/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com> * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/rtlil.h" #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/celltypes.h" #include "kernel/log.h" #include "kernel/mem.h" #include <algorithm> #include <string> #include <vector> #include <cmath> USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN pool<string> used_names; dict<IdString, string> namecache; int autoid_counter; typedef unsigned FDirection; static const FDirection FD_NODIRECTION = 0x0; static const FDirection FD_IN = 0x1; static const FDirection FD_OUT = 0x2; static const FDirection FD_INOUT = 0x3; static const int FIRRTL_MAX_DSH_WIDTH_ERROR = 20; // For historic reasons, this is actually one greater than the maximum allowed shift width std::string getFileinfo(const RTLIL::AttrObject *design_entity) { std::string src(design_entity->get_src_attribute()); std::string fileinfo_str = src.empty() ? "" : "@[" + src + "]"; return fileinfo_str; } // Get a port direction with respect to a specific module. FDirection getPortFDirection(IdString id, Module *module) { Wire *wire = module->wires_.at(id); FDirection direction = FD_NODIRECTION; if (wire && wire->port_id) { if (wire->port_input) direction |= FD_IN; if (wire->port_output) direction |= FD_OUT; } return direction; } string next_id() { string new_id; while (1) { new_id = stringf("_%d", autoid_counter++); if (used_names.count(new_id) == 0) break; } used_names.insert(new_id); return new_id; } const char *make_id(IdString id) { if (namecache.count(id) != 0) return namecache.at(id).c_str(); string new_id = log_id(id); for (int i = 0; i < GetSize(new_id); i++) { char &ch = new_id[i]; if ('a' <= ch && ch <= 'z') continue; if ('A' <= ch && ch <= 'Z') continue; if ('0' <= ch && ch <= '9' && i != 0) continue; if ('_' == ch) continue; ch = '_'; } while (used_names.count(new_id) != 0) new_id += '_'; namecache[id] = new_id; used_names.insert(new_id); return namecache.at(id).c_str(); } std::string dump_const_string(const RTLIL::Const &data) { std::string res_str; std::string str = data.decode_string(); for (size_t i = 0; i < str.size(); i++) { if (str[i] == '\n') res_str += "\\n"; else if (str[i] == '\t') res_str += "\\t"; else if (str[i] < 32) res_str += stringf("\\%03o", str[i]); else if (str[i] == '"') res_str += "\\\""; else if (str[i] == '\\') res_str += "\\\\"; else res_str += str[i]; } return res_str; } std::string dump_const(const RTLIL::Const &data) { std::string res_str; // // For debugging purposes to find out how Yosys encodes flags. // res_str += stringf("flags_%x --> ", data.flags); // Real-valued parameter. if (data.flags & RTLIL::CONST_FLAG_REAL) { // Yosys stores real values as strings, so we call the string dumping code. res_str += dump_const_string(data); } // String parameter. else if (data.flags & RTLIL::CONST_FLAG_STRING) { res_str += "\""; res_str += dump_const_string(data); res_str += "\""; } // Numeric (non-real) parameter. else { int width = data.size(); // If a standard 32-bit int, then emit standard int value like "56" or // "-56". Firrtl supports negative-valued int literals. // // SignedInt // : ( '+' | '-' ) PosInt // ; if (width <= 32) { int32_t int_val = 0; for (int i = 0; i < width; i++) { switch (data[i]) { case State::S0: break; case State::S1: int_val |= (1 << i); break; default: log_error("Unexpected int value\n"); break; } } res_str += stringf("%d", int_val); } else { // If value is larger than 32 bits, then emit a binary representation of // the number as integers are not large enough to contain the result. // There is a caveat to this approach though: // // Note that parameter may be defined as having a fixed width as follows: // // parameter signed [26:0] test_signed; // parameter [26:0] test_unsigned; // parameter signed [40:0] test_signed_large; // // However, if you assign a value on the RHS without specifying the // precision, then yosys considers the value you used as an int and // assigns it a width of 32 bits regardless of the type of the parameter. // // defparam <inst_name> .test_signed = 49; (width = 32, though should be 27 based on definition) // defparam <inst_name> .test_unsigned = 40'd35; (width = 40, though should be 27 based on definition) // defparam <inst_name> .test_signed_large = 40'd12; (width = 40) // // We therefore may lose the precision of the original verilog literal if // it was written without its bitwidth specifier. // Emit binary prefix for string. res_str += "\"b"; // Emit bits. for (int i = width - 1; i >= 0; i--) { log_assert(i < width); switch (data[i]) { case State::S0: res_str += "0"; break; case State::S1: res_str += "1"; break; case State::Sx: res_str += "x"; break; case State::Sz: res_str += "z"; break; case