yosys/frontends/aiger/aigerparse.cc

1067 lines
32 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]] The AIGER And-Inverter Graph (AIG) Format Version 20071012
// Armin Biere. The AIGER And-Inverter Graph (AIG) Format Version 20071012. Technical Report 07/1, October 2011, FMV Reports Series, Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria.
// http://fmv.jku.at/papers/Biere-FMV-TR-07-1.pdf
// https://stackoverflow.com/a/46137633
#ifdef _MSC_VER
#include <stdlib.h>
#define __builtin_bswap32 _byteswap_ulong
#elif defined(__APPLE__)
#include <libkern/OSByteOrder.h>
#define __builtin_bswap32 OSSwapInt32
#endif
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "aigerparse.h"
YOSYS_NAMESPACE_BEGIN
inline int32_t from_big_endian(int32_t i32) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return __builtin_bswap32(i32);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return i32;
#else
#error "Unknown endianness"
#endif
}
#define log_debug2(...) ;
//#define log_debug2(...) log_debug(__VA_ARGS__)
static int decimal_digits(uint32_t n) {
static uint32_t digit_cutoff[9] = {
10, 100, 1000, 10000, 100000,
1000000, 10000000, 100000000, 1000000000
};
for (int i = 0; i < 9; ++i) {
if (n < digit_cutoff[i]) return i + 1;
}
return 10;
}
struct ConstEvalAig
{
RTLIL::Module *module;
dict<RTLIL::SigBit, RTLIL::State> values_map;
dict<RTLIL::SigBit, RTLIL::Cell*> sig2driver;
dict<SigBit, pool<RTLIL::SigBit>> sig2deps;
ConstEvalAig(RTLIL::Module *module) : module(module)
{
for (auto &it : module->cells_) {
if (!yosys_celltypes.cell_known(it.second->type))
continue;
for (auto &it2 : it.second->connections())
if (yosys_celltypes.cell_output(it.second->type, it2.first)) {
auto r = sig2driver.insert(std::make_pair(it2.second, it.second));
log_assert(r.second);
}
}
}
void clear()
{
values_map.clear();
sig2deps.clear();
}
void set(RTLIL::SigBit sig, RTLIL::State value)
{
auto it = values_map.find(sig);
#ifndef NDEBUG
if (it != values_map.end()) {
RTLIL::State current_val = it->second;
log_assert(current_val == value);
}
#endif
if (it != values_map.end())
it->second = value;
else
values_map[sig] = value;
}
void set_incremental(RTLIL::SigSpec sig, RTLIL::Const value)
{
log_assert(GetSize(sig) == GetSize(value));
for (int i = 0; i < GetSize(sig); i++) {
auto it = values_map.find(sig[i]);
if (it != values_map.end()) {
RTLIL::State current_val = it->second;
if (current_val != value[i])
for (auto dep : sig2deps[sig[i]])
values_map.erase(dep);
it->second = value[i];
}
else
values_map[sig[i]] = value[i];
}
}
void compute_deps(RTLIL::SigBit output, const pool<RTLIL::SigBit> &inputs)
{
sig2deps[output].insert(output);
RTLIL::Cell *cell = sig2driver.at(output);
RTLIL::SigBit sig_a = cell->getPort(ID::A);
sig2deps[sig_a].reserve(sig2deps[sig_a].size() + sig2deps[output].size()); // Reserve so that any invalidation
// that may occur does so here, and
// not mid insertion (below)
sig2deps[sig_a].insert(sig2deps[output].begin(), sig2deps[output].end());
if (!inputs.count(sig_a))
compute_deps(sig_a, inputs);
if (cell->type == ID($_AND_)) {
RTLIL::SigSpec sig_b = cell->getPort(ID::B);
