yosys/passes/opt/opt_mem_feedback.cc

351 lines
10 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/mem.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
// Describes found feedback path.
struct FeedbackPath {
// Which write port it is.
int wrport_idx;
// Which data bit of that write port it is.
int data_bit_idx;
// Values of all mux select signals that need to be set to select this path.
dict<RTLIL::SigBit, bool> condition;
// The exact feedback bit used (used to match read port).
SigBit feedback_bit;
FeedbackPath(int wrport_idx, int data_bit_idx, dict<RTLIL::SigBit, bool> condition, SigBit feedback_bit) : wrport_idx(wrport_idx), data_bit_idx(data_bit_idx), condition(condition), feedback_bit(feedback_bit) {}
};
struct OptMemFeedbackWorker
{
RTLIL::Design *design;
RTLIL::Module *module;
SigMap sigmap, sigmap_xmux;
FfInitVals initvals;
dict<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux;
dict<RTLIL::SigBit, int> sig_users_count;
dict<pair<pool<dict<SigBit, bool>>, SigBit>, SigBit> conditions_logic_cache;
// -----------------------------------------------------------------
// Converting feedbacks to async read ports to proper enable signals
// -----------------------------------------------------------------
void find_data_feedback(const pool<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig,
const dict<RTLIL::SigBit, bool> &state,
int wrport_idx, int data_bit_idx,
std::vector<FeedbackPath> &paths)
{
if (async_rd_bits.count(sig)) {
paths.push_back(FeedbackPath(wrport_idx, data_bit_idx, state, sig));
return;
}
if (sig_users_count[sig] != 1) {
// Only descend into muxes if we're the only user.
return;
}
if (sig_to_mux.count(sig) == 0)
return;
RTLIL::Cell *cell = sig_to_mux.at(sig).first;
int bit_idx = sig_to_mux.at(sig).second;
std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort(ID::A));
std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort(ID::B));
std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort(ID::S));
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y));
log_assert(sig_y.at(bit_idx) == sig);
for (int i = 0; i < GetSize(sig_s); i++)
if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) {
find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, wrport_idx, data_bit_idx, paths);
return;
}
for (int i = 0; i < GetSize(sig_s); i++)
{
if (state.count(sig_s[i]) && state.at(sig_s[i]) == false)
continue;
dict<RTLIL::SigBit, bool> new_state = state;
new_state[sig_s[i]] = true;
find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, wrport_idx, data_bit_idx, paths);
}
dict<RTLIL::SigBit, bool> new_state = state;
for (auto bit : sig_s)
new_state[bit] = false;
find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, wrport_idx, data_bit_idx, paths);
}
RTLIL::SigBit conditions_to_logic(pool<dict<RTLIL::SigBit, bool>> &conditions, SigBit olden)
{
auto key = make_pair(conditions, olden);
if (conditions_logic_cache.count(key))
return conditions_logic_cache.at(key);
RTLIL::SigSpec terms;
for (auto &cond : conditions) {
RTLIL::SigSpec sig1, sig2;
for (auto &it : cond) {
sig1.append(it.first);
sig2.append(it.second ? RTLIL::State::S1 : RTLIL::State::S0);
}
terms.append(module->Ne(NEW_ID, sig1, sig2));
}
if (olden != State::S1)
terms.append(olden);
if (GetSize(terms) == 0)
terms = State::S1;
if (GetSize(terms) > 1)
terms = module->ReduceAnd(NEW_ID, terms);
return conditions_logic_cache[key] = terms;
}
void translate_rd_feedback_to_en(Mem &mem)
{
// Look for async read ports that may be suitable for feedback paths.
dict<RTLIL::SigSpec, std::vector<pool<RTLIL::SigBit>>> async_rd_bits;
for (auto &port : mem.rd_ports)
{
if (port.clk_enable)
continue;
for (int sub = 0; sub < (1 << port.wide_log2); sub++) {
SigSpec addr = sigmap_xmux(port.sub_addr(sub));
async_rd_bits[addr].resize(mem.width);
for (int i = 0; i < mem.width; i++)
async_rd_bits[addr][i].insert(sigmap(port.data[i + sub * mem.width]));
}
}
if (async_rd_bits.empty())
return;
// Look for actual feedback paths.
std::vector<FeedbackPath> paths;
for (int i = 0; i < GetSize(mem.wr_ports); i++)
{
auto &port = mem.wr_ports[i];
log(" Analyzing %s.%s write port %d.\n", log_id(module), log_id(mem.memid), i);
for (int sub = 0; sub < (1 << port.wide_log2); sub++)
{
SigSpec addr = sigmap_xmux(port.sub_addr(sub));
if (!async_rd_bits.count(addr))
continue;
for (int j = 0; j < mem.width; j++)
{
int bit_idx = sub * mem.width + j;
if (port.en[bit_idx] == State::S0)
continue;
dict<RTLIL::SigBit, bool> state;
find_data_feedback(async_rd_bits.at(addr).at(j), sigmap(port.data[bit_idx]), state, i, bit_idx, paths);
}
}
}
if (paths.empty())
return;
// Now determine which read ports are actually used only for
// feedback paths, and can be removed.
