yosys/passes/techmap/flowmap.cc

1618 lines
50 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2018 whitequark <whitequark@whitequark.org>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]] FlowMap algorithm
// Jason Cong; Yuzheng Ding, "An Optimal Technology Mapping Algorithm for Delay Optimization in Lookup-Table Based FPGA Designs,"
// Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, Vol. 13, pp. 1-12, Jan. 1994.
// doi: 10.1109/43.273754
// [[CITE]] FlowMap-r algorithm
// Jason Cong; Yuzheng Ding, "On Area/Depth Tradeoff in LUT-Based FPGA Technology Mapping,"
// Very Large Scale Integration Systems, IEEE Transactions on, Vol. 2, June 1994.
// doi: 10.1109/92.28574
// Required reading material:
//
// Min-cut max-flow theorem:
// https://www.coursera.org/lecture/algorithms-part2/maxflow-mincut-theorem-beb9G
// FlowMap paper:
// http://cadlab.cs.ucla.edu/~cong/papers/iccad92.pdf (short version)
// https://limsk.ece.gatech.edu/book/papers/flowmap.pdf (long version)
// FlowMap-r paper:
// http://cadlab.cs.ucla.edu/~cong/papers/dac93.pdf (short version)
// https://sci-hub.tw/10.1109/92.285741 (long version)
// Notes on correspondence between paper and implementation:
//
// 1. In the FlowMap paper, the nodes are logic elements (analogous to Yosys cells) and edges are wires. However, in our implementation,
// we use an inverted approach: the nodes are Yosys wire bits, and the edges are derived from (but aren't represented by) Yosys cells.
// This may seem counterintuitive. Three observations may help understanding this. First, for a cell with a 1-bit Y output that is
// the sole driver of its output net (which is the typical case), these representations are equivalent, because there is an exact
// correspondence between cells and output wires. Second, in the paper, primary inputs (analogous to Yosys cell or module ports) are
// nodes, and in Yosys, inputs are wires; our approach allows a direct mapping from both primary inputs and 1-output logic elements to
// flow graph nodes. Third, Yosys cells may have multiple outputs or multi-bit outputs, and by using Yosys wire bits as flow graph nodes,
// such cells are supported without any additional effort; any Yosys cell with n output wire bits ends up being split into n flow graph
// nodes.
//
// 2. The FlowMap paper introduces three networks: Nt, Nt', and Nt''. The network Nt is directly represented by a subgraph of RTLIL graph,
// which is parsed into an equivalent but easier to traverse representation in FlowmapWorker. The network Nt' is built explicitly
// from a subgraph of Nt, and uses a similar representation in FlowGraph. The network Nt'' is implicit in FlowGraph, which is possible
// because of the following observation: each Nt' node corresponds to an Nt'' edge of capacity 1, and each Nt' edge corresponds to
// an Nt'' edge of capacity ∞. Therefore, we only need to explicitly record flow for Nt' edges and through Nt' nodes.
//
// 3. The FlowMap paper ambiguously states: "Moreover, we can find such a cut (X, X̅) by performing a depth first search starting at
// the source s, and including in X all the nodes which are reachable from s." This actually refers to a specific kind of search,
// min-cut computation. Min-cut computation involves computing the set of nodes reachable from s by an undirected path with no full
// (i.e. zero capacity) forward edges or empty (i.e. no flow) backward edges. In addition, the depth first search is required to compute
// a max-volume max-flow min-cut specifically, because a max-flow min-cut is not, in general, unique.
// Notes on implementation:
//
// 1. To compute depth optimal packing, an intermediate representation is used, where each cell with n output bits is split into n graph
// nodes. Each such graph node is represented directly with the wire bit (RTLIL::SigBit instance) that corresponds to the output bit
// it is created from. Fan-in and fan-out are represented explicitly by edge lists derived from the RTLIL graph. This IR never changes
// after it has been computed.
//
// In terms of data, this IR is comprised of `inputs`, `outputs`, `nodes`, `edges_fw` and `edges_bw` fields.
//
// We call this IR "gate IR".
//
// 2. To compute area optimal packing, another intermediate representation is used, which consists of some K-feasible cone for every node
// that exists in the gate IR. Immediately after depth optimal packing with FlowMap, each such cone occupies the lowest possible depth,
// but this is not true in general, and transformations of this IR may change the cones, although each transformation has to keep each
// cone K-feasible. In this IR, LUT fan-in and fan-out are represented explicitly by edge lists; if a K-feasible cone chosen for node A
// includes nodes B and C, there are edges between all predecessors of A, B and C in the gate IR and node A in this IR. Moreover, in
// this IR, cones may be *realized* or *derealized*. Only realized cones will end up mapped to actual LUTs in the output of this pass.
//
// Intuitively, this IR contains (some, ideally but not necessarily optimal) LUT representation for each input cell. By starting at outputs
// and traversing the graph of this IR backwards, each K-feasible cone is converted to an actual LUT at the end of the pass. This is
// the same as iterating through each realized LUT.
//
// The following are the invariants of this IR:
// a) Each gate IR node corresponds to a K-feasible cut.
// b) Each realized LUT is reachable through backward edges from some output.
// c) The LUT fan-in is exactly the fan-in of its constituent gates minus the fan-out of its constituent gates.
// The invariants are kept even for derealized LUTs, since the whole point of this IR is ease of packing, unpacking, and repacking LUTs.
//
// In terms of data, this IR is comprised of `lut_nodes` (the set of all realized LUTs), `lut_gates` (the map from a LUT to its
// constituent gates), `lut_edges_fw` and `lut_edges_bw` fields. The `inputs` and `outputs` fields are shared with the gate IR.
//
// We call this IR "LUT IR".