sig2deps[sig_b].reserve(sig2deps[sig_b].size() + sig2deps[output].size()); // Reserve so that any invalidation
// that may occur does so here, and
// not mid insertion (below)
sig2deps[sig_b].insert(sig2deps[output].begin(), sig2deps[output].end());
if (!inputs.count(sig_b))
compute_deps(sig_b, inputs);
}
else if (cell->type == ID($_NOT_)) {
}
else log_abort();
}
bool eval(RTLIL::Cell *cell)
{
RTLIL::SigBit sig_y = cell->getPort(ID::Y);
if (values_map.count(sig_y))
return true;
RTLIL::SigBit sig_a = cell->getPort(ID::A);
if (!eval(sig_a))
return false;
RTLIL::State eval_ret = RTLIL::Sx;
if (cell->type == ID($_NOT_)) {
if (sig_a == State::S0) eval_ret = State::S1;
else if (sig_a == State::S1) eval_ret = State::S0;
}
else if (cell->type == ID($_AND_)) {
if (sig_a == State::S0) {
eval_ret = State::S0;
goto eval_end;
}
{
RTLIL::SigBit sig_b = cell->getPort(ID::B);
if (!eval(sig_b))
return false;
if (sig_b == State::S0) {
eval_ret = State::S0;
goto eval_end;
}
if (sig_a != State::S1 || sig_b != State::S1)
goto eval_end;
eval_ret = State::S1;
}
}
else log_abort();
eval_end:
set(sig_y, eval_ret);
return true;
}
bool eval(RTLIL::SigBit &sig)
{
auto it = values_map.find(sig);
if (it != values_map.end()) {
sig = it->second;
return true;
}
RTLIL::Cell *cell = sig2driver.at(sig);
if (!eval(cell))
return false;
it = values_map.find(sig);
if (it != values_map.end()) {
sig = it->second;
return true;
}
return false;
}
};
AigerReader::AigerReader(RTLIL::Design *design, std::istream &f, RTLIL::IdString module_name, RTLIL::IdString clk_name, std::string map_filename, bool wideports)
: design(design), f(f), clk_name(clk_name), map_filename(map_filename), wideports(wideports), aiger_autoidx(autoidx++)
{
module = new RTLIL::Module;
module->name = module_name;
if (design->module(module->name))
log_error("Duplicate definition of module %s!\n", log_id(module->name));
}
void AigerReader::parse_aiger()
{
std::string header;
f >> header;
if (header != "aag" && header != "aig")
log_error("Unsupported AIGER file!\n");
// Parse rest of header
if (!(f >> M >> I >> L >> O >> A))
log_error("Invalid AIGER header\n");
// Optional values
B = C = J = F = 0;
if (f.peek() != ' ') goto end_of_header;
if (!(f >> B)) log_error("Invalid AIGER header\n");
if (f.peek() != ' ') goto end_of_header;
if (!(f >> C)) log_error("Invalid AIGER header\n");
if (f.peek() != ' ') goto end_of_header;
if (!(f >> J)) log_error("Invalid AIGER header\n");
if (f.peek() != ' ') goto end_of_header;
if (!(f >> F)) log_error("Invalid AIGER header\n");
end_of_header:
std::string line;
std::getline(f, line); // Ignore up to start of next line, as standard
// says anything that follows could be used for
// optional sections
log_debug("M=%u I=%u L=%u O=%u A=%u B=%u C=%u J=%u F=%u\n", M, I, L, O, A, B, C, J, F);
line_count = 1;
piNum = 0;
flopNum = 0;
if (header == "aag")
parse_aiger_ascii();
else if (header == "aig")
parse_aiger_binary();
else
log_abort();
RTLIL::Wire* n0 = module->wire(stringf("$aiger%d$0", aiger_autoidx));
if (n0)
module->connect(n0, State::S0);
// Parse footer (symbol table, comments, etc.)