State::Sa: res_str += "-"; break; case State::Sm: res_str += "m"; break; } } res_str += "\""; } } return res_str; } std::string extmodule_name(RTLIL::Cell *cell, RTLIL::Module *mod_instance) { // Since we are creating a custom extmodule for every cell that instantiates // this blackbox, we need to create a custom name for it. We just use the // name of the blackbox itself followed by the name of the cell. const std::string cell_name = std::string(make_id(cell->name)); const std::string blackbox_name = std::string(make_id(mod_instance->name)); const std::string extmodule_name = blackbox_name + "_" + cell_name; return extmodule_name; } /** * Emits a parameterized extmodule. Instance parameters are obtained from * ''cell'' as it represents the instantiation of the blackbox defined by * ''mod_instance'' and therefore contains all its instance parameters. */ void emit_extmodule(RTLIL::Cell *cell, RTLIL::Module *mod_instance, std::ostream &f) { const std::string indent = " "; const std::string blackbox_name = std::string(make_id(mod_instance->name)); const std::string exported_name = extmodule_name(cell, mod_instance); // We use the cell's fileinfo for this extmodule as its parameters come from // the cell and not from the module itself (the module contains default // parameters, not the instance-specific ones we're using to emit the // extmodule). const std::string extmoduleFileinfo = getFileinfo(cell); // Emit extmodule header. f << stringf(" extmodule %s: %s\n", exported_name.c_str(), extmoduleFileinfo.c_str()); // Emit extmodule ports. for (auto wire : mod_instance->wires()) { const auto wireName = make_id(wire->name); const std::string wireFileinfo = getFileinfo(wire); if (wire->port_input && wire->port_output) { log_error("Module port %s.%s is inout!\n", log_id(mod_instance), log_id(wire)); } const std::string portDecl = stringf("%s%s %s: UInt<%d> %s\n", indent.c_str(), wire->port_input ? "input" : "output", wireName, wire->width, wireFileinfo.c_str() ); f << portDecl; } // Emit extmodule "defname" field. This is the name of the verilog blackbox // that is used when verilog is emitted, so we use the name of mod_instance // here. f << stringf("%sdefname = %s\n", indent.c_str(), blackbox_name.c_str()); // Emit extmodule generic parameters. for (const auto &p : cell->parameters) { const RTLIL::IdString p_id = p.first; const RTLIL::Const p_value = p.second; std::string param_name(p_id.c_str()); const std::string param_value = dump_const(p_value); // Remove backslashes from parameters as these come from the internal RTLIL // naming scheme, but should not exist in the emitted firrtl blackboxes. // When firrtl is converted to verilog and given to downstream synthesis // tools, these tools expect to find blackbox names and parameters as they // were originally defined, i.e. without the extra RTLIL naming conventions. param_name.erase( std::remove(param_name.begin(), param_name.end(), '\\'), param_name.end() ); f << stringf("%sparameter %s = %s\n", indent.c_str(), param_name.c_str(), param_value.c_str()); } f << "\n"; } /** * Emits extmodules for every instantiated blackbox in the design. * * RTLIL stores instance parameters at the cell's instantiation location. * However, firrtl does not support module parameterization (everything is * already elaborated). Firrtl instead supports external modules (extmodule), * i.e. blackboxes that are defined by verilog and which have no body in * firrtl itself other than the declaration of the blackboxes ports and * parameters. * * Furthermore, firrtl does not support parameterization (even of extmodules) * at a module's instantiation location and users must instead declare * different extmodules with different instance parameters in the extmodule * definition itself. * * This function goes through the design to identify all RTLIL blackboxes * and emit parameterized extmodules with a unique name for each of them. The * name that's given to the extmodule is * * <blackbox_name>_<instance_name> * * Beware that it is therefore necessary for users to replace "parameterized" * instances in the RTLIL sense with these custom extmodules for the firrtl to * be valid. */ void emit_elaborated_extmodules(RTLIL::Design *design, std::ostream &f) { for (auto module : design->modules()) { for (auto cell : module->cells()) { // Is this cell a module instance? bool cellIsModuleInstance = cell->type[0] != '$'; if (cellIsModuleInstance) { // Find the module corresponding to this instance. auto modInstance = design->module(cell->type); // Ensure that we actually have a module instance if (modInstance == nullptr) { log_error("Unknown cell type %s\n", cell->type.c_str()); return; } bool modIsBlackbox = modInstance->get_blackbox_attribute(); if (modIsBlackbox) { emit_extmodule(cell, modInstance, f); } } } } } struct FirrtlWorker { Module *module; std::ostream &f; dict<SigBit, pair<string, int>> reverse_wire_map; string unconn_id; RTLIL::Design *design; std::string indent; void register_reverse_wire_map(string id, SigSpec sig) { for (int i = 0; i < GetSize(sig); i++) reverse_wire_map[sig[i]] = make_pair(id, i); } FirrtlWorker(Module *module, std::ostream &f, RTLIL::Design *theDesign) : module(module), f(f), design(theDesign), indent(" ") { } static string make_expr(const SigSpec &sig) { string expr; for (auto chunk : sig.chunks()) { string new_expr; if (chunk.wire == nullptr) { std::vector<RTLIL::State> bits = chunk.data; new_expr = stringf("UInt<%d>(\"h", GetSize(bits)); while (GetSize(bits) % 4 != 0) bits.push_back(State::S0); for (int i = GetSize(bits)-4; i >= 0; i -= 4) { int val = 0; if (bits[i+0] == State::S1) val += 1; if (bits[i+1] == State::S1) val += 2; if (bits[i+2] == State::S1) val += 4; if (bits[i+3] == State::S1) val += 8; new_expr.push_back(val < 10 ? '0' + val : 'a' + val - 10); } new_expr += "\")"; } else if (chunk.offset == 0 && chunk.width == chunk.wire->width) { new_expr = make_id(chunk.wire->name); } else { string wire_id = make_id(chunk.wire->name); new_expr = stringf("bits(%s, %d, %d)", wire_id.c_str(), chunk.offset + chunk.width - 1, chunk.offset); } if (expr.empty()) expr = new_expr; else expr = "cat(" + new_expr + ", " + expr + ")"; } return expr; } std::string fid(RTLIL::IdString internal_id) { return make_id(internal_id); } std::string cellname(RTLIL::Cell *cell) { return fid(cell->name).c_str(); } void process_instance(RTLIL::Cell *cell, vector<string> &wire_exprs) { std::string cell_type = fid(cell->type); std::string instanceOf; // If this is a parameterized module, its parent module is encoded in the cell type if (cell->type.begins_with("$paramod")) { log_assert(cell->has_attribute(ID::hdlname)); instanceOf = cell->get_string_attribute(ID::hdlname); } else { instanceOf = cell_type; } std::string cell_name = cellname(cell); std::string cell_name_comment; if (cell_name != fid(cell->name)) cell_name_comment = " /* " + fid(cell->name) + " */ "; else cell_name_comment = ""; // Find the module corresponding to this instance. auto instModule = design->module(cell->type); // If there is no instance for this, just return. if (instModule == NULL) { log_warning("No instance for %s.%s\n", cell_type.c_str(), cell_name.c_str()); return; } // If the instance is that of a blackbox, use the modified extmodule name // that contains per-instance parameterizations. These instances were // emitted earlier in the firrtl backend. const std::string instanceName = instModule->get_blackbox_attribute() ? extmodule_name(cell, instModule) : instanceOf; std::string cellFileinfo = getFileinfo(cell); wire_exprs.push_back(stringf("%s" "inst %s%s of %s %s", indent.c_str(), cell_name.c_str(), cell_name_comment.c_str(), instanceName.c_str(), cellFileinfo.c_str())); for (auto it = cell->connections().begin(); it != cell->connections().end(); ++it) { if (it->second.size() > 0) { const SigSpec &secondSig = it->second; const std::string firstName = cell_name + "." + make_id(it->first); const std::string secondExpr = make_expr(secondSig); // Find the direction for this port. FDirection dir = getPortFDirection(it->first, instModule); std::string sourceExpr, sinkExpr; const SigSpec *sinkSig = nullptr; switch (dir) { case FD_INOUT: log_warning("Instance port connection %s.%s is INOUT; treating as OUT\n", cell_type.c_str(), log_signal(it->second)); YS_FALLTHROUGH case FD_OUT: sourceExpr = firstName; sinkExpr = secondExpr; sinkSig = &secondSig; break; case FD_NODIRECTION: log_warning("Instance port connection %s.%s is NODIRECTION; treating as IN\n", cell_type.c_str(), log_signal(it->second)); YS_FALLTHROUGH case FD_IN: sourceExpr = secondExpr; sinkExpr = firstName; break; default: log_error("Instance port %s.%s unrecognized connection direction 0x%x !\n", cell_type.c_str(), log_signal(it->second), dir); break; } // Check for subfield assignment. std::string bitsString = "bits("; if (sinkExpr.compare(0, bitsString.length(), bitsString) == 0) { if (sinkSig == nullptr) log_error("Unknown subfield %s.