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/modtools.h"
#include "kernel/consteval.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct GraphStyle
{
string label;
string color, fillcolor;
GraphStyle(string label = "", string color = "black", string fillcolor = "") :
label(label), color(color), fillcolor(fillcolor) {}
};
static string dot_escape(string value)
{
std::string escaped;
for (char c : value) {
if (c == '\n')
{
escaped += "\\n";
continue;
}
if (c == '\\' || c == '"')
escaped += "\\";
escaped += c;
}
return escaped;
}
static void dump_dot_graph(string filename,
pool<RTLIL::SigBit> nodes, dict<RTLIL::SigBit, pool<RTLIL::SigBit>> edges,
pool<RTLIL::SigBit> inputs, pool<RTLIL::SigBit> outputs,
std::function<GraphStyle(RTLIL::SigBit)> node_style =
[](RTLIL::SigBit) { return GraphStyle{}; },
std::function<GraphStyle(RTLIL::SigBit, RTLIL::SigBit)> edge_style =
[](RTLIL::SigBit, RTLIL::SigBit) { return GraphStyle{}; },
string name = "")
{
FILE *f = fopen(filename.c_str(), "w");
fprintf(f, "digraph \"%s\" {\n", name.c_str());
fprintf(f, " rankdir=\"TB\";\n");
dict<RTLIL::SigBit, int> ids;
for (auto node : nodes)
{
ids[node] = ids.size();
string shape = "ellipse";
if (inputs[node])
shape = "box";
if (outputs[node])
shape = "octagon";
auto prop = node_style(node);
string style = "";
if (!prop.fillcolor.empty())
style = "filled";
fprintf(f, " n%d [ shape=%s, fontname=\"Monospace\", label=\"%s\", color=\"%s\", fillcolor=\"%s\", style=\"%s\" ];\n",
ids[node], shape.c_str(), dot_escape(prop.label.c_str()).c_str(), prop.color.c_str(), prop.fillcolor.c_str(), style.c_str());
}
fprintf(f, " { rank=\"source\"; ");
for (auto input : inputs)
if (nodes[input])
fprintf(f, "n%d; ", ids[input]);
fprintf(f, "}\n");
fprintf(f, " { rank=\"sink\"; ");
for (auto output : outputs)
if (nodes[output])
fprintf(f, "n%d; ", ids[output]);
fprintf(f, "}\n");
for (auto edge : edges)
{
auto source = edge.first;
for (auto sink : edge.second) {
if (nodes[source] && nodes[sink])
{
auto prop = edge_style(source, sink);
fprintf(f, " n%d -> n%d [ label=\"%s\", color=\"%s\", fillcolor=\"%s\" ];\n",
ids[source], ids[sink], dot_escape(prop.label.c_str()).c_str(), prop.color.c_str(), prop.fillcolor.c_str());
}
}
}
fprintf(f, "}\n");
fclose(f);
}
struct FlowGraph
{
const RTLIL::SigBit source;
RTLIL::SigBit sink;
pool<RTLIL::SigBit> nodes = {source};
dict<RTLIL::SigBit, pool<RTLIL::SigBit>> edges_fw, edges_bw;
const int MAX_NODE_FLOW = 1;
dict<RTLIL::SigBit, int> node_flow;
dict<pair<RTLIL::SigBit, RTLIL::SigBit>, int> edge_flow;
dict<RTLIL::SigBit, pool<RTLIL::SigBit>> collapsed;
void dump_dot_graph(string filename)
{
auto node_style = [&](RTLIL::SigBit node) {
string label = (node == source) ? "(source)" : log_signal(node);
for (auto collapsed_node : collapsed[node])
label += stringf(" %s", log_signal(collapsed_node));
int flow = node_flow[node];
if (node != source && node != sink)
label += stringf("\n%d/%d", flow, MAX_NODE_FLOW);
else
label += stringf("\n%d/∞", flow);
return GraphStyle{label, flow < MAX_NODE_FLOW ? "green" : "black"};
};
auto edge_style = [&](RTLIL::SigBit source, RTLIL::SigBit sink) {
int flow = edge_flow[{source, sink}];
return GraphStyle{stringf("%d/∞", flow), flow > 0 ? "blue" : "black"};
};
::dump_dot_graph(filename, nodes, edges_fw, {source}, {sink}, node_style, edge_style);
}
// Here, we are working on the Nt'' network, but our representation is the Nt' network.
// The difference between these is that where in Nt' we have a subgraph:
//
// v1 -> v2 -> v3
//
// in Nt'' we have a corresponding subgraph:
//
// v'1b -∞-> v'2t -f-> v'2b -∞-> v'3t
//
// To address this, we split each node v into two nodes, v't and v'b. This representation is virtual,
// in the sense that nodes v't and v'b are overlaid on top of the original node v, and only exist
// in paths and worklists.
struct NodePrime
{
RTLIL::SigBit node;
bool is_bottom;
NodePrime(RTLIL::SigBit node, bool is_bottom) :
node(node), is_bottom(is_bottom) {}
bool operator==(const NodePrime &other) const
{
return node == other.node && is_bottom == other.is_bottom;
}
bool operator!=(const NodePrime &other) const
{
return !(*this == other);
}
Hasher hash_into(Hasher h) const
{
std::pair<RTLIL::SigBit, int> p = {node, is_bottom};
h.eat(p);
return h;
}
static NodePrime top(RTLIL::SigBit node)
{
return NodePrime(node, /*is_bottom=*/false);
}
static NodePrime bottom(RTLIL::SigBit node)
{
return NodePrime(node, /*is_bottom=*/true);
}
NodePrime as_top() const
{
log_assert(is_bottom);
return top(node);
}
NodePrime as_bottom() const
{
log_assert(!is_bottom);
return bottom(node);
}
};
bool find_augmenting_path(bool commit)
{
NodePrime source_prime = {source, true};
NodePrime sink_prime = {sink, false};
vector<NodePrime> path = {source_prime};
pool<NodePrime> visited = {};
bool found;
do {
found = false;
auto node_prime = path.back();
visited.insert(node_prime);
if (!node_prime.is_bottom) // vt
{
if (!visited[node_prime.as_bottom()] && node_flow[node_prime.node] < MAX_NODE_FLOW)
{
path.push_back(node_prime.as_bottom());
found = true;
}
else
{
for (auto node_pred : edges_bw[node_prime.node])
{
if (!visited[NodePrime::bottom(node_pred)] && edge_flow[{node_pred, node_prime.node}] > 0)
{
path.push_back(NodePrime::bottom(node_pred));
found = true;
break;
}
}
}
}
else // vb
{
if (!visited[node_prime.as_top()] && node_flow[node_prime.node] > 0)
{
path.push_back(node_prime.as_top());
found = true;
}
else
{
for (auto node_succ : edges_fw[node_prime.node])
{
if (!visited[NodePrime::top(node_succ)] /* && edge_flow[...] < ∞ */)
{
path.push_back(NodePrime::top(node_succ));
found = true;
break;
}
}
}
}
if (!found && path.size() > 1)
{
path.pop_back();
found = true;
}
} while(path.back() != sink_prime && found);
if (commit && path.back() == sink_prime)
{
auto prev_prime = path.front();
for (auto node_prime : path)
{
if (node_prime == source_prime)
continue;
log_assert(prev_prime.is_bottom ^ node_prime.is_bottom);
if (prev_prime.node == node_prime.node)
{
auto node = node_prime.node;
if (!prev_prime.is_bottom && node_prime.is_bottom)
{
log_assert(node_flow[node] == 0);
node_flow[node]++;
}
else
{
log_assert(node_flow[node] != 0);
node_flow[node]--;
}
}
else
{
if (prev_prime.is_bottom && !node_prime.is_bottom)
{
log_assert(true /* edge_flow[...] < ∞ */);
edge_flow[{prev_prime.node, node_prime.node}]++;
}
else
{
log_assert((edge_flow[{node_prime.node, prev_prime.node}] > 0));
edge_flow[{node_prime.node, prev_prime.node}]--;
}
}
prev_prime = node_prime;
}
node_flow[source]++;
node_flow[sink]++;
}
return path.back() == sink_prime;
}
int maximum_flow(int order)
{
int flow = 0;
while (flow < order && find_augmenting_path(/*commit=*/true))
flow++;
return flow + find_augmenting_path(/*commit=*/false);
}
pair<pool<RTLIL::SigBit>, pool<RTLIL::SigBit>> edge_cut()
{
pool<RTLIL::SigBit> x = {source}, xi; // X and X̅ in the paper
NodePrime source_prime = {source, true};
pool<NodePrime> visited;
vector<NodePrime> worklist = {source_prime};
while (!worklist.empty())
{
auto node_prime = worklist.back();
worklist.pop_back();
if (visited[node_prime])
continue;
visited.insert(node_prime);
if (!node_prime.is_bottom)
x.insert(node_prime.node);
// Mincut is constructed by traversing a graph in an undirected way along forward edges that aren't full, or backward edges
// that aren't empty.
