(bit2info));
knowledge.known_active.resize(GetSize(bit2info));
knowledge.visited_muxes.resize(GetSize(mux2info));
knowledge.visited_muxes[mux_idx] = true;
eval_mux(knowledge, mux_idx, true, root_enable_muxes.at(mux_idx), 3);
}
};
struct OptMuxtreePass : public Pass {
OptMuxtreePass() : Pass("opt_muxtree", "eliminate dead trees in multiplexer trees") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" opt_muxtree [selection]\n");
log("\n");
log("This pass analyzes the control signals for the multiplexer trees in the design\n");
log("and identifies inputs that can never be active. It then removes this dead\n");
log("branches from the multiplexer trees.\n");
log("\n");
log("This pass only operates on completely selected modules without processes.\n");
log("\n");
}
void execute(vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing OPT_MUXTREE pass (detect dead branches in mux trees).\n");
extra_args(args, 1, design);
int total_count = 0;
for (auto module : design->selected_whole_modules_warn()) {
if (module->has_processes_warn())
continue;
OptMuxtreeWorker worker(design, module);
total_count += worker.removed_count;
}
if (total_count)
design->scratchpad_set_bool("opt.did_something", true);
log("Removed %d multiplexer ports.\n", total_count);
}
} OptMuxtreePass;
PRIVATE_NAMESPACE_END