unsigned l1;
std::string s;
for (int c = f.peek(); c != EOF; c = f.peek(), ++line_count) {
if (c == 'i' || c == 'l' || c == 'o' || c == 'b') {
f.ignore(1);
if (!(f >> l1 >> s))
log_error("Line %u cannot be interpreted as a symbol entry!\n", line_count);
if ((c == 'i' && l1 > inputs.size()) || (c == 'l' && l1 > latches.size()) || (c == 'o' && l1 > outputs.size()))
log_error("Line %u has invalid symbol position!\n", line_count);
RTLIL::IdString escaped_s = stringf("\\%s", s.c_str());
RTLIL::Wire* wire;
if (c == 'i') wire = inputs[l1];
else if (c == 'l') wire = latches[l1];
else if (c == 'o') {
wire = module->wire(escaped_s);
if (wire) {
// Could have been renamed by a latch
module->swap_names(wire, outputs[l1]);
module->connect(outputs[l1], wire);
goto next;
}
wire = outputs[l1];
}
else if (c == 'b') wire = bad_properties[l1];
else log_abort();
module->rename(wire, escaped_s);
}
else if (c == 'j' || c == 'f') {
// TODO
}
else if (c == 'c') {
f.ignore(1);
if (f.peek() == '\r')
f.ignore(1);
if (f.peek() == '\n')
break;
// Else constraint (TODO)
}
else
log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c);
next:
std::getline(f, line); // Ignore up to start of next line
}
post_process();
}
static uint32_t parse_xaiger_literal(std::istream &f)
{
uint32_t l;
f.read(reinterpret_cast<char*>(&l), sizeof(l));
if (f.gcount() != sizeof(l))
#if defined(_WIN32) && defined(__MINGW32__)
log_error("Offset %I64d: unable to read literal!\n", static_cast<int64_t>(f.tellg()));
#else
log_error("Offset %" PRId64 ": unable to read literal!\n", static_cast<int64_t>(f.tellg()));
#endif
return from_big_endian(l);
}
RTLIL::Wire* AigerReader::createWireIfNotExists(RTLIL::Module *module, unsigned literal)
{
const unsigned variable = literal >> 1;
const bool invert = literal & 1;
RTLIL::IdString wire_name(stringf("$aiger%d$%d%s", aiger_autoidx, variable, invert ? "b" : ""));
RTLIL::Wire *wire = module->wire(wire_name);
if (wire) return wire;
log_debug2("Creating %s\n", wire_name.c_str());
wire = module->addWire(wire_name);
wire->port_input = wire->port_output = false;
if (!invert) return wire;
RTLIL::IdString wire_inv_name(stringf("$aiger%d$%d", aiger_autoidx, variable));
RTLIL::Wire *wire_inv = module->wire(wire_inv_name);
if (wire_inv) {
if (module->cell(wire_inv_name)) return wire;
}
else {
log_debug2("Creating %s\n", wire_inv_name.c_str());
wire_inv = module->addWire(wire_inv_name);
wire_inv->port_input = wire_inv->port_output = false;
}
log_debug2("Creating %s = ~%s\n", wire_name.c_str(), wire_inv_name.c_str());
module->addNotGate(stringf("$not$aiger%d$%d", aiger_autoidx, variable), wire_inv, wire);
return wire;
}
void AigerReader::parse_xaiger()
{
std::string header;
f >> header;
if (header != "aag" && header != "aig")
log_error("Unsupported AIGER file!\n");
// Parse rest of header
if (!(f >> M >> I >> L >> O >> A))
log_error("Invalid AIGER header\n");
// Optional values
B = C = J = F = 0;
std::string line;
std::getline(f, line); // Ignore up to start of next line, as standard
// says anything that follows could be used for
// optional sections
log_debug("M=%u I=%u L=%u O=%u A=%u\n", M, I, L, O, A);
line_count = 1;
piNum = 0;
flopNum = 0;
if (header == "aag")
parse_aiger_ascii();
else if (header == "aig")
parse_aiger_binary();
else
log_abort();
RTLIL::Wire* n0 = module->wire(stringf("$aiger%d$0", aiger_autoidx));
if (n0)
module->connect(n0, State::S0);
int c = f.get();
if (c != 'c')
log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c);
if (f.peek() == '\n')
f.get();
// Parse footer (symbol table, comments, etc.)