if (!node_prime.is_bottom) // top
{
if (node_flow[node_prime.node] < MAX_NODE_FLOW)
worklist.push_back(node_prime.as_bottom());
for (auto node_pred : edges_bw[node_prime.node])
if (edge_flow[{node_pred, node_prime.node}] > 0)
worklist.push_back(NodePrime::bottom(node_pred));
}
else // bottom
{
if (node_flow[node_prime.node] > 0)
worklist.push_back(node_prime.as_top());
for (auto node_succ : edges_fw[node_prime.node])
if (true /* edge_flow[...] < ∞ */)
worklist.push_back(NodePrime::top(node_succ));
}
}
for (auto node : nodes)
if (!x[node])
xi.insert(node);
for (auto collapsed_node : collapsed[sink])
xi.insert(collapsed_node);
log_assert(x[source] && !xi[source]);
log_assert(!x[sink] && xi[sink]);
return {x, xi};
}
};
struct FlowmapWorker
{
int order;
int r_alpha, r_beta, r_gamma;
bool debug, debug_relax;
RTLIL::Module *module;
SigMap sigmap;
ModIndex index;
dict<RTLIL::SigBit, ModIndex::PortInfo> node_origins;
// Gate IR
pool<RTLIL::SigBit> nodes, inputs, outputs;
dict<RTLIL::SigBit, pool<RTLIL::SigBit>> edges_fw, edges_bw;
dict<RTLIL::SigBit, int> labels;
// LUT IR
pool<RTLIL::SigBit> lut_nodes;
dict<RTLIL::SigBit, pool<RTLIL::SigBit>> lut_gates;
dict<RTLIL::SigBit, pool<RTLIL::SigBit>> lut_edges_fw, lut_edges_bw;
dict<RTLIL::SigBit, int> lut_depths, lut_altitudes, lut_slacks;
int gate_count = 0, lut_count = 0, packed_count = 0;
int gate_area = 0, lut_area = 0;
enum class GraphMode {
Label,
Cut,
Slack,
};
void dump_dot_graph(string filename, GraphMode mode,
pool<RTLIL::SigBit> subgraph_nodes = {}, dict<RTLIL::SigBit, pool<RTLIL::SigBit>> subgraph_edges = {},
dict<RTLIL::SigBit, pool<RTLIL::SigBit>> collapsed = {},
pair<pool<RTLIL::SigBit>, pool<RTLIL::SigBit>> cut = {})
{
if (subgraph_nodes.empty())
subgraph_nodes = nodes;
if (subgraph_edges.empty())
subgraph_edges = edges_fw;
auto node_style = [&](RTLIL::SigBit node) {
string label = log_signal(node);
for (auto collapsed_node : collapsed[node])
if (collapsed_node != node)
label += stringf(" %s", log_signal(collapsed_node));
switch (mode)
{
case GraphMode::Label:
if (labels[node] == -1)
{
label += "\nl=?";
return GraphStyle{label};
}
else
{
label += stringf("\nl=%d", labels[node]);
string fillcolor = stringf("/set311/%d", 1 + labels[node] % 11);
return GraphStyle{label, "", fillcolor};
}
case GraphMode::Cut:
if (cut.first[node])
return GraphStyle{label, "blue"};
if (cut.second[node])
return GraphStyle{label, "red"};
return GraphStyle{label};
case GraphMode::Slack:
label += stringf("\nd=%d a=%d\ns=%d", lut_depths[node], lut_altitudes[node], lut_slacks[node]);
return GraphStyle{label, lut_slacks[node] == 0 ? "red" : "black"};
}
return GraphStyle{label};
};
auto edge_style = [&](RTLIL::SigBit, RTLIL::SigBit) {
return GraphStyle{};
};
::dump_dot_graph(filename, subgraph_nodes, subgraph_edges, inputs, outputs, node_style, edge_style, module->name.str());
}
void dump_dot_lut_graph(string filename, GraphMode mode)
{
pool<RTLIL::SigBit> lut_and_input_nodes;
lut_and_input_nodes.insert(lut_nodes.begin(), lut_nodes.end());
lut_and_input_nodes.insert(inputs.begin(), inputs.end());
dump_dot_graph(filename, mode, lut_and_input_nodes, lut_edges_fw, lut_gates);
}
pool<RTLIL::SigBit> find_subgraph(RTLIL::SigBit sink)
{
pool<RTLIL::SigBit> subgraph;
pool<RTLIL::SigBit> worklist = {sink};
while (!worklist.empty())
{
auto node = worklist.pop();
subgraph.insert(node);
for (auto source : edges_bw[node])
{
if (!subgraph[source])
worklist.insert(source);
}
}
return subgraph;
}
FlowGraph build_flow_graph(RTLIL::SigBit sink, int p)
{
FlowGraph flow_graph;
flow_graph.sink = sink;
pool<RTLIL::SigBit> worklist = {sink}, visited;
while (!worklist.empty())
{
auto node = worklist.pop();
visited.insert(node);
auto collapsed_node = labels[node] == p ? sink : node;
if (node != collapsed_node)
flow_graph.collapsed[collapsed_node].insert(node);
flow_graph.nodes.insert(collapsed_node);
for (auto node_pred : edges_bw[node])
{
auto collapsed_node_pred = labels[node_pred] == p ? sink : node_pred;
if (node_pred != collapsed_node_pred)
flow_graph.collapsed[collapsed_node_pred].insert(node_pred);
if (collapsed_node != collapsed_node_pred)
{
flow_graph.edges_bw[collapsed_node].insert(collapsed_node_pred);
flow_graph.edges_fw[collapsed_node_pred].insert(collapsed_node);
}
if (inputs[node_pred])
{
flow_graph.edges_bw[collapsed_node_pred].insert(flow_graph.source);
flow_graph.edges_fw[flow_graph.source].insert(collapsed_node_pred);
}
if (!visited[node_pred])
worklist.insert(node_pred);
}
}
return flow_graph;
}
void discover_nodes(pool<IdString> cell_types)
{
for (auto cell : module->selected_cells())
{
if (!cell_types[cell->type])
continue;
if (!cell->known())
log_error("Cell %s (%s.%s) is unknown.\n", cell->type.c_str(), log_id(module), log_id(cell));
