/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ module VCC (output V); assign V = 1'b1; endmodule // VCC module GND (output G); assign G = 1'b0; endmodule // GND /* Altera MAX10 devices Input Buffer Primitive */ module fiftyfivenm_io_ibuf (output o, input i, input ibar); assign ibar = ibar; assign o = i; endmodule // fiftyfivenm_io_ibuf /* Altera MAX10 devices Output Buffer Primitive */ module fiftyfivenm_io_obuf (output o, input i, input oe); assign o = i; assign oe = oe; endmodule // fiftyfivenm_io_obuf /* Altera MAX10 4-input non-fracturable LUT Primitive */ module fiftyfivenm_lcell_comb (output combout, cout, input dataa, datab, datac, datad, cin); /* Internal parameters which define the behaviour of the LUT primitive. lut_mask define the lut function, can be expressed in 16-digit bin or hex. sum_lutc_input define the type of LUT (combinational | arithmetic). dont_touch for retiming || carry options. lpm_type for WYSIWYG */ parameter lut_mask = 16'hFFFF; parameter dont_touch = "off"; parameter lpm_type = "fiftyfivenm_lcell_comb"; parameter sum_lutc_input = "datac"; reg [1:0] lut_type; reg cout_rt; reg combout_rt; wire dataa_w; wire datab_w; wire datac_w; wire datad_w; wire cin_w; assign dataa_w = dataa; assign datab_w = datab; assign datac_w = datac; assign datad_w = datad; function lut_data; input [15:0] mask; input dataa, datab, datac, datad; reg [7:0] s3; reg [3:0] s2; reg [1:0] s1; begin s3 = datad ? mask[15:8] : mask[7:0]; s2 = datac ? s3[7:4] : s3[3:0]; s1 = datab ? s2[3:2] : s2[1:0]; lut_data = dataa ? s1[1] : s1[0]; end endfunction initial begin if (sum_lutc_input == "datac") lut_type = 0; else if (sum_lutc_input == "cin") lut_type = 1; else begin $error("Error in sum_lutc_input. Parameter %s is not a valid value.\n", sum_lutc_input); $finish(); end end always @(dataa_w or datab_w or datac_w or datad_w or cin_w) begin if (lut_type == 0) begin // logic function combout_rt = lut_data(lut_mask, dataa_w, datab_w, datac_w, datad_w); end else if (lut_type == 1) begin // arithmetic function combout_rt = lut_data(lut_mask, dataa_w, datab_w, cin_w, datad_w); end cout_rt = lut_data(lut_mask, dataa_w, datab_w, cin_w, 'b0); end assign combout = combout_rt & 1'b1; assign cout = cout_rt & 1'b1; endmodule // fiftyfivenm_lcell_comb /* Altera D Flip-Flop Primitive */ module dffeas (output q, input d, clk, clrn, prn, ena, input asdata, aload, sclr, sload); // Timing simulation is not covered parameter power_up="dontcare"; parameter is_wysiwyg="false"; reg q_tmp; wire reset; reg [7:0] debug_net; assign reset = (prn && sclr && ~clrn && ena); assign q = q_tmp & 1'b1; always @(posedge clk, posedge aload) begin if(reset) q_tmp <= 0; else q_tmp <= d; end assign q = q_tmp; endmodule // dffeas /* MAX10 altpll clearbox model */ (* blackbox *) module fiftyfivenm_pll (inclk, fbin, fbout, clkswitch, areset, pfdena, scanclk, scandata, scanclkena, configupdate, clk, phasecounterselect, phaseupdown, phasestep, clkbad, activeclock, locked, scandataout, scandone, phasedone, vcooverrange, vcounderrange); parameter operation_mode = "normal"; parameter pll_type = "auto"; parameter compensate_clock = "clock0"; parameter inclk0_input_frequency = 0; parameter inclk1_input_frequency = 0; parameter self_reset_on_loss_lock = "off"; parameter switch_over_type = "auto"; parameter switch_over_counter = 1; parameter enable_switch_over_counter = "off"; parameter bandwidth = 0; parameter bandwidth_type = "auto"; parameter use_dc_coupling = "false"; parameter lock_high = 0; parameter lock_low = 0; parameter lock_window_ui = "0.05"; parameter test_bypass_lock_detect = "off"; parameter clk0_output_frequency = 0; parameter clk0_multiply_by = 0; parameter clk0_divide_by = 0; parameter clk0_phase_shift = "0"; parameter clk0_duty_cycle = 50; parameter clk1_output_frequency = 0; parameter clk1_multiply_by = 0; parameter clk1_divide_by = 0; parameter clk1_phase_shift = "0"; parameter clk1_duty_cycle = 50; parameter clk2_output_frequency = 0; parameter clk2_multiply_by = 0; parameter clk2_divide_by = 0; parameter clk2_phase_shift = "0"; parameter clk2_duty_cycle = 50; parameter clk3_output_frequency = 0; parameter clk3_multiply_by = 0; parameter clk3_divide_by = 0; parameter clk3_phase_shift = "0"; parameter clk3_duty_cycle = 50; parameter clk4_output_frequency = 0; parameter clk4_multiply_by = 0; parameter clk4_divide_by = 0; parameter clk4_phase_shift = "0"; parameter clk4_duty_cycle = 50; parameter pfd_min = 0; parameter pfd_max = 0; parameter vco_min = 0; parameter vco_max = 0; parameter vco_center = 0; // Advanced user parameters parameter m_initial = 1; parameter m = 0; parameter n = 1; parameter c0_high = 1; parameter c0_low = 1; parameter c0_initial = 1; parameter c0_mode = "bypass"; parameter c0_ph = 0; parameter c1_high = 1; parameter c1_low = 1; parameter c1_initial = 1; parameter c1_mode = "bypass"; parameter c1_ph = 0; parameter c2_high = 1; parameter c2_low = 1; parameter c2_initial = 1; parameter c2_mode = "bypass"; parameter c2_ph = 0; parameter c3_high = 1; parameter c3_low = 1; parameter c3_initial = 1; parameter c3_mode = "bypass"; parameter c3_ph = 0; parameter c4_high = 1; parameter c4_low = 1; parameter c4_initial = 1; parameter c4_mode = "bypass"; parameter c4_ph = 0; parameter m_ph = 0; parameter clk0_counter = "unused"; parameter clk1_counter = "unused"; parameter clk2_counter = "unused"; parameter clk3_counter = "unused"; parameter clk4_counter = "unused"; parameter c1_use_casc_in = "off"; parameter c2_use_casc_in = "off"; parameter c3_use_casc_in = "off"; parameter c4_use_casc_in = "off"; parameter m_test_source = -1; parameter c0_test_source = -1; parameter c1_test_source = -1; parameter c2_test_source = -1; parameter c3_test_source = -1; parameter c4_test_source = -1; parameter vco_multiply_by = 0; parameter vco_divide_by = 0; parameter vco_post_scale = 1; parameter vco_frequency_control = "auto"; parameter vco_phase_shift_step = 0; parameter charge_pump_current = 10; parameter loop_filter_r = "1.0"; parameter loop_filter_c = 0; parameter pll_compensation_delay = 0; parameter lpm_type = "fiftyfivenm_pll"; parameter phase_counter_select_width = 3; input [1:0] inclk; input fbin; input clkswitch; input areset; input pfdena; input [phase_counter_select_width - 1:0] phasecounterselect; input phaseupdown; input phasestep; input scanclk; input scanclkena; input scandata; input configupdate; output [4:0] clk; output [1:0] clkbad; output activeclock; output locked; output scandataout; output scandone; output fbout; output phasedone; output vcooverrange; output vcounderrange; endmodule // cycloneive_pll