std::string s;
for (int c = f.get(); c != EOF; c = f.get()) {
// XAIGER extensions
if (c == 'm') {
uint32_t dataSize = parse_xaiger_literal(f);
uint32_t lutNum = parse_xaiger_literal(f);
uint32_t lutSize = parse_xaiger_literal(f);
log_debug("m: dataSize=%u lutNum=%u lutSize=%u\n", dataSize, lutNum, lutSize);
ConstEvalAig ce(module);
for (unsigned i = 0; i < lutNum; ++i) {
uint32_t rootNodeID = parse_xaiger_literal(f);
uint32_t cutLeavesM = parse_xaiger_literal(f);
log_debug2("rootNodeID=%d cutLeavesM=%d\n", rootNodeID, cutLeavesM);
RTLIL::Wire *output_sig = module->wire(stringf("$aiger%d$%d", aiger_autoidx, rootNodeID));
log_assert(output_sig);
uint32_t nodeID;
RTLIL::SigSpec input_sig;
for (unsigned j = 0; j < cutLeavesM; ++j) {
nodeID = parse_xaiger_literal(f);
log_debug2("\t%u\n", nodeID);
if (nodeID == 0) {
log_debug("\tLUT '$lut$aiger%d$%d' input %d is constant!\n", aiger_autoidx, rootNodeID, cutLeavesM);
continue;
}
RTLIL::Wire *wire = module->wire(stringf("$aiger%d$%d", aiger_autoidx, nodeID));
log_assert(wire);
input_sig.append(wire);
}
// Reverse input order as fastest input is returned first
input_sig.reverse();
// TODO: Compute LUT mask from AIG in less than O(2 ** input_sig.size())
ce.clear();
ce.compute_deps(output_sig, input_sig.to_sigbit_pool());
RTLIL::Const lut_mask(RTLIL::State::Sx, 1 << GetSize(input_sig));
for (int j = 0; j < GetSize(lut_mask); ++j) {
int gray = j ^ (j >> 1);
ce.set_incremental(input_sig, RTLIL::Const{gray, GetSize(input_sig)});
RTLIL::SigBit o(output_sig);
bool success = ce.eval(o);
log_assert(success);
log_assert(o.wire == nullptr);
lut_mask.bits()[gray] = o.data;
}
RTLIL::Cell *output_cell = module->cell(stringf("$and$aiger%d$%d", aiger_autoidx, rootNodeID));
log_assert(output_cell);
module->remove(output_cell);
module->addLut(stringf("$lut$aiger%d$%d", aiger_autoidx, rootNodeID), input_sig, output_sig, std::move(lut_mask));
}
}
else if (c == 'r') {
uint32_t dataSize = parse_xaiger_literal(f);
flopNum = parse_xaiger_literal(f);
log_debug("flopNum = %u\n", flopNum);
log_assert(dataSize == (flopNum+1) * sizeof(uint32_t));
mergeability.reserve(flopNum);
for (unsigned i = 0; i < flopNum; i++)
mergeability.emplace_back(parse_xaiger_literal(f));
}
else if (c == 's') {
uint32_t dataSize = parse_xaiger_literal(f);
flopNum = parse_xaiger_literal(f);
log_assert(dataSize == (flopNum+1) * sizeof(uint32_t));
initial_state.reserve(flopNum);
for (unsigned i = 0; i < flopNum; i++)
initial_state.emplace_back(parse_xaiger_literal(f));
}
else if (c == 'n') {
parse_xaiger_literal(f);
f >> s;
log_debug("n: '%s'\n", s.c_str());
}
else if (c == 'h') {
f.ignore(sizeof(uint32_t));
uint32_t version = parse_xaiger_literal(f);
log_assert(version == 1);
uint32_t ciNum = parse_xaiger_literal(f);
log_debug("ciNum = %u\n", ciNum);
uint32_t coNum = parse_xaiger_literal(f);
log_debug("coNum = %u\n", coNum);
piNum = parse_xaiger_literal(f);
log_debug("piNum = %u\n", piNum);
uint32_t poNum = parse_xaiger_literal(f);
log_debug("poNum = %u\n", poNum);
uint32_t boxNum = parse_xaiger_literal(f);
log_debug("boxNum = %u\n", boxNum);
for (unsigned i = 0; i < boxNum; i++) {
uint32_t boxInputs = parse_xaiger_literal(f);
uint32_t boxOutputs = parse_xaiger_literal(f);
uint32_t boxUniqueId = parse_xaiger_literal(f);
log_assert(boxUniqueId > 0);
uint32_t oldBoxNum = parse_xaiger_literal(f);
RTLIL::Cell* cell = module->addCell(stringf("$box%u", oldBoxNum), stringf("$__boxid%u", boxUniqueId));
cell->setPort(ID(i), SigSpec(State::S0, boxInputs));
cell->setPort(ID(o), SigSpec(State::S0, boxOutputs));
cell->attributes[ID::abc9_box_seq] = oldBoxNum;
boxes.emplace_back(cell);
}
}
else if (c == 'a' || c == 'i' || c == 'o' || c == 's') {
uint32_t dataSize = parse_xaiger_literal(f);
f.ignore(dataSize);
log_debug("ignoring '%c'\n", c);
}
else {
break;
}
}
post_process();
}