pool<RTLIL::SigBit> fanout;
for (auto conn : cell->connections())
{
if (!cell->output(conn.first)) continue;
int offset = -1;
for (auto bit : conn.second)
{
offset++;
if (!bit.wire) continue;
auto mapped_bit = sigmap(bit);
if (nodes[mapped_bit])
log_error("Multiple drivers found for wire %s.\n", log_signal(mapped_bit));
nodes.insert(mapped_bit);
node_origins[mapped_bit] = ModIndex::PortInfo(cell, conn.first, offset);
fanout.insert(mapped_bit);
}
}
int fanin = 0;
for (auto conn : cell->connections())
{
if (!cell->input(conn.first)) continue;
for (auto bit : sigmap(conn.second))
{
if (!bit.wire) continue;
for (auto fanout_bit : fanout)
{
edges_fw[bit].insert(fanout_bit);
edges_bw[fanout_bit].insert(bit);
}
fanin++;
}
}
if (fanin > order)
log_error("Cell %s (%s.%s) with fan-in %d cannot be mapped to a %d-LUT.\n",
cell->type.c_str(), log_id(module), log_id(cell), fanin, order);
gate_count++;
gate_area += 1 << fanin;
}
for (auto edge : edges_fw)
{
if (!nodes[edge.first])
{
inputs.insert(edge.first);
nodes.insert(edge.first);
}
}
for (auto node : nodes)
{
auto node_info = index.query(node);
if (node_info->is_output && !inputs[node])
outputs.insert(node);
for (auto port : node_info->ports)
if (!cell_types[port.cell->type] && !inputs[node])
outputs.insert(node);
}
if (debug)
{
dump_dot_graph("flowmap-initial.dot", GraphMode::Label);
log("Dumped initial graph to `flowmap-initial.dot`.\n");
}
}
void label_nodes()
{
for (auto node : nodes)
labels[node] = -1;
for (auto input : inputs)
{
if (input.wire->attributes.count(ID($flowmap_level)))
labels[input] = input.wire->attributes[ID($flowmap_level)].as_int();
else
labels[input] = 0;
}
pool<RTLIL::SigBit> worklist = nodes;
int debug_num = 0;
while (!worklist.empty())
{
auto sink = worklist.pop();
if (labels[sink] != -1)
continue;
bool inputs_have_labels = true;
for (auto sink_input : edges_bw[sink])
{
if (labels[sink_input] == -1)
{
inputs_have_labels = false;
break;
}
}
if (!inputs_have_labels)
continue;
if (debug)
{
debug_num++;
log("Examining subgraph %d rooted in %s.\n", debug_num, log_signal(sink));
}
pool<RTLIL::SigBit> subgraph = find_subgraph(sink);
int p = 1;
for (auto subgraph_node : subgraph)
p = max(p, labels[subgraph_node]);
FlowGraph flow_graph = build_flow_graph(sink, p);
int flow = flow_graph.maximum_flow(order);
pool<RTLIL::SigBit> x, xi;
if (flow <= order)
{
labels[sink] = p;
auto cut = flow_graph.edge_cut();
x = cut.first;
xi = cut.second;
}
else
{
labels[sink] = p + 1;
x = subgraph;
x.erase(sink);
xi.insert(sink);
}
lut_gates[sink] = xi;
pool<RTLIL::SigBit> k;
for (auto xi_node : xi)
{
for (auto xi_node_pred : edges_bw[xi_node])
if (x[xi_node_pred])
k.insert(xi_node_pred);
}
log_assert((int)k.size() <= order);
lut_edges_bw[sink] = k;
for (auto k_node : k)
lut_edges_fw[k_node].insert(sink);
if (debug)
{
log(" Maximum flow: %d. Assigned label %d.\n", flow, labels[sink]);
dump_dot_graph(stringf("flowmap-%d-sub.dot", debug_num), GraphMode::Cut, subgraph, {}, {}, {x, xi});
log(" Dumped subgraph to `flowmap-%d-sub.dot`.\n", debug_num);
flow_graph.dump_dot_graph(stringf("flowmap-%d-flow.dot", debug_num));
log(" Dumped flow graph to `flowmap-%d-flow.dot`.\n", debug_num);
log(" LUT inputs:");
for (auto k_node : k)
log(" %s", log_signal(k_node));
log(".\n");
log(" LUT packed gates:");
for (auto xi_node : xi)
log(" %s", log_signal(xi_node));
log(".\n");
}
for (auto sink_succ : edges_fw[sink])
worklist.insert(sink_succ);
}
if (debug)
{
dump_dot_graph("flowmap-labeled.dot", GraphMode::Label);
log("Dumped labeled graph to `flowmap-labeled.dot`.\n");
}
}
int map_luts()
{
pool<RTLIL::SigBit> worklist = outputs;
while (!worklist.empty())
{
auto lut_node = worklist.pop();
lut_nodes.insert(lut_node);
for (auto input_node : lut_edges_bw[lut_node])
if (!lut_nodes[input_node] && !inputs[input_node])
worklist.insert(input_node);
}
int depth = 0;
for (auto label : labels)
depth = max(depth, label.second);
log("Mapped to %d LUTs with maximum depth %d.\n", GetSize(lut_nodes), depth);
if (debug)
{
dump_dot_lut_graph("flowmap-mapped.dot", GraphMode::Label);
log("Dumped mapped graph to `flowmap-mapped.dot`.\n");
}
return depth;
}
void realize_derealize_lut(RTLIL::SigBit lut, pool<RTLIL::SigBit> *changed = nullptr)
{
pool<RTLIL::SigBit> worklist = {lut};
while (!worklist.empty())
{
auto lut = worklist.pop();
if (inputs[lut])
continue;
bool realized_successors = false;
for (auto lut_succ : lut_edges_fw[lut])
if (lut_nodes[lut_succ])
realized_successors = true;
if (realized_successors && !lut_nodes[lut])
lut_nodes.insert(lut);
else if (!realized_successors && lut_nodes[lut])
lut_nodes.erase(lut);
else
continue;
for (auto lut_pred : lut_edges_bw[lut])
worklist.insert(lut_pred);
if (changed)