%s\n", cell_type.c_str(), sinkExpr.c_str()); // Don't generate the assignment here. // Add the source and sink to the "reverse_wire_map" and we'll output the assignment // as part of the coalesced subfield assignments for this wire. register_reverse_wire_map(sourceExpr, *sinkSig); } else { wire_exprs.push_back(stringf("\n%s%s <= %s %s", indent.c_str(), sinkExpr.c_str(), sourceExpr.c_str(), cellFileinfo.c_str())); } } } wire_exprs.push_back(stringf("\n")); } // Given an expression for a shift amount, and a maximum width, // generate the FIRRTL expression for equivalent dynamic shift taking into account FIRRTL shift semantics. std::string gen_dshl(const string b_expr, const int b_width) { string result = b_expr; if (b_width >= FIRRTL_MAX_DSH_WIDTH_ERROR) { int max_shift_width_bits = FIRRTL_MAX_DSH_WIDTH_ERROR - 1; string max_shift_string = stringf("UInt<%d>(%d)", max_shift_width_bits, (1<<max_shift_width_bits) - 1); // Deal with the difference in semantics between FIRRTL and verilog result = stringf("mux(gt(%s, %s), %s, bits(%s, %d, 0))", b_expr.c_str(), max_shift_string.c_str(), max_shift_string.c_str(), b_expr.c_str(), max_shift_width_bits - 1); } return result; } void emit_module() { std::string moduleFileinfo = getFileinfo(module); f << stringf(" module %s: %s\n", make_id(module->name), moduleFileinfo.c_str()); vector<string> port_decls, wire_decls, mem_exprs, cell_exprs, wire_exprs; std::vector<Mem> memories = Mem::get_all_memories(module); for (auto &mem : memories) mem.narrow(); for (auto wire : module->wires()) { const auto wireName = make_id(wire->name); std::string wireFileinfo = getFileinfo(wire); // If a wire has initial data, issue a warning since FIRRTL doesn't currently support it. if (wire->attributes.count(ID::init)) { log_warning("Initial value (%s) for (%s.%s) not supported\n", wire->attributes.at(ID::init).as_string().c_str(), log_id(module), log_id(wire)); } if (wire->port_id) { if (wire->port_input && wire->port_output) log_error("Module port %s.%s is inout!\n", log_id(module), log_id(wire)); port_decls.push_back(stringf("%s%s %s: UInt<%d> %s\n", indent.c_str(), wire->port_input ? "input" : "output", wireName, wire->width, wireFileinfo.c_str())); } else { wire_decls.push_back(stringf("%swire %s: UInt<%d> %s\n", indent.c_str(), wireName, wire->width, wireFileinfo.c_str())); } } for (auto cell : module->cells()) { Const ndef(0, 0); // Is this cell is a module instance? if (module->design->module(cell->type)) { process_instance(cell, wire_exprs); continue; } // Not a module instance. Set up cell properties bool extract_y_bits = false; // Assume no extraction of final bits will be required. int a_width = cell->parameters.at(ID::A_WIDTH, ndef).as_int(); // The width of "A" int b_width = cell->parameters.at(ID::B_WIDTH, ndef).as_int(); // The width of "A" const int y_width = cell->parameters.at(ID::Y_WIDTH, ndef).as_int(); // The width of the result const bool a_signed = cell->parameters.at(ID::A_SIGNED, ndef).as_bool(); const bool b_signed = cell->parameters.at(ID::B_SIGNED, ndef).as_bool(); bool firrtl_is_signed = a_signed; // The result is signed (subsequent code may change this). int firrtl_width = 0; string primop; bool always_uint = false; string y_id = make_id(cell->name); std::string cellFileinfo = getFileinfo(cell); if (cell->type.in(ID($not), ID($logic_not), ID($_NOT_), ID($neg), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_bool), ID($reduce_xnor))) { string a_expr = make_expr(cell->getPort(ID::A)); wire_decls.push_back(stringf("%swire %s: UInt<%d> %s\n", indent.c_str(), y_id.c_str(), y_width, cellFileinfo.c_str())); if (a_signed) { a_expr = "asSInt(" + a_expr + ")"; } // Don't use the results of logical operations (a single bit) to control padding if (!(cell->type.in(ID($eq), ID($eqx), ID($gt), ID($ge), ID($lt), ID($le), ID($ne), ID($nex), ID($reduce_bool), ID($logic_not)) && y_width == 1) ) { a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width); } // Assume the FIRRTL width is a single bit. firrtl_width = 1; if (cell->type.in(ID($not), ID($_NOT_))) primop = "not"; else if (cell->type == ID($neg)) { primop = "neg"; firrtl_is_signed = true; // Result of "neg" is signed (an SInt). firrtl_width = a_width; } else if (cell->type == ID($logic_not)) { primop = "eq"; a_expr = stringf("%s, UInt(0)", a_expr.c_str()); } else if (cell->type == ID($reduce_and)) primop = "andr"; else if (cell->type == ID($reduce_or)) primop = "orr"; else if (cell->type == ID($reduce_xor)) primop = "xorr"; else if (cell->type == ID($reduce_xnor)) { primop = "not"; a_expr = stringf("xorr(%s)", a_expr.c_str()); } else if (cell->type == ID($reduce_bool)) { primop = "neq"; // Use the sign of the a_expr and its width as the type (UInt/SInt) and width of the comparand. a_expr = stringf("%s, %cInt<%d>(0)", a_expr.c_str(), a_signed ? 