void AigerReader::parse_aiger_ascii()
{
std::string line;
std::stringstream ss;
unsigned l1, l2, l3;
// Parse inputs
int digits = decimal_digits(I);
for (unsigned i = 1; i <= I; ++i, ++line_count) {
if (!(f >> l1))
log_error("Line %u cannot be interpreted as an input!\n", line_count);
log_debug2("%d is an input\n", l1);
log_assert(!(l1 & 1)); // Inputs can't be inverted
RTLIL::Wire *wire = module->addWire(stringf("$i%0*d", digits, l1 >> 1));
wire->port_input = true;
module->connect(createWireIfNotExists(module, l1), wire);
inputs.push_back(wire);
}
// Parse latches
RTLIL::Wire *clk_wire = nullptr;
if (L > 0 && !clk_name.empty()) {
clk_wire = module->wire(clk_name);
log_assert(!clk_wire);
log_debug2("Creating %s\n", clk_name.c_str());
clk_wire = module->addWire(clk_name);
clk_wire->port_input = true;
clk_wire->port_output = false;
}
digits = decimal_digits(L);
for (unsigned i = 0; i < L; ++i, ++line_count) {
if (!(f >> l1 >> l2))
log_error("Line %u cannot be interpreted as a latch!\n", line_count);
log_debug2("%d %d is a latch\n", l1, l2);
log_assert(!(l1 & 1));
RTLIL::Wire *q_wire = module->addWire(stringf("$l%0*d", digits, l1 >> 1));
module->connect(createWireIfNotExists(module, l1), q_wire);
RTLIL::Wire *d_wire = createWireIfNotExists(module, l2);
if (clk_wire)
module->addDffGate(NEW_ID, clk_wire, d_wire, q_wire);
else
module->addFfGate(NEW_ID, d_wire, q_wire);
// Reset logic is optional in AIGER 1.9
if (f.peek() == ' ') {
if (!(f >> l3))
log_error("Line %u cannot be interpreted as a latch!\n", line_count);
if (l3 == 0)
q_wire->attributes[ID::init] = State::S0;
else if (l3 == 1)
q_wire->attributes[ID::init] = State::S1;
else if (l3 == l1) {
//q_wire->attributes[ID::init] = RTLIL::Sx;
}
else
log_error("Line %u has invalid reset literal for latch!\n", line_count);
}
else {
// AIGER latches are assumed to be initialized to zero
q_wire->attributes[ID::init] = State::S0;
}
latches.push_back(q_wire);
}
// Parse outputs
digits = decimal_digits(O);
for (unsigned i = 0; i < O; ++i, ++line_count) {
if (!(f >> l1))
log_error("Line %u cannot be interpreted as an output!\n", line_count);
std::getline(f, line); // Ignore up to start of next line
log_debug2("%d is an output\n", l1);
RTLIL::Wire *wire = module->addWire(stringf("$o%0*d", digits, i));
wire->port_output = true;
module->connect(wire, createWireIfNotExists(module, l1));
outputs.push_back(wire);
}
// Parse bad properties
for (unsigned i = 0; i < B; ++i, ++line_count) {
if (!(f >> l1))
log_error("Line %u cannot be interpreted as a bad state property!\n", line_count);
std::getline(f, line); // Ignore up to start of next line
log_debug2("%d is a bad state property\n", l1);
RTLIL::Wire *wire = createWireIfNotExists(module, l1);
wire->port_output = true;
bad_properties.push_back(wire);
}
// TODO: Parse invariant constraints
for (unsigned i = 0; i < C; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse justice properties
for (unsigned i = 0; i < J; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse fairness constraints
for (unsigned i = 0; i < F; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// Parse AND
for (unsigned i = 0; i < A; ++i) {
if (!(f >> l1 >> l2 >> l3))
log_error("Line %u cannot be interpreted as an AND!\n", line_count);
std::getline(f, line); // Ignore up to start of next line
log_debug2("%d %d %d is an AND\n", l1, l2, l3);
log_assert(!(l1 & 1));
RTLIL::Wire *o_wire = createWireIfNotExists(module, l1);
RTLIL::Wire *i1_wire = createWireIfNotExists(module, l2);
RTLIL::Wire *i2_wire = createWireIfNotExists(module, l3);
module->addAndGate("$and" + o_wire->name.str(), i1_wire, i2_wire, o_wire);
}
}
static unsigned parse_next_delta_literal(std::istream &f, unsigned ref)
{
unsigned x = 0, i = 0;
unsigned char ch;
while ((ch = f.get()) & 0x80)
x |= (ch & 0x7f) << (7 * i++);
return ref - (x | (ch << (7 * i)));
}