changed->insert(lut);
}
}
void add_lut_edge(RTLIL::SigBit pred, RTLIL::SigBit succ, pool<RTLIL::SigBit> *changed = nullptr)
{
log_assert(!lut_edges_fw[pred][succ] && !lut_edges_bw[succ][pred]);
log_assert((int)lut_edges_bw[succ].size() < order);
lut_edges_fw[pred].insert(succ);
lut_edges_bw[succ].insert(pred);
realize_derealize_lut(pred, changed);
if (changed)
{
changed->insert(pred);
changed->insert(succ);
}
}
void remove_lut_edge(RTLIL::SigBit pred, RTLIL::SigBit succ, pool<RTLIL::SigBit> *changed = nullptr)
{
log_assert(lut_edges_fw[pred][succ] && lut_edges_bw[succ][pred]);
lut_edges_fw[pred].erase(succ);
lut_edges_bw[succ].erase(pred);
realize_derealize_lut(pred, changed);
if (changed)
{
if (lut_nodes[pred])
changed->insert(pred);
changed->insert(succ);
}
}
pair<pool<RTLIL::SigBit>, pool<RTLIL::SigBit>> cut_lut_at_gate(RTLIL::SigBit lut, RTLIL::SigBit lut_gate)
{
pool<RTLIL::SigBit> gate_inputs = lut_edges_bw[lut];
pool<RTLIL::SigBit> other_inputs;
pool<RTLIL::SigBit> worklist = {lut};
while (!worklist.empty())
{
auto node = worklist.pop();
for (auto node_pred : edges_bw[node])
{
if (node_pred == lut_gate)
continue;
if (lut_gates[lut][node_pred])
worklist.insert(node_pred);
else
{
gate_inputs.erase(node_pred);
other_inputs.insert(node_pred);
}
}
}
return {gate_inputs, other_inputs};
}
void compute_lut_distances(dict<RTLIL::SigBit, int> &lut_distances, bool forward,
pool<RTLIL::SigBit> initial = {}, pool<RTLIL::SigBit> *changed = nullptr)
{
pool<RTLIL::SigBit> terminals = forward ? inputs : outputs;
auto &lut_edges_next = forward ? lut_edges_fw : lut_edges_bw;
auto &lut_edges_prev = forward ? lut_edges_bw : lut_edges_fw;
if (initial.empty())
initial = terminals;
for (auto node : initial)
lut_distances.erase(node);
pool<RTLIL::SigBit> worklist = initial;
while (!worklist.empty())
{
auto lut = worklist.pop();
int lut_distance = 0;
if (forward && inputs[lut])
lut_distance = labels[lut]; // to support (* $flowmap_level=n *)
for (auto lut_prev : lut_edges_prev[lut])
if ((lut_nodes[lut_prev] || inputs[lut_prev]) && lut_distances.count(lut_prev))
lut_distance = max(lut_distance, lut_distances[lut_prev] + 1);
if (!lut_distances.count(lut) || lut_distances[lut] != lut_distance)
{
lut_distances[lut] = lut_distance;
if (changed != nullptr && !inputs[lut])
changed->insert(lut);
for (auto lut_next : lut_edges_next[lut])
if (lut_nodes[lut_next] || inputs[lut_next])
worklist.insert(lut_next);
}
}
}
void check_lut_distances(const dict<RTLIL::SigBit, int> &lut_distances, bool forward)
{
dict<RTLIL::SigBit, int> gold_lut_distances;
compute_lut_distances(gold_lut_distances, forward);
for (auto lut_distance : lut_distances)
if (lut_nodes[lut_distance.first])
log_assert(lut_distance.second == gold_lut_distances[lut_distance.first]);
}
// LUT depth is the length of the longest path from any input in LUT fan-in to LUT.
// LUT altitude (for lack of a better term) is the length of the longest path from LUT to any output in LUT fan-out.
void update_lut_depths_altitudes(pool<RTLIL::SigBit> worklist = {}, pool<RTLIL::SigBit> *changed = nullptr)
{
compute_lut_distances(lut_depths, /*forward=*/true, worklist, changed);
compute_lut_distances(lut_altitudes, /*forward=*/false, worklist, changed);
if (debug_relax && !worklist.empty()) {
check_lut_distances(lut_depths, /*forward=*/true);
check_lut_distances(lut_altitudes, /*forward=*/false);
}
}
// LUT critical output set is the set of outputs whose depth will increase (equivalently, slack will decrease) if the depth of
// the LUT increases. (This is referred to as RPOv for LUTv in the paper.)
void compute_lut_critical_outputs(dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs,
pool<RTLIL::SigBit> worklist = {})
{
if (worklist.empty())
worklist = lut_nodes;
while (!worklist.empty())
{
bool updated_some = false;
for (auto lut : worklist)
{
if (outputs[lut])
lut_critical_outputs[lut] = {lut};
else
{
bool all_succ_computed = true;
lut_critical_outputs[lut] = {};
for (auto lut_succ : lut_edges_fw[lut])
{
if (lut_nodes[lut_succ] && lut_depths[lut_succ] == lut_depths[lut] + 1)
{
if (lut_critical_outputs.count(lut_succ))
lut_critical_outputs[lut].insert(lut_critical_outputs[lut_succ].begin(), lut_critical_outputs[lut_succ].end());
else
{
all_succ_computed = false;
break;
}
}
}
if (!all_succ_computed)
{
lut_critical_outputs.erase(lut);
continue;
}
}
worklist.erase(lut);
updated_some = true;
}
log_assert(updated_some);
}
}
// Invalidating LUT critical output sets is tricky, because increasing the depth of a LUT may take other, adjacent LUTs off the critical
// path to the output. Conservatively, if we increase depth of some LUT, every LUT in its input cone needs to have its critical output
// set invalidated, too.
