/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/log.h" #include "libs/subcircuit/subcircuit.h" #include #include #include #include #include using RTLIL::id2cstr; namespace { class SubCircuitSolver : public SubCircuit::Solver { public: bool ignore_parameters; std::set> ignored_parameters; std::set cell_attr, wire_attr; SubCircuitSolver() : ignore_parameters(false) { } bool compareAttributes(const std::set &attr, const std::map &needleAttr, const std::map &haystackAttr) { for (auto &it : attr) { size_t nc = needleAttr.count(it), hc = haystackAttr.count(it); if (nc != hc || (nc > 0 && needleAttr.at(it) != haystackAttr.at(it))) return false; } return true; } RTLIL::Const unified_param(RTLIL::IdString cell_type, RTLIL::IdString param, RTLIL::Const value) { if (cell_type.substr(0, 1) != "$" || cell_type.substr(0, 2) == "$_") return value; #define param_bool(_n) if (param == _n) return value.as_bool(); param_bool("\\ARST_POLARITY"); param_bool("\\A_SIGNED"); param_bool("\\B_SIGNED"); param_bool("\\CLK_ENABLE"); param_bool("\\CLK_POLARITY"); param_bool("\\CLR_POLARITY"); param_bool("\\EN_POLARITY"); param_bool("\\SET_POLARITY"); param_bool("\\TRANSPARENT"); #undef param_bool #define param_int(_n) if (param == _n) return value.as_int(); param_int("\\ABITS") param_int("\\A_WIDTH") param_int("\\B_WIDTH") param_int("\\CTRL_IN_WIDTH") param_int("\\CTRL_OUT_WIDTH") param_int("\\OFFSET") param_int("\\PRIORITY") param_int("\\RD_PORTS") param_int("\\SIZE") param_int("\\STATE_BITS") param_int("\\STATE_NUM") param_int("\\STATE_NUM_LOG2") param_int("\\STATE_RST") param_int("\\S_WIDTH") param_int("\\TRANS_NUM") param_int("\\WIDTH") param_int("\\WR_PORTS") param_int("\\Y_WIDTH") #undef param_int return value; } virtual bool userCompareNodes(const std::string &, const std::string &, void *needleUserData, const std::string &, const std::string &, void *haystackUserData, const std::map &portMapping) { RTLIL::Cell *needleCell = (RTLIL::Cell*) needleUserData; RTLIL::Cell *haystackCell = (RTLIL::Cell*) haystackUserData; if (!needleCell || !haystackCell) { assert(!needleCell && !haystackCell); return true; } if (!ignore_parameters) { std::map needle_param, haystack_param; for (auto &it : needleCell->parameters) if (!ignored_parameters.count(std::pair(needleCell->type, it.first))) needle_param[it.first] = unified_param(needleCell->type, it.first, it.second); for (auto &it : haystackCell->parameters) if (!ignored_parameters.count(std::pair(haystackCell->type, it.first))) haystack_param[it.first] = unified_param(haystackCell->type, it.first, it.second); if (needle_param != haystack_param) return false; } if (cell_attr.size() > 0 && !compareAttributes(cell_attr, needleCell->attributes, haystackCell->attributes)) return false; if (wire_attr.size() > 0) { RTLIL::Wire *lastNeedleWire = NULL; RTLIL::Wire *lastHaystackWire = NULL; std::map emptyAttr; for (auto &conn : needleCell->connections()) { RTLIL::SigSpec needleSig = conn.second; RTLIL::SigSpec haystackSig = haystackCell->get(portMapping.at(conn.first)); for (int i = 0; i < std::min(needleSig.size(), haystackSig.size()); i++) { RTLIL::Wire *needleWire = needleSig[i].wire, *haystackWire = haystackSig[i].wire; if (needleWire != lastNeedleWire || haystackWire != lastHaystackWire) if (!compareAttributes(wire_attr, needleWire ? needleWire->attributes : emptyAttr, haystackWire ? haystackWire->attributes : emptyAttr)) return false; lastNeedleWire = needleWire, lastHaystackWire = haystackWire; } } } return true; } }; struct bit_ref_t { std::string cell, port; int bit; }; bool module2graph(SubCircuit::Graph &graph, RTLIL::Module *mod, bool constports, RTLIL::Design *sel = NULL, int max_fanout = -1, std::set> *split = NULL) { SigMap sigmap(mod); std::map sig_bit_ref; if (sel && !sel->selected(mod)) { log(" Skipping module %s as it is not selected.\n", id2cstr(mod->name)); return false; } if (mod->processes.size() > 0) { log(" Skipping module %s as it contains unprocessed processes.