void AigerReader::parse_aiger_binary()
{
unsigned l1, l2, l3;
std::string line;
// Parse inputs
int digits = decimal_digits(I);
for (unsigned i = 1; i <= I; ++i) {
log_debug2("%d is an input\n", i);
RTLIL::Wire *wire = module->addWire(stringf("$i%0*d", digits, i));
wire->port_input = true;
module->connect(createWireIfNotExists(module, i << 1), wire);
inputs.push_back(wire);
}
// Parse latches
RTLIL::Wire *clk_wire = nullptr;
if (L > 0 && !clk_name.empty()) {
clk_wire = module->wire(clk_name);
log_assert(!clk_wire);
log_debug2("Creating %s\n", clk_name.c_str());
clk_wire = module->addWire(clk_name);
clk_wire->port_input = true;
clk_wire->port_output = false;
}
digits = decimal_digits(L);
l1 = (I+1) * 2;
for (unsigned i = 0; i < L; ++i, ++line_count, l1 += 2) {
if (!(f >> l2))
log_error("Line %u cannot be interpreted as a latch!\n", line_count);
log_debug("%d %d is a latch\n", l1, l2);
RTLIL::Wire *q_wire = module->addWire(stringf("$l%0*d", digits, l1 >> 1));
module->connect(createWireIfNotExists(module, l1), q_wire);
RTLIL::Wire *d_wire = createWireIfNotExists(module, l2);
if (clk_wire)
module->addDff(NEW_ID, clk_wire, d_wire, q_wire);
else
module->addFf(NEW_ID, d_wire, q_wire);
// Reset logic is optional in AIGER 1.9
if (f.peek() == ' ') {
if (!(f >> l3))
log_error("Line %u cannot be interpreted as a latch!\n", line_count);
if (l3 == 0)
q_wire->attributes[ID::init] = State::S0;
else if (l3 == 1)
q_wire->attributes[ID::init] = State::S1;
else if (l3 == l1) {
//q_wire->attributes[ID::init] = RTLIL::Sx;
}
else
log_error("Line %u has invalid reset literal for latch!\n", line_count);
}
else {
// AIGER latches are assumed to be initialized to zero
q_wire->attributes[ID::init] = State::S0;
}
latches.push_back(q_wire);
}
// Parse outputs
digits = decimal_digits(O);
for (unsigned i = 0; i < O; ++i, ++line_count) {
if (!(f >> l1))
log_error("Line %u cannot be interpreted as an output!\n", line_count);
std::getline(f, line); // Ignore up to start of next line
log_debug2("%d is an output\n", l1);
RTLIL::Wire *wire = module->addWire(stringf("$o%0*d", digits, i));
wire->port_output = true;
module->connect(wire, createWireIfNotExists(module, l1));
outputs.push_back(wire);
}
// Parse bad properties
for (unsigned i = 0; i < B; ++i, ++line_count) {
if (!(f >> l1))
log_error("Line %u cannot be interpreted as a bad state property!\n", line_count);
std::getline(f, line); // Ignore up to start of next line
log_debug2("%d is a bad state property\n", l1);
RTLIL::Wire *wire = createWireIfNotExists(module, l1);
wire->port_output = true;
bad_properties.push_back(wire);
}
// TODO: Parse invariant constraints
for (unsigned i = 0; i < C; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse justice properties
for (unsigned i = 0; i < J; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse fairness constraints
for (unsigned i = 0; i < F; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// Parse AND
l1 = (I+L+1) << 1;
for (unsigned i = 0; i < A; ++i, ++line_count, l1 += 2) {
l2 = parse_next_delta_literal(f, l1);
l3 = parse_next_delta_literal(f, l2);
log_debug2("%d %d %d is an AND\n", l1, l2, l3);
log_assert(!(l1 & 1));
RTLIL::Wire *o_wire = createWireIfNotExists(module, l1);
RTLIL::Wire *i1_wire = createWireIfNotExists(module, l2);
RTLIL::Wire *i2_wire = createWireIfNotExists(module, l3);
module->addAndGate("$and" + o_wire->name.str(), i1_wire, i2_wire, o_wire);
}
}
void AigerReader::post_process()
{
unsigned ci_count = 0, co_count = 0;
for (auto cell : boxes) {
for (auto &bit : cell->connections_.at(ID(i))) {
log_assert(bit == State::S0);
log_assert(co_count < outputs.size());
bit = outputs[co_count++];
log_assert(bit.wire && GetSize(bit.wire) == 1);
log_assert(bit.wire->port_output);
bit.wire->port_output = false;
}
for (auto &bit : cell->connections_.at(ID(o))) {
log_assert(bit == State::S0);