pool<RTLIL::SigBit> invalidate_lut_critical_outputs(dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs,
pool<RTLIL::SigBit> worklist)
{
pool<RTLIL::SigBit> changed;
while (!worklist.empty())
{
auto lut = worklist.pop();
changed.insert(lut);
lut_critical_outputs.erase(lut);
for (auto lut_pred : lut_edges_bw[lut])
{
if (lut_nodes[lut_pred] && !changed[lut_pred])
{
changed.insert(lut_pred);
worklist.insert(lut_pred);
}
}
}
return changed;
}
void check_lut_critical_outputs(const dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs)
{
dict<RTLIL::SigBit, pool<RTLIL::SigBit>> gold_lut_critical_outputs;
compute_lut_critical_outputs(gold_lut_critical_outputs);
for (auto lut_critical_output : lut_critical_outputs)
if (lut_nodes[lut_critical_output.first])
log_assert(lut_critical_output.second == gold_lut_critical_outputs[lut_critical_output.first]);
}
void update_lut_critical_outputs(dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs,
pool<RTLIL::SigBit> worklist = {})
{
if (!worklist.empty())
{
pool<RTLIL::SigBit> invalidated = invalidate_lut_critical_outputs(lut_critical_outputs, worklist);
compute_lut_critical_outputs(lut_critical_outputs, invalidated);
check_lut_critical_outputs(lut_critical_outputs);
}
else
compute_lut_critical_outputs(lut_critical_outputs);
}
void update_breaking_node_potentials(dict<RTLIL::SigBit, dict<RTLIL::SigBit, int>> &potentials,
const dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs)
{
for (auto lut : lut_nodes)
{
if (potentials.count(lut))
continue;
if (lut_gates[lut].size() == 1 || lut_slacks[lut] == 0)
continue;
if (debug_relax)
log(" Computing potentials for LUT %s.\n", log_signal(lut));
for (auto lut_gate : lut_gates[lut])
{
if (lut == lut_gate)
continue;
if (debug_relax)
log(" Considering breaking node %s.\n", log_signal(lut_gate));
int r_ex, r_im, r_slk;
auto cut_inputs = cut_lut_at_gate(lut, lut_gate);
pool<RTLIL::SigBit> gate_inputs = cut_inputs.first, other_inputs = cut_inputs.second;
if (gate_inputs.empty() && (int)other_inputs.size() >= order)
{
if (debug_relax)
log(" Breaking would result in a (k+1)-LUT.\n");
continue;
}
pool<RTLIL::SigBit> elim_fanin_luts;
for (auto gate_input : gate_inputs)
{
if (lut_edges_fw[gate_input].size() == 1)
{
log_assert(lut_edges_fw[gate_input][lut]);
elim_fanin_luts.insert(gate_input);
}
}
if (debug_relax)
{
if (!lut_nodes[lut_gate])
log(" Breaking requires a new LUT.\n");
if (!gate_inputs.empty())
{
log(" Breaking eliminates LUT inputs");
for (auto gate_input : gate_inputs)
log(" %s", log_signal(gate_input));
log(".\n");
}
if (!elim_fanin_luts.empty())
{
log(" Breaking eliminates fan-in LUTs");
for (auto elim_fanin_lut : elim_fanin_luts)
log(" %s", log_signal(elim_fanin_lut));
log(".\n");
}
}
r_ex = (lut_nodes[lut_gate] ? 0 : -1) + elim_fanin_luts.size();
pool<pair<RTLIL::SigBit, RTLIL::SigBit>> maybe_mergeable_luts;
// Try to merge LUTv with one of its successors.
RTLIL::SigBit last_lut_succ;
int fanout = 0;
for (auto lut_succ : lut_edges_fw[lut])
{
if (lut_nodes[lut_succ])
{
fanout++;
last_lut_succ = lut_succ;
}
}
if (fanout == 1)
maybe_mergeable_luts.insert({lut, last_lut_succ});
// Try to merge LUTv with one of its predecessors.
for (auto lut_pred : other_inputs)
{
int fanout = 0;
for (auto lut_pred_succ : lut_edges_fw[lut_pred])
if (lut_nodes[lut_pred_succ] || lut_pred_succ == lut_gate)
fanout++;
if (fanout == 1)
maybe_mergeable_luts.insert({lut_pred, lut});
}
// Try to merge LUTw with one of its predecessors.
for (auto lut_gate_pred : lut_edges_bw[lut_gate])
{
int fanout = 0;
for (auto lut_gate_pred_succ : lut_edges_fw[lut_gate_pred])
if (lut_nodes[lut_gate_pred_succ] || lut_gate_pred_succ == lut_gate)
fanout++;
if (fanout == 1)
maybe_mergeable_luts.insert({lut_gate_pred, lut_gate});
}
r_im = 0;
for (auto maybe_mergeable_pair : maybe_mergeable_luts)
{
log_assert(lut_edges_fw[maybe_mergeable_pair.first][maybe_mergeable_pair.second]);
pool<RTLIL::SigBit> unique_inputs;
for (auto fst_lut_pred : lut_edges_bw[maybe_mergeable_pair.first])
if (lut_nodes[fst_lut_pred])
unique_inputs.insert(fst_lut_pred);
for (auto snd_lut_pred : lut_edges_bw[maybe_mergeable_pair.second])
if (lut_nodes[snd_lut_pred])
unique_inputs.insert(snd_lut_pred);
unique_inputs.erase(maybe_mergeable_pair.first);
if ((int)unique_inputs.size() <= order)
{
if (debug_relax)
log(" Breaking may allow merging %s and %s.\n",
log_signal(maybe_mergeable_pair.first), log_signal(maybe_mergeable_pair.second));
r_im++;
}
}
int lut_gate_depth;
if (lut_nodes[lut_gate])
lut_gate_depth = lut_depths[lut_gate];
else
{
lut_gate_depth = 0;
for (auto lut_gate_pred : lut_edges_bw[lut_gate])
lut_gate_depth = max(lut_gate_depth, lut_depths[lut_gate_pred] + 1);
}
if (lut_depths[lut] >= lut_gate_depth + 1)
r_slk = 0;
else
{
int depth_delta = lut_gate_depth + 1 - lut_depths[lut];
if (depth_delta > lut_slacks[lut])
{
if (debug_relax)
log(" Breaking would increase depth by %d, which is more than available slack.\n", depth_delta);
continue;
}
if (debug_relax)
{
log(" Breaking increases depth of LUT by %d.\n", depth_delta);
if (lut_critical_outputs.at(lut).size())
{
log(" Breaking decreases slack of outputs");
for (auto lut_critical_output : lut_critical_outputs.at(lut))
{
log(" %s", log_signal(lut_critical_output));
log_assert(lut_slacks[lut_critical_output] > 0);
}
log(".\n");
}
}
r_slk = lut_critical_outputs.at(lut).size() * depth_delta;
}
int p = 100 * (r_alpha * r_ex + r_beta * r_im + r_gamma) / (r_slk + 1);
if (debug_relax)
log(" Potential for breaking node %s: %d (Rex=%d, Rim=%d, Rslk=%d).\n",
log_signal(lut_gate), p, r_ex, r_im, r_slk);
potentials[lut][lut_gate] = p;
}
}
}
bool relax_depth_for_bound(bool first, int depth_bound, dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs)
{
int initial_count = GetSize(lut_nodes);
for (auto node : lut_nodes)
{
lut_slacks[node] = depth_bound - (lut_depths[node] + lut_altitudes[node]);
log_assert(lut_slacks[node] >= 0);
}
if (debug)
{