'S' : 'U', a_width); } string expr = stringf("%s(%s)", primop.c_str(), a_expr.c_str()); if ((firrtl_is_signed && !always_uint)) expr = stringf("asUInt(%s)", expr.c_str()); cell_exprs.push_back(stringf("%s%s <= %s %s\n", indent.c_str(), y_id.c_str(), expr.c_str(), cellFileinfo.c_str())); register_reverse_wire_map(y_id, cell->getPort(ID::Y)); continue; } if (cell->type.in(ID($add), ID($sub), ID($mul), ID($div), ID($mod), ID($xor), ID($_XOR_), ID($xnor), ID($and), ID($_AND_), ID($or), ID($_OR_), ID($eq), ID($eqx), ID($gt), ID($ge), ID($lt), ID($le), ID($ne), ID($nex), ID($shr), ID($sshr), ID($sshl), ID($shl), ID($logic_and), ID($logic_or), ID($pow))) { string a_expr = make_expr(cell->getPort(ID::A)); string b_expr = make_expr(cell->getPort(ID::B)); std::string cellFileinfo = getFileinfo(cell); wire_decls.push_back(stringf("%swire %s: UInt<%d> %s\n", indent.c_str(), y_id.c_str(), y_width, cellFileinfo.c_str())); if (a_signed) { a_expr = "asSInt(" + a_expr + ")"; // Expand the "A" operand to the result width if (a_width < y_width) { a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width); a_width = y_width; } } // Shift amount is always unsigned, and needn't be padded to result width, // otherwise, we need to cast the b_expr appropriately if (b_signed && !cell->type.in(ID($shr), ID($sshr), ID($shl), ID($sshl), ID($pow))) { b_expr = "asSInt(" + b_expr + ")"; // Expand the "B" operand to the result width if (b_width < y_width) { b_expr = stringf("pad(%s, %d)", b_expr.c_str(), y_width); b_width = y_width; } } // For the arithmetic ops, expand operand widths to result widths befor performing the operation. // This corresponds (according to iverilog) to what verilog compilers implement. if (cell->type.in(ID($add), ID($sub), ID($mul), ID($div), ID($mod), ID($xor), ID($_XOR_), ID($xnor), ID($and), ID($_AND_), ID($or), ID($_OR_))) { if (a_width < y_width) { a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width); a_width = y_width; } if (b_width < y_width) { b_expr = stringf("pad(%s, %d)", b_expr.c_str(), y_width); b_width = y_width; } } // Assume the FIRRTL width is the width of "A" firrtl_width = a_width; auto a_sig = cell->getPort(ID::A); if (cell->type == ID($add)) { primop = "add"; firrtl_is_signed = a_signed | b_signed; firrtl_width = max(a_width, b_width); } else if (cell->type == ID($sub)) { primop = "sub"; firrtl_is_signed = true; int a_widthInc = (!a_signed && b_signed) ? 2 : (a_signed && !b_signed) ? 1 : 0; int b_widthInc = (a_signed && !b_signed) ? 2 : (!a_signed && b_signed) ? 1 : 0; firrtl_width = max(a_width + a_widthInc, b_width + b_widthInc); } else if (cell->type == ID($mul)) { primop = "mul"; firrtl_is_signed = a_signed | b_signed; firrtl_width = a_width + b_width; } else if (cell->type == ID($div)) { primop = "div"; firrtl_is_signed = a_signed | b_signed; firrtl_width = a_width; } else if (cell->type == ID($mod)) { // "rem" = truncating modulo primop = "rem"; firrtl_width = min(a_width, b_width); } else if (cell->type.in(ID($and), ID($_AND_))) { primop = "and"; always_uint = true; firrtl_width = max(a_width, b_width); } else if (cell->type.in(ID($or), ID($_OR_))) { primop = "or"; always_uint = true; firrtl_width = max(a_width, b_width); } else if (cell->type.in(ID($xor), ID($_XOR_))) { primop = "xor"; always_uint = true; firrtl_width = max(a_width, b_width); } else if (cell->type == ID($xnor)) { primop = "xnor"; always_uint = true; firrtl_width = max(a_width, b_width); } else if ((cell->type == ID($eq)) || (cell->type == ID($eqx))) { primop = "eq"; always_uint = true; firrtl_width = 1; } else if ((cell->type == ID($ne)) || (cell->type == ID($nex))) { primop = "neq"; always_uint = true; firrtl_width = 1; } else if (cell->type == ID($gt)) { primop = "gt"; always_uint = true; firrtl_width = 1; } else if (cell->type == ID($ge)) { primop = "geq"; always_uint = true; firrtl_width = 1; } else if (cell->type == ID($lt)) { primop = "lt"; always_uint = true; firrtl_width = 1; } else if (cell->type == ID($le)) { primop = "leq"; always_uint = true; firrtl_width = 1; } else if ((cell->type == ID($shl)) || (cell->type == ID($sshl))) { // FIRRTL will widen the result (y) by the amount of the shift. // We'll need to offset this by extracting the un-widened portion as Verilog would do. extract_y_bits = true; // Is the shift amount constant? auto b_sig = cell->getPort(ID::B); if (b_sig.is_fully_const()) { primop = "shl"; int shift_amount = b_sig.as_int(); b_expr = std::to_string(shift_amount); firrtl_width = a_width + shift_amount; } else { primop = "dshl"; // Convert from FIRRTL left shift semantics. b_expr = gen_dshl(b_expr, b_width); firrtl_width = a_width + (1 << b_width) - 1; } } else if ((cell->type == ID($shr)) || (cell->type == ID($sshr))) { // We don't need to extract a specific range of bits. extract_y_bits = false; // Is the shift amount constant? auto b_sig = cell->getPort(ID::B); if (b_sig.is_fully_const()) { primop = "shr"; int shift_amount = b_sig.as_int(); b_expr = std::to_string(shift_amount); firrtl_width = max(1, a_width - shift_amount); } else { primop = "dshr"; firrtl_width = a_width; } // We'll need to do some special fixups if the