log_assert((piNum + ci_count) < inputs.size());
bit = inputs[piNum + ci_count++];
log_assert(bit.wire && GetSize(bit.wire) == 1);
log_assert(bit.wire->port_input);
bit.wire->port_input = false;
}
}
for (uint32_t i = 0; i < flopNum; i++) {
RTLIL::Wire *d = outputs[outputs.size() - flopNum + i];
log_assert(d);
log_assert(d->port_output);
d->port_output = false;
RTLIL::Wire *q = inputs[piNum - flopNum + i];
log_assert(q);
log_assert(q->port_input);
q->port_input = false;
Cell* ff = module->addFfGate(NEW_ID, d, q);
ff->attributes[ID::abc9_mergeability] = mergeability[i];
q->attributes[ID::init] = initial_state[i];
}
dict<RTLIL::IdString, std::pair<int,int>> wideports_cache;
if (!map_filename.empty()) {
std::ifstream mf(map_filename);
std::string type, symbol;
int variable, index;
while (mf >> type >> variable >> index >> symbol) {
RTLIL::IdString escaped_s = RTLIL::escape_id(symbol);
if (type == "input") {
log_assert(static_cast<unsigned>(variable) < inputs.size());
RTLIL::Wire* wire = inputs[variable];
log_assert(wire);
log_assert(wire->port_input);
log_debug("Renaming input %s", log_id(wire));
RTLIL::Wire *existing = nullptr;
if (index == 0) {
// Cope with the fact that a CI might be identical
// to a PI (necessary due to ABC); in those cases
// simply connect the latter to the former
existing = module->wire(escaped_s);
if (!existing)
module->rename(wire, escaped_s);
else {
wire->port_input = false;
module->connect(wire, existing);
}
log_debug(" -> %s\n", log_id(escaped_s));
}
else {
RTLIL::IdString indexed_name = stringf("%s[%d]", escaped_s.c_str(), index);
existing = module->wire(indexed_name);
if (!existing)
module->rename(wire, indexed_name);
else {
module->connect(wire, existing);
wire->port_input = false;
}
log_debug(" -> %s\n", log_id(indexed_name));
}
if (wideports && !existing) {
auto r = wideports_cache.insert(escaped_s);
if (r.second) {
r.first->second.first = index;
r.first->second.second = index;
}
else {
r.first->second.first = std::min(r.first->second.first, index);
r.first->second.second = std::max(r.first->second.second, index);
}
}
}
else if (type == "output") {
log_assert(static_cast<unsigned>(variable + co_count) < outputs.size());
RTLIL::Wire* wire = outputs[variable + co_count];
log_assert(wire);
log_assert(wire->port_output);
log_debug("Renaming output %s", log_id(wire));
RTLIL::Wire *existing;
if (index == 0) {
// Cope with the fact that a CO might be identical
// to a PO (necessary due to ABC); in those cases
// simply connect the latter to the former
existing = module->wire(escaped_s);
if (!existing)
module->rename(wire, escaped_s);
else {
wire->port_output = false;
existing->port_output = true;
module->connect(wire, existing);
wire = existing;
}
log_debug(" -> %s\n", log_id(escaped_s));
}
else {
RTLIL::IdString indexed_name = stringf("%s[%d]", escaped_s.c_str(), index);
existing = module->wire(indexed_name);
if (!existing)
module->rename(wire, indexed_name);
else {
wire->port_output = false;
existing->port_output = true;
module->connect(wire, existing);
}
log_debug(" -> %s\n", log_id(indexed_name));
}
if (wideports && !existing) {
auto r = wideports_cache.insert(escaped_s);
if (r.second) {
r.first->second.first = index;
r.first->second.second = index;
}
else {
r.first->second.first = std::min(r.first->second.first, index);
r.first->second.second = std::max(r.first->second.second, index);
}
}
}
else if (type == "box") {
RTLIL::Cell* cell = module->cell(stringf("$box%d", variable));
if (!cell)
log_debug("Box %d (%s) no longer exists.\n", variable, log_id(escaped_s));
else
module->rename(cell, escaped_s);
}
else
log_error("Symbol type '%s' not recognised.\n", type.c_str());
}
}
for (auto &wp : wideports_cache) {
auto name = wp.first;
int min = wp.second.first;
int max = wp.second.second;
if (min == 0 && max == 0)
continue;
RTLIL::Wire *wire = module->wire(name);