\n", id2cstr(mod->name)); return false; } if (constports) { graph.createNode("$const$0", "$const$0", NULL, true); graph.createNode("$const$1", "$const$1", NULL, true); graph.createNode("$const$x", "$const$x", NULL, true); graph.createNode("$const$z", "$const$z", NULL, true); graph.createPort("$const$0", "\\Y", 1); graph.createPort("$const$1", "\\Y", 1); graph.createPort("$const$x", "\\Y", 1); graph.createPort("$const$z", "\\Y", 1); graph.markExtern("$const$0", "\\Y", 0); graph.markExtern("$const$1", "\\Y", 0); graph.markExtern("$const$x", "\\Y", 0); graph.markExtern("$const$z", "\\Y", 0); } std::map, int> sig_use_count; if (max_fanout > 0) for (auto &cell_it : mod->cells) { RTLIL::Cell *cell = cell_it.second; if (!sel || sel->selected(mod, cell)) for (auto &conn : cell->connections()) { RTLIL::SigSpec conn_sig = conn.second; sigmap.apply(conn_sig); for (auto &bit : conn_sig) if (bit.wire != NULL) sig_use_count[std::pair(bit.wire, bit.offset)]++; } } // create graph nodes from cells for (auto &cell_it : mod->cells) { RTLIL::Cell *cell = cell_it.second; if (sel && !sel->selected(mod, cell)) continue; std::string type = cell->type; if (sel == NULL && type.substr(0, 2) == "\\$") type = type.substr(1); graph.createNode(cell->name, type, (void*)cell); for (auto &conn : cell->connections()) { graph.createPort(cell->name, conn.first, conn.second.size()); if (split && split->count(std::pair(cell->type, conn.first)) > 0) continue; RTLIL::SigSpec conn_sig = conn.second; sigmap.apply(conn_sig); for (int i = 0; i < conn_sig.size(); i++) { auto &bit = conn_sig[i]; if (bit.wire == NULL) { if (constports) { std::string node = "$const$x"; if (bit == RTLIL::State::S0) node = "$const$0"; if (bit == RTLIL::State::S1) node = "$const$1"; if (bit == RTLIL::State::Sz) node = "$const$z"; graph.createConnection(cell->name, conn.first, i, node, "\\Y", 0); } else graph.createConstant(cell->name, conn.first, i, int(bit.data)); continue; } if (max_fanout > 0 && sig_use_count[std::pair(bit.wire, bit.offset)] > max_fanout) continue; if (sel && !sel->selected(mod, bit.wire)) continue; if (sig_bit_ref.count(bit) == 0) { bit_ref_t &bit_ref = sig_bit_ref[bit]; bit_ref.cell = cell->name; bit_ref.port = conn.first; bit_ref.bit = i; } bit_ref_t &bit_ref = sig_bit_ref[bit]; graph.createConnection(bit_ref.cell, bit_ref.port, bit_ref.bit, cell->name, conn.first, i); } } } // mark external signals (used in non-selected cells) for (auto &cell_it : mod->cells) { RTLIL::Cell *cell = cell_it.second; if (sel && !sel->selected(mod, cell)) for (auto &conn : cell->connections()) { RTLIL::SigSpec conn_sig = conn.second; sigmap.apply(conn_sig); for (auto &bit : conn_sig) if (sig_bit_ref.count(bit) != 0) { bit_ref_t &bit_ref = sig_bit_ref[bit]; graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit); } } } // mark external signals (used in module ports) for (auto &wire_it : mod->wires_) { RTLIL::Wire *wire = wire_it.second; if (wire->port_id > 0) { RTLIL::SigSpec conn_sig(wire); sigmap.apply(conn_sig); for (auto &bit : conn_sig) if (sig_bit_ref.count(bit) != 0) { bit_ref_t &bit_ref = sig_bit_ref[bit]; graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit); } } } // graph.print(); return true; } RTLIL::Cell *replace(RTLIL::Module *needle, RTLIL::Module *haystack, SubCircuit::Solver::Result &match) { SigMap sigmap(needle); SigSet> sig2port; // create new cell RTLIL::Cell *cell = haystack->addCell(stringf("$extract$%s$%d", needle->name.c_str(), RTLIL::autoidx++), needle->name); // create cell ports for (auto &it : needle->wires_) { RTLIL::Wire *wire = it.second; if (wire->port_id > 0) { for (int i = 0; i < wire->width; i++) sig2port.insert(sigmap(RTLIL::SigSpec(wire, i)), std::pair(wire->name, i)); cell->set(wire->name, RTLIL::SigSpec(RTLIL::State::Sz, wire->width)); } } // delete replaced cells and connect new ports for (auto &it : match.mappings) { auto &mapping = it.second; RTLIL::Cell *needle_cell = (RTLIL::Cell*)mapping.needleUserData; RTLIL::Cell *haystack_cell = (RTLIL::Cell*)mapping.haystackUserData; if (needle_cell == NULL) continue; for (auto &conn : needle_cell->connections()) { RTLIL::SigSpec sig = sigmap(conn.second); if (mapping.portMapping.count(conn.first) > 0 && sig2port.has(sigmap(sig))) { for (int i = 0; i < sig.size(); i++) for (auto &port : sig2port.find(sig[i])) { RTLIL::SigSpec