source (and thus result) is signed. if (firrtl_is_signed) { // If this is a "logical" shift right, pretend the source is unsigned. if (cell->type == ID($shr)) { a_expr = "asUInt(" + a_expr + ")"; } } } else if ((cell->type == ID($logic_and))) { primop = "and"; a_expr = "neq(" + a_expr + ", UInt(0))"; b_expr = "neq(" + b_expr + ", UInt(0))"; always_uint = true; firrtl_width = 1; } else if ((cell->type == ID($logic_or))) { primop = "or"; a_expr = "neq(" + a_expr + ", UInt(0))"; b_expr = "neq(" + b_expr + ", UInt(0))"; always_uint = true; firrtl_width = 1; } else if ((cell->type == ID($pow))) { if (a_sig.is_fully_const() && a_sig.as_int() == 2) { // We'll convert this to a shift. To simplify things, change the a_expr to "1" // so we can use b_expr directly as a shift amount. // Only support 2 ** N (i.e., shift left) // FIRRTL will widen the result (y) by the amount of the shift. // We'll need to offset this by extracting the un-widened portion as Verilog would do. a_expr = firrtl_is_signed ? "SInt(1)" : "UInt(1)"; extract_y_bits = true; // Is the shift amount constant? auto b_sig = cell->getPort(ID::B); if (b_sig.is_fully_const()) { primop = "shl"; int shiftAmount = b_sig.as_int(); if (shiftAmount < 0) { log_error("Negative power exponent - %d: %s.%s\n", shiftAmount, log_id(module), log_id(cell)); } b_expr = std::to_string(shiftAmount); firrtl_width = a_width + shiftAmount; } else { primop = "dshl"; // Convert from FIRRTL left shift semantics. b_expr = gen_dshl(b_expr, b_width); firrtl_width = a_width + (1 << b_width) - 1; } } else { log_error("Non power 2: %s.%s\n", log_id(module), log_id(cell)); } } auto it = cell->parameters.find(ID::B_SIGNED); if (it == cell->parameters.end() || !it->second.as_bool()) { b_expr = "asUInt(" + b_expr + ")"; } string expr; // Deal with $xnor == ~^ (not xor) if (primop == "xnor") { expr = stringf("not(xor(%s, %s))", a_expr.c_str(), b_expr.c_str()); } else { expr = stringf("%s(%s, %s)", primop.c_str(), a_expr.c_str(), b_expr.c_str()); } // Deal with FIRRTL's "shift widens" semantics, or the need to widen the FIRRTL result. // If the operation is signed, the FIRRTL width will be 1 one bit larger. if (extract_y_bits) { expr = stringf("bits(%s, %d, 0)", expr.c_str(), y_width - 1); } else if (firrtl_is_signed && (firrtl_width + 1) < y_width) { expr = stringf("pad(%s, %d)", expr.c_str(), y_width); } if ((firrtl_is_signed && !always_uint)) expr = stringf("asUInt(%s)", expr.c_str()); cell_exprs.push_back(stringf("%s%s <= %s %s\n", indent.c_str(), y_id.c_str(), expr.c_str(), cellFileinfo.c_str())); register_reverse_wire_map(y_id, cell->getPort(ID::Y)); continue; } if (cell->type.in(ID($mux), ID($_MUX_))) { auto it = cell->parameters.find(ID::WIDTH); int width = it == cell->parameters.end()? 1 : it->second.as_int(); string a_expr = make_expr(cell->getPort(ID::A)); string b_expr = make_expr(cell->getPort(ID::B)); string s_expr = make_expr(cell->getPort(ID::S)); wire_decls.push_back(stringf("%swire %s: UInt<%d> %s\n", indent.c_str(), y_id.c_str(), width, cellFileinfo.c_str())); string expr = stringf("mux(%s, %s, %s)", s_expr.c_str(), b_expr.c_str(), a_expr.c_str()); cell_exprs.push_back(stringf("%s%s <= %s %s\n", indent.c_str(), y_id.c_str(), expr.c_str(), cellFileinfo.c_str())); register_reverse_wire_map(y_id, cell->getPort(ID::Y)); continue; } if (cell->is_mem_cell()) { // Will be handled below, as part of a Mem. continue; } if (cell->type.in(ID($dff))) { bool clkpol = cell->parameters.at(ID::CLK_POLARITY).as_bool(); if (clkpol == false) log_error("Negative edge clock on FF %s.%s.\n", log_id(module), log_id(cell)); int width = cell->parameters.at(ID::WIDTH).as_int(); string expr = make_expr(cell->getPort(ID::D)); string clk_expr = "asClock(" + make_expr(cell->getPort(ID::CLK)) + ")"; wire_decls.push_back(stringf("%sreg %s: UInt<%d>, %s %s\n", indent.c_str(), y_id.c_str(), width, clk_expr.c_str(), cellFileinfo.c_str())); cell_exprs.push_back(stringf("%s%s <= %s %s\n", indent.c_str(), y_id.c_str(), expr.c_str(), cellFileinfo.c_str())); register_reverse_wire_map(y_id, cell->getPort(ID::Q)); continue; } if (cell->type == ID($shiftx)) { // assign y = a[b +: y_width]; // We'll extract the correct bits as part of the primop. string a_expr = make_expr(cell->getPort(ID::A)); // Get the initial bit selector string b_expr = make_expr(cell->getPort(ID::B)); wire_decls.push_back(stringf("%swire %s: UInt<%d>\n", indent.c_str(), y_id.c_str(), y_width)); if (cell->getParam(ID::B_SIGNED).as_bool()) { // Use validif to constrain the selection (test the sign bit) auto b_string = b_expr.c_str(); int b_sign = cell->parameters.at(ID::B_WIDTH).as_int() - 1; b_expr = stringf("validif(not(bits(%s, %d, %d)), %s)", b_string, b_sign, b_sign, b_string); } string