if (wire)
module->rename(wire, RTLIL::escape_id(stringf("%s[%d]", name.c_str(), 0)));
// Do not make ports with a mix of input/output into
// wide ports
bool port_input = false, port_output = false;
for (int i = min; i <= max; i++) {
RTLIL::IdString other_name = name.str() + stringf("[%d]", i);
RTLIL::Wire *other_wire = module->wire(other_name);
if (other_wire) {
port_input = port_input || other_wire->port_input;
port_output = port_output || other_wire->port_output;
}
}
wire = module->addWire(name, max-min+1);
wire->start_offset = min;
wire->port_input = port_input;
wire->port_output = port_output;
for (int i = min; i <= max; i++) {
RTLIL::IdString other_name = stringf("%s[%d]", name.c_str(), i);
RTLIL::Wire *other_wire = module->wire(other_name);
if (other_wire) {
other_wire->port_input = false;
other_wire->port_output = false;
if (wire->port_input)
module->connect(other_wire, SigSpec(wire, i-min));
else
module->connect(SigSpec(wire, i-min), other_wire);
}
}
}
module->fixup_ports();
// Insert into a new (temporary) design so that "clean" will only
// operate (and run checks on) this one module
RTLIL::Design *mapped_design = new RTLIL::Design;
mapped_design->add(module);
Pass::call(mapped_design, "clean");
mapped_design->modules_.erase(module->name);
delete mapped_design;
design->add(module);
for (auto cell : module->cells().to_vector()) {
if (cell->type != ID($lut)) continue;
auto y_port = cell->getPort(ID::Y).as_bit();
if (y_port.wire->width == 1)
module->rename(cell, stringf("$lut%s", y_port.wire->name.c_str()));
else
module->rename(cell, stringf("$lut%s[%d]", y_port.wire->name.c_str(), y_port.offset));
}
}
struct AigerFrontend : public Frontend {
AigerFrontend() : Frontend("aiger", "read AIGER file") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" read_aiger [options] [filename]\n");
log("\n");
log("Load module from an AIGER file into the current design.\n");
log("\n");
log(" -module_name <module_name>\n");
log(" name of module to be created (default: <filename>)\n");
log("\n");
log(" -clk_name <wire_name>\n");
log(" if specified, AIGER latches to be transformed into $_DFF_P_ cells\n");
log(" clocked by wire of this name. otherwise, $_FF_ cells will be used\n");
log("\n");
log(" -map <filename>\n");
log(" read file with port and latch symbols\n");
log("\n");
log(" -wideports\n");
log(" merge ports that match the pattern 'name[int]' into a single\n");
log(" multi-bit port 'name'\n");
log("\n");
log(" -xaiger\n");
log(" read XAIGER extensions\n");
log("\n");
}
void execute(std::istream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing AIGER frontend.\n");
RTLIL::IdString clk_name;
RTLIL::IdString module_name;
std::string map_filename;
bool wideports = false, xaiger = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
std::string arg = args[argidx];
if (arg == "-module_name" && argidx+1 < args.size()) {
module_name = RTLIL::escape_id(args[++argidx]);
continue;
}
if (arg == "-clk_name" && argidx+1 < args.size()) {
clk_name = RTLIL::escape_id(args[++argidx]);
continue;
}
if (map_filename.empty() && arg == "-map" && argidx+1 < args.size()) {
map_filename = args[++argidx];
continue;
}
if (arg == "-wideports") {
wideports = true;
continue;
}
if (arg == "-xaiger") {
xaiger = true;
continue;
}
break;
}
extra_args(f, filename, args, argidx, true);
if (module_name.empty()) {
#ifdef _WIN32
char fname[_MAX_FNAME];
_splitpath(filename.c_str(), NULL /* drive */, NULL /* dir */, fname, NULL /* ext */);
char* bn = strdup(fname);
module_name = RTLIL::escape_id(bn);
free(bn);
#else
char* bn = strdup(filename.c_str());
module_name = RTLIL::escape_id(bn);
free(bn);
#endif
}
AigerReader reader(design, *f, module_name, clk_name, map_filename, wideports);
if (xaiger)
reader.parse_xaiger();
else
reader.parse_aiger();
}
} AigerFrontend;
YOSYS_NAMESPACE_END