dict<SigBit, int> feedback_users_count;
for (auto &path : paths)
feedback_users_count[path.feedback_bit]++;
pool<SigBit> feedback_ok;
for (auto &port : mem.rd_ports)
{
if (port.clk_enable)
continue;
bool ok = true;
for (auto bit : sigmap(port.data))
if (sig_users_count[bit] != feedback_users_count[bit])
ok = false;
if (ok)
{
// This port is going bye-bye.
for (auto bit : sigmap(port.data))
feedback_ok.insert(bit);
port.removed = true;
}
}
if (feedback_ok.empty())
return;
// Prepare a feedback condition list grouped by port bits.
dict<std::pair<int, int>, pool<dict<SigBit, bool>>> portbit_conds;
for (auto &path : paths)
if (feedback_ok.count(path.feedback_bit))
portbit_conds[std::make_pair(path.wrport_idx, path.data_bit_idx)].insert(path.condition);
if (portbit_conds.empty())
return;
// Okay, let's do it.
log("Populating enable bits on write ports of memory %s.%s with async read feedback:\n", log_id(module), log_id(mem.memid));
// If a write port has a feedback path that we're about to bypass,
// but also has priority over some other write port, the feedback
// path is not necessarily a NOP — it may overwrite the other port.
// Emulate this effect by converting the priority to soft logic
// (this will affect the other port's enable signal).
for (auto &it : portbit_conds)
{
int wrport_idx = it.first.first;
auto &port = mem.wr_ports[wrport_idx];
for (int i = 0; i < wrport_idx; i++)
if (port.priority_mask[i])
mem.emulate_priority(i, wrport_idx, &initvals);
}
for (auto &it : portbit_conds)
{
int wrport_idx = it.first.first;
int bit = it.first.second;
auto &port = mem.wr_ports[wrport_idx];
port.en[bit] = conditions_to_logic(it.second, port.en[bit]);
log(" Port %d bit %d: added enable logic for %d different cases.\n", wrport_idx, bit, GetSize(it.second));
}
mem.emit();
for (auto bit : feedback_ok)
module->connect(bit, State::Sx);
design->scratchpad_set_bool("opt.did_something", true);
}
// -------------
// Setup and run
// -------------
OptMemFeedbackWorker(RTLIL::Design *design) : design(design) {}
void operator()(RTLIL::Module* module)
{
std::vector<Mem> memories = Mem::get_selected_memories(module);
this->module = module;
sigmap.set(module);
initvals.set(&sigmap, module);
sig_to_mux.clear();
conditions_logic_cache.clear();
sigmap_xmux = sigmap;
for (auto wire : module->wires()) {
if (wire->port_output)
for (auto bit : sigmap(wire))
sig_users_count[bit]++;
}
for (auto cell : module->cells())
{
if (cell->type == ID($mux))
{
RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort(ID::A));
RTLIL::SigSpec sig_b = sigmap_xmux(cell->getPort(ID::B));
if (sig_a.is_fully_undef())
sigmap_xmux.add(cell->getPort(ID::Y), sig_b);
else if (sig_b.is_fully_undef())
sigmap_xmux.add(cell->getPort(ID::Y), sig_a);
}
if (cell->type.in(ID($mux), ID($pmux)))
{
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y));
for (int i = 0; i < int(sig_y.size()); i++)
sig_to_mux[sig_y[i]] = std::pair<RTLIL::Cell*, int>(cell, i);
}
for (auto &conn : cell->connections())
if (!cell->known() || cell->input(conn.first))
for (auto bit : sigmap(conn.second))
sig_users_count[bit]++;
}
for (auto &mem : memories)
translate_rd_feedback_to_en(mem);
}
};
struct OptMemFeedbackPass : public Pass {
OptMemFeedbackPass() : Pass("opt_mem_feedback", "convert memory read-to-write port feedback paths to write enables") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" opt_mem_feedback [selection]\n");
log("\n");
log("This pass detects cases where an asynchronous read port is only connected via\n");
log("a mux tree to a write port with the same address. When such a connection is\n");
log("found, it is replaced with a new condition on an enable signal, allowing\n");
log("for removal of the read port.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override {
log_header(design, "Executing OPT_MEM_FEEDBACK pass (finding memory read-to-write feedback paths).\n");
extra_args(args, 1, design);
OptMemFeedbackWorker worker(design);
for (auto module : design->selected_modules())
worker(module);
}
} OptMemFeedbackPass;
PRIVATE_NAMESPACE_END