dump_dot_lut_graph(stringf("flowmap-relax-%d-initial.dot", depth_bound), GraphMode::Slack);
log(" Dumped initial slack graph to `flowmap-relax-%d-initial.dot`.\n", depth_bound);
}
dict<RTLIL::SigBit, dict<RTLIL::SigBit, int>> potentials;
for (int break_num = 1; ; break_num++)
{
update_breaking_node_potentials(potentials, lut_critical_outputs);
if (potentials.empty())
{
log(" Relaxed to %d (+%d) LUTs.\n", GetSize(lut_nodes), GetSize(lut_nodes) - initial_count);
if (!first && break_num == 1)
{
log(" Design fully relaxed.\n");
return true;
}
else
{
log(" Slack exhausted.\n");
break;
}
}
RTLIL::SigBit breaking_lut, breaking_gate;
int best_potential = INT_MIN;
for (auto lut_gate_potentials : potentials)
{
for (auto gate_potential : lut_gate_potentials.second)
{
if (gate_potential.second > best_potential)
{
breaking_lut = lut_gate_potentials.first;
breaking_gate = gate_potential.first;
best_potential = gate_potential.second;
}
}
}
log(" Breaking LUT %s to %s LUT %s (potential %d).\n",
log_signal(breaking_lut), lut_nodes[breaking_gate] ? "reuse" : "extract", log_signal(breaking_gate), best_potential);
if (debug_relax)
log(" Removing breaking gate %s from LUT.\n", log_signal(breaking_gate));
lut_gates[breaking_lut].erase(breaking_gate);
auto cut_inputs = cut_lut_at_gate(breaking_lut, breaking_gate);
pool<RTLIL::SigBit> gate_inputs = cut_inputs.first, other_inputs = cut_inputs.second;
pool<RTLIL::SigBit> worklist = lut_gates[breaking_lut];
pool<RTLIL::SigBit> elim_gates = gate_inputs;
while (!worklist.empty())
{
auto lut_gate = worklist.pop();
bool all_gate_preds_elim = true;
for (auto lut_gate_pred : edges_bw[lut_gate])
if (!elim_gates[lut_gate_pred])
all_gate_preds_elim = false;
if (all_gate_preds_elim)
{
if (debug_relax)
log(" Removing gate %s from LUT.\n", log_signal(lut_gate));
lut_gates[breaking_lut].erase(lut_gate);
for (auto lut_gate_succ : edges_fw[lut_gate])
worklist.insert(lut_gate_succ);
}
}
log_assert(!lut_gates[breaking_lut].empty());
pool<RTLIL::SigBit> directly_affected_nodes = {breaking_lut};
for (auto gate_input : gate_inputs)
{
if (debug_relax)
log(" Removing LUT edge %s -> %s.\n", log_signal(gate_input), log_signal(breaking_lut));
remove_lut_edge(gate_input, breaking_lut, &directly_affected_nodes);
}
if (debug_relax)
log(" Adding LUT edge %s -> %s.\n", log_signal(breaking_gate), log_signal(breaking_lut));
add_lut_edge(breaking_gate, breaking_lut, &directly_affected_nodes);
if (debug_relax)
log(" Updating slack and potentials.\n");
pool<RTLIL::SigBit> indirectly_affected_nodes = {};
update_lut_depths_altitudes(directly_affected_nodes, &indirectly_affected_nodes);
update_lut_critical_outputs(lut_critical_outputs, indirectly_affected_nodes);
for (auto node : indirectly_affected_nodes)
{
lut_slacks[node] = depth_bound - (lut_depths[node] + lut_altitudes[node]);
log_assert(lut_slacks[node] >= 0);
if (debug_relax)
log(" LUT %s now has depth %d and slack %d.\n", log_signal(node), lut_depths[node], lut_slacks[node]);
}
worklist = indirectly_affected_nodes;
pool<RTLIL::SigBit> visited;
while (!worklist.empty())
{
auto node = worklist.pop();
visited.insert(node);
potentials.erase(node);
// We are invalidating the entire output cone of the gate IR node, not just of the LUT IR node. This is done to also invalidate
// all LUTs that could contain one of the indirectly affected nodes as a *part* of them, as they may not be in the output cone
// of any of the LUT IR nodes, e.g. if we have a LUT IR node A and node B as predecessors of node C, where node B includes all
// gates from node A.
for (auto node_succ : edges_fw[node])
if (!visited[node_succ])
worklist.insert(node_succ);
}
if (debug)
{
dump_dot_lut_graph(stringf("flowmap-relax-%d-break-%d.dot", depth_bound, break_num), GraphMode::Slack);
log(" Dumped slack graph after break %d to `flowmap-relax-%d-break-%d.dot`.\n", break_num, depth_bound, break_num);
}
}
return false;
}
void optimize_area(int depth, int optarea)
{
dict<RTLIL::SigBit, pool<RTLIL::SigBit>> lut_critical_outputs;
update_lut_depths_altitudes();
update_lut_critical_outputs(lut_critical_outputs);
for (int depth_bound = depth; depth_bound <= depth + optarea; depth_bound++)
{
log("Relaxing with depth bound %d.\n", depth_bound);
bool fully_relaxed = relax_depth_for_bound(depth_bound == depth, depth_bound, lut_critical_outputs);
if (fully_relaxed)
break;
}
}
void pack_cells(int minlut)
{
ConstEval ce(module);
for (auto input_node : inputs)
ce.stop(input_node);
pool<RTLIL::SigBit> mapped_nodes;
for (auto node : lut_nodes)
{
if (node_origins.count(node))
{
auto origin = node_origins[node];
if (origin.cell->getPort(origin.port).size() == 1)
log("Packing %s.%s.%s (%s).\n",
log_id(module), log_id(origin.cell), origin.port.c_str(), log_signal(node));
else
log("Packing %s.%s.%s [%d] (%s).\n",
log_id(module), log_id(origin.cell), origin.port.c_str(), origin.offset, log_signal(node));
}
else
{
log("Packing %s.%s.\n", log_id(module), log_signal(node));
}
for (auto gate_node : lut_gates[node])
{
log_assert(node_origins.count(gate_node));
if (gate_node == node)
continue;
auto gate_origin = node_origins[gate_node];
if (gate_origin.cell->getPort(gate_origin.port).size() == 1)
log(" Packing %s.%s.%s (%s).\n",
log_id(module), log_id(gate_origin.cell), gate_origin.port.c_str(), log_signal(gate_node));
else
log(" Packing %s.%s.%s [%d] (%s).\n",
log_id(module), log_id(gate_origin.cell), gate_origin.port.c_str(), gate_origin.offset, log_signal(gate_node));
}
vector<RTLIL::SigBit> input_nodes(lut_edges_bw[node].begin(), lut_edges_bw[node].end());
RTLIL::Const lut_table(State::Sx, max(1 << input_nodes.size(), 1 << minlut));
unsigned const mask = 1 << input_nodes.size();
for (unsigned i = 0; i < mask; i++)
{
ce.push();
for (size_t n = 0; n < input_nodes.size(); n++)
ce.set(input_nodes[n], ((i >> n) & 1) ? State::S1 : State::S0);
RTLIL::SigSpec value = node, undef;
if (!ce.eval(value, undef))
{
string env;
for (auto input_node : input_nodes)