expr = stringf("dshr(%s, %s)", a_expr.c_str(), b_expr.c_str()); cell_exprs.push_back(stringf("%s%s <= %s\n", indent.c_str(), y_id.c_str(), expr.c_str())); register_reverse_wire_map(y_id, cell->getPort(ID::Y)); continue; } if (cell->type == ID($shift)) { // assign y = a >> b; // where b may be negative string a_expr = make_expr(cell->getPort(ID::A)); string b_expr = make_expr(cell->getPort(ID::B)); auto b_string = b_expr.c_str(); string expr; wire_decls.push_back(stringf("%swire %s: UInt<%d>\n", indent.c_str(), y_id.c_str(), y_width)); if (cell->getParam(ID::B_SIGNED).as_bool()) { // We generate a left or right shift based on the sign of b. std::string dshl = stringf("bits(dshl(%s, %s), 0, %d)", a_expr.c_str(), gen_dshl(b_expr, b_width).c_str(), y_width); std::string dshr = stringf("dshr(%s, %s)", a_expr.c_str(), b_string); expr = stringf("mux(%s < 0, %s, %s)", b_string, dshl.c_str(), dshr.c_str() ); } else { expr = stringf("dshr(%s, %s)", a_expr.c_str(), b_string); } cell_exprs.push_back(stringf("%s%s <= %s\n", indent.c_str(), y_id.c_str(), expr.c_str())); register_reverse_wire_map(y_id, cell->getPort(ID::Y)); continue; } if (cell->type == ID($pos)) { // assign y = a; // printCell(cell); string a_expr = make_expr(cell->getPort(ID::A)); // Verilog appears to treat the result as signed, so if the result is wider than "A", // we need to pad. if (a_width < y_width) { a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width); } wire_decls.push_back(stringf("%swire %s: UInt<%d>\n", indent.c_str(), y_id.c_str(), y_width)); cell_exprs.push_back(stringf("%s%s <= %s\n", indent.c_str(), y_id.c_str(), a_expr.c_str())); register_reverse_wire_map(y_id, cell->getPort(ID::Y)); continue; } if (cell->type == ID($scopeinfo)) continue; log_error("Cell type not supported: %s (%s.%s)\n", log_id(cell->type), log_id(module), log_id(cell)); } for (auto &mem : memories) { string mem_id = make_id(mem.memid); Const init_data = mem.get_init_data(); if (!init_data.is_fully_undef()) log_error("Memory with initialization data: %s.%s\n", log_id(module), log_id(mem.memid)); if (mem.start_offset != 0) log_error("Memory with nonzero offset: %s.%s\n", log_id(module), log_id(mem.memid)); for (int i = 0; i < GetSize(mem.rd_ports); i++) { auto &port = mem.rd_ports[i]; string port_name(stringf("%s.r%d", mem_id.c_str(), i)); if (port.clk_enable) log_error("Clocked read port %d on memory %s.%s.\n", i, log_id(module), log_id(mem.memid)); std::ostringstream rpe; string addr_expr = make_expr(port.addr); string ena_expr = make_expr(State::S1); string clk_expr = make_expr(State::S0); rpe << stringf("%s%s.addr <= %s\n", indent.c_str(), port_name.c_str(), addr_expr.c_str()); rpe << stringf("%s%s.en <= %s\n", indent.c_str(), port_name.c_str(), ena_expr.c_str()); rpe << stringf("%s%s.clk <= asClock(%s)\n", indent.c_str(), port_name.c_str(), clk_expr.c_str()); cell_exprs.push_back(rpe.str()); register_reverse_wire_map(stringf("%s.data", port_name.c_str()), port.data); } for (int i = 0; i < GetSize(mem.wr_ports); i++) { auto &port = mem.wr_ports[i]; string port_name(stringf("%s.w%d", mem_id.c_str(), i)); if (!port.clk_enable) log_error("Unclocked write port %d on memory %s.%s.\n", i, log_id(module), log_id(mem.memid)); if (!port.clk_polarity) log_error("Negedge write port %d on memory %s.%s.\n", i, log_id(module), log_id(mem.memid)); for (int i = 1; i < GetSize(port.en); i++) if (port.en[0] != port.en[i]) log_error("Complex write enable on port %d on memory %s.%s.\n", i, log_id(module), log_id(mem.memid)); std::ostringstream wpe; string data_expr = make_expr(port.data); string addr_expr = make_expr(port.addr); string ena_expr = make_expr(port.en[0]); string clk_expr = make_expr(port.clk); string mask_expr = make_expr(State::S1); wpe << stringf("%s%s.data <= %s\n", indent.c_str(), port_name.c_str(), data_expr.c_str()); wpe << stringf("%s%s.addr <= %s\n", indent.c_str(), port_name.c_str(), addr_expr.c_str()); wpe << stringf("%s%s.en <= %s\n", indent.c_str(), port_name.c_str(), ena_expr.c_str()); wpe << stringf("%s%s.clk <= asClock(%s)\n", indent.c_str(), port_name.c_str(), clk_expr.c_str()); wpe << stringf("%s%s.mask <= %s\n", indent.c_str(), port_name.c_str(), mask_expr.c_str()); cell_exprs.push_back(wpe.str()); } std::ostringstream me; me << stringf(" mem %s:\n", mem_id.c_str()); me << stringf(" data-type => UInt<%d>\n", mem.width); me << stringf(" depth => %d\n", mem.size); for (int i = 0; i < GetSize(mem.rd_ports); i++) me << stringf(" reader => r%d\n", i); for (int i = 0; i < GetSize(mem.wr_ports); i++) me << stringf(" writer => w%d\n", i); me << stringf(" read-latency => %d\n", 0); me << stringf(" write-latency => %d\n", 1); me << stringf(" read-under-write => undefined\n"); mem_exprs.push_back(me.str()); } for (auto conn : module->connections()) { string y_id = next_id(); int y_width = GetSize(conn.first); string expr = make_expr(conn.second); wire_decls.push_back(stringf("%swire %s: UInt<%d>\n", indent.c_str(), y_id.c_str(), y_width)); cell_exprs.push_back(stringf("%s%s <= %s\n", indent.c_str(), y_id.c_str(), expr.c_str())); register_reverse_wire_map(y_id, conn.first); } for (auto wire : module->wires()) { string expr; std::string wireFileinfo = getFileinfo(wire); if (wire->port_input) continue; int cursor = 0; bool is_valid = false; bool make_unconn_id = false; while (cursor < wire->width) { int chunk_width = 1; string new_expr; SigBit start_bit(wire, cursor); if (reverse_wire_map.count(start_bit)) { pair<string, int> start_map = reverse_wire_map.at(start_bit); while (cursor+chunk_width < wire->width) { SigBit stop_bit(wire, cursor+chunk_width); if (reverse_wire_map.count(stop_bit) == 0) break; pair<string, int> stop_map = reverse_wire_map.at(stop_bit); stop_map.second -= chunk_width; if (start_map != stop_map) break; chunk_width++; } new_expr = stringf("bits(%s, %d, %d)", start_map.first.c_str(), start_map.second + chunk_width - 1, start_map.second); is_valid = true; } else { if (unconn_id.empty()) { unconn_id = next_id(); make_unconn_id = true; } new_expr = unconn_id; } if (expr.empty()) expr = new_expr; else expr = "cat(" + new_expr + ", " + expr + ")"; cursor += chunk_width; } if (is_valid) { if (make_unconn_id) { wire_decls.push_back(stringf("%swire %s: UInt<1> %s\n", indent.c_str(), unconn_id.c_str(), wireFileinfo.c_str())); // `invalid` is a firrtl construction for simulation so we will not // tag it with a @[fileinfo] tag as it doesn't directly correspond to // a specific line of verilog code. wire_decls.push_back(stringf("%s%s is invalid\n", indent.c_str(), unconn_id.c_str())); } wire_exprs.push_back(stringf("%s%s <= %s %s\n", indent.c_str(), make_id(wire->name), expr.c_str(), wireFileinfo.c_str())); } else { if (make_unconn_id) { unconn_id.clear(); } // `invalid` is a firrtl construction for simulation so we will not // tag it with a @[fileinfo] tag as it doesn't directly correspond to // a specific line of verilog code. wire_decls.push_back(stringf("%s%s is invalid\n", indent.c_str(), make_id(wire->name))); } } for (auto str : port_decls) f << str; f << stringf("\n"); for (auto str : wire_decls) f << str; f << stringf("\n"); for (auto str : mem_exprs) f << str; f << stringf("\n"); for (auto str : cell_exprs) f << str; f << stringf("\n"); for (auto str : wire_exprs) f << str; f << stringf("\n"); } void run() { emit_module(); } }; struct FirrtlBackend : public Backend { FirrtlBackend() : Backend("firrtl", "write design to a FIRRTL file") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" write_firrtl [options] [filename]\n"); log("\n"); log("Write a FIRRTL netlist of the current design.\n"); log("The following commands are executed by this command:\n"); log(" pmuxtree\n"); log(" bmuxmap\n"); log(" demuxmap\n"); log(" bwmuxmap\n"); log("\n"); } void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) override { size_t argidx = args.size(); // We aren't expecting any arguments. // If we weren't explicitly passed a filename, use the last argument (if it isn't a flag). if (filename == "") { if (argidx > 0 && args[argidx - 1][0] != '-') { // extra_args and friends need to see this argument. argidx -= 1; filename = args[argidx]; } } extra_args(f, filename, args, argidx); if (!design->full_selection()) log_cmd_error("This command only operates on fully selected designs!\n"); log_header(design, "Executing FIRRTL backend.\n"); log_push(); Pass::call(design, "pmuxtree"); Pass::call(design, "bmuxmap"); Pass::call(design, "demuxmap"); Pass::call(design, "bwmuxmap"); namecache.clear(); autoid_counter = 0; // Get the top module, or a reasonable facsimile - we need something for the circuit name. Module *top = design->top_module(); Module *last = nullptr; // Generate module and wire names. for (auto module : design->modules()) { make_id(module->name); last = module; if (top == nullptr && module->get_bool_attribute(ID::top)) { top = module; } for (auto wire : module->wires()) if (wire->port_id) make_id(wire->name); } if (top == nullptr) top = last; if (!top) log_cmd_error("There is no top module in this design!\n"); std::string circuitFileinfo = getFileinfo(top); *f << stringf("circuit %s: %s\n", make_id(top->name), circuitFileinfo.c_str()); emit_elaborated_extmodules(design, *f); // Emit non-blackbox modules. for (auto module : design->modules()) { if (!module->get_blackbox_attribute()) { FirrtlWorker worker(module, *f, design); worker.run(); } } namecache.clear(); autoid_counter = 0; } } FirrtlBackend; PRIVATE_NAMESPACE_END