env += stringf(" %s = %s\n", log_signal(input_node), log_signal(ce.values_map(input_node)));
log_error("Cannot evaluate %s because %s is not defined.\nEvaluation environment:\n%s",
log_signal(node), log_signal(undef), env.c_str());
}
lut_table.bits()[i] = value.as_bool() ? State::S1 : State::S0;
ce.pop();
}
RTLIL::SigSpec lut_a, lut_y = node;
for (auto input_node : input_nodes)
lut_a.append(input_node);
if ((int)input_nodes.size() < minlut)
lut_a.append(RTLIL::Const(State::Sx, minlut - input_nodes.size()));
RTLIL::Cell *lut = module->addLut(NEW_ID, lut_a, lut_y, lut_table);
mapped_nodes.insert(node);
for (auto gate_node : lut_gates[node])
{
auto gate_origin = node_origins[gate_node];
lut->add_strpool_attribute(ID::src, gate_origin.cell->get_strpool_attribute(ID::src));
packed_count++;
}
lut_count++;
lut_area += lut_table.size();
if ((int)input_nodes.size() >= minlut)
log(" Packed into a %d-LUT %s.%s.\n", GetSize(input_nodes), log_id(module), log_id(lut));
else
log(" Packed into a %d-LUT %s.%s (implemented as %d-LUT).\n", GetSize(input_nodes), log_id(module), log_id(lut), minlut);
}
for (auto node : mapped_nodes)
{
auto origin = node_origins[node];
RTLIL::SigSpec driver = origin.cell->getPort(origin.port);
driver[origin.offset] = module->addWire(NEW_ID);
origin.cell->setPort(origin.port, driver);
}
}
FlowmapWorker(int order, int minlut, pool<IdString> cell_types, int r_alpha, int r_beta, int r_gamma,
bool relax, int optarea, bool debug, bool debug_relax,
RTLIL::Module *module) :
order(order), r_alpha(r_alpha), r_beta(r_beta), r_gamma(r_gamma), debug(debug), debug_relax(debug_relax),
module(module), sigmap(module), index(module)
{
log("Labeling cells.\n");
discover_nodes(cell_types);
label_nodes();
int depth = map_luts();
if (relax)
{
log("\n");
log("Optimizing area.\n");
optimize_area(depth, optarea);
}
log("\n");
log("Packing cells.\n");
pack_cells(minlut);
}
};
static void split(std::vector<std::string> &tokens, const std::string &text, char sep)
{
size_t start = 0, end = 0;
while ((end = text.find(sep, start)) != std::string::npos) {
tokens.push_back(text.substr(start, end - start));
start = end + 1;
}
tokens.push_back(text.substr(start));
}
struct FlowmapPass : public Pass {
FlowmapPass() : Pass("flowmap", "pack LUTs with FlowMap") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" flowmap [options] [selection]\n");
log("\n");
log("This pass uses the FlowMap technology mapping algorithm to pack logic gates\n");
log("into k-LUTs with optimal depth. It allows mapping any circuit elements that can\n");
log("be evaluated with the `eval` pass, including cells with multiple output ports\n");
log("and multi-bit input and output ports.\n");
log("\n");
log(" -maxlut k\n");
log(" perform technology mapping for a k-LUT architecture. if not specified,\n");
log(" defaults to 3.\n");
log("\n");
log(" -minlut n\n");
log(" only produce n-input or larger LUTs. if not specified, defaults to 1.\n");
log("\n");
log(" -cells <cell>[,<cell>,...]\n");
log(" map specified cells. if not specified, maps $_NOT_, $_AND_, $_OR_,\n");
log(" $_XOR_ and $_MUX_, which are the outputs of the `simplemap` pass.\n");
log("\n");
log(" -relax\n");
log(" perform depth relaxation and area minimization.\n");
log("\n");
log(" -r-alpha n, -r-beta n, -r-gamma n\n");
log(" parameters of depth relaxation heuristic potential function.\n");
log(" if not specified, alpha=8, beta=2, gamma=1.\n");
log("\n");
log(" -optarea n\n");
log(" optimize for area by trading off at most n logic levels for fewer LUTs.\n");
log(" n may be zero, to optimize for area without increasing depth.\n");
log(" implies -relax.\n");
log("\n");
log(" -debug\n");
log(" dump intermediate graphs.\n");
log("\n");
log(" -debug-relax\n");
log(" explain decisions performed during depth relaxation.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
int order = 3;
int minlut = 1;
vector<string> cells;
bool relax = false;
int r_alpha = 8, r_beta = 2, r_gamma = 1;
int optarea = 0;
bool debug = false, debug_relax = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-maxlut" && argidx + 1 < args.size())
{
order = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-minlut" && argidx + 1 < args.size())
{
minlut = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-cells" && argidx + 1 < args.size())
{
split(cells, args[++argidx], ',');
continue;
}
if (args[argidx] == "-relax")
{
relax = true;
continue;
}
if (args[argidx] == "-r-alpha" && argidx + 1 < args.size())
{
r_alpha = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-r-beta" && argidx + 1 < args.size())
{
r_beta = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-r-gamma" && argidx + 1 < args.size())
{
r_gamma = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-optarea" && argidx + 1 < args.size())
{
relax = true;
optarea = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-debug")
{
debug = true;
continue;
}
if (args[argidx] == "-debug-relax")
{
debug = debug_relax = true;
continue;
}
break;
}
extra_args(args, argidx, design);
pool<IdString> cell_types;
if (!cells.empty())
{
for (auto &cell : cells)
cell_types.insert(cell);
}
else
{
cell_types = {ID($_NOT_), ID($_AND_), ID($_OR_), ID($_XOR_), ID($_MUX_)};
}
const char *algo_r = relax ? "-r" : "";
log_header(design, "Executing FLOWMAP pass (pack LUTs with FlowMap%s).\n", algo_r);
int gate_count = 0, lut_count = 0, packed_count = 0;
int gate_area = 0, lut_area = 0;
for (auto module : design->selected_modules())
{
FlowmapWorker worker(order, minlut, cell_types, r_alpha, r_beta, r_gamma, relax, optarea, debug, debug_relax, module);
gate_count += worker.gate_count;
lut_count += worker.lut_count;
packed_count += worker.packed_count;
gate_area += worker.gate_area;
lut_area += worker.lut_area;
}
log("\n");
log("Packed %d cells (%d of them duplicated) into %d LUTs.\n", packed_count, packed_count - gate_count, lut_count);
log("Solution takes %.1f%% of original gate area.\n", lut_area * 100.0 / gate_area);
}
} FlowmapPass;
PRIVATE_NAMESPACE_END