bitsig = haystack_cell->get(mapping.portMapping[conn.first]).extract(i, 1); RTLIL::SigSpec new_sig = cell->get(port.first); new_sig.replace(port.second, bitsig); cell->set(port.first, new_sig); } } } haystack->remove(haystack_cell); } return cell; } bool compareSortNeedleList(RTLIL::Module *left, RTLIL::Module *right) { int left_idx = 0, right_idx = 0; if (left->attributes.count("\\extract_order") > 0) left_idx = left->attributes.at("\\extract_order").as_int(); if (right->attributes.count("\\extract_order") > 0) right_idx = right->attributes.at("\\extract_order").as_int(); if (left_idx != right_idx) return left_idx < right_idx; return left->name < right->name; } } struct ExtractPass : public Pass { ExtractPass() : Pass("extract", "find subcircuits and replace them with cells") { } virtual void help() { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" extract -map [options] [selection]\n"); log(" extract -mine [options] [selection]\n"); log("\n"); log("This pass looks for subcircuits that are isomorphic to any of the modules\n"); log("in the given map file and replaces them with instances of this modules. The\n"); log("map file can be a verilog source file (*.v) or an ilang file (*.il).\n"); log("\n"); log(" -map \n"); log(" use the modules in this file as reference. This option can be used\n"); log(" multiple times.\n"); log("\n"); log(" -map %%\n"); log(" use the modules in this in-memory design as reference. This option can\n"); log(" be used multiple times.\n"); log("\n"); log(" -verbose\n"); log(" print debug output while analyzing\n"); log("\n"); log(" -constports\n"); log(" also find instances with constant drivers. this may be much\n"); log(" slower than the normal operation.\n"); log("\n"); log(" -nodefaultswaps\n"); log(" normally builtin port swapping rules for internal cells are used per\n"); log(" default. This turns that off, so e.g. 'a^b' does not match 'b^a'\n"); log(" when this option is used.\n"); log("\n"); log(" -compat \n"); log(" Per default, the cells in the map file (needle) must have the\n"); log(" type as the cells in the active design (haystack). This option\n"); log(" can be used to register additional pairs of types that should\n"); log(" match. This option can be used multiple times.\n"); log("\n"); log(" -swap ,[,...]\n"); log(" Register a set of swapable ports for a needle cell type.\n"); log(" This option can be used multiple times.\n"); log("\n"); log(" -perm ,[,...] ,[,...]\n"); log(" Register a valid permutation of swapable ports for a needle\n"); log(" cell type. This option can be used multiple times.\n"); log("\n"); log(" -cell_attr \n"); log(" Attributes on cells with the given name must match.\n"); log("\n"); log(" -wire_attr \n"); log(" Attributes on wires with the given name must match.\n"); log("\n"); log(" -ignore_parameters\n"); log(" Do not use parameters when matching cells.\n"); log("\n"); log(" -ignore_param \n"); log(" Do not use this parameter when matching cells.\n"); log("\n"); log("This pass does not operate on modules with uprocessed processes in it.\n"); log("(I.e. the 'proc' pass should be used first to convert processes to netlists.)\n"); log("\n"); log("This pass can also be used for mining for frequent subcircuits. In this mode\n"); log("the following options are to be used instead of the -map option.\n"); log("\n"); log(" -mine \n"); log(" mine for frequent subcircuits and write them to the given ilang file\n"); log("\n"); log(" -mine_cells_span \n"); log(" only mine for subcircuits with the specified number of cells\n"); log(" default value: 3 5\n"); log("\n"); log(" -mine_min_freq \n"); log(" only mine for subcircuits with at least the specified number of matches\n"); log(" default value: 10\n"); log("\n"); log(" -mine_limit_matches_per_module \n"); log(" when calculating the number of matches for a subcircuit, don't count\n"); log(" more than the specified number of matches per module\n"); log("\n"); log(" -mine_max_fanout \n"); log(" don't consider internal signals with more than connections\n"); log("\n"); log("The modules in the map file may have the attribute 'extract_order' set to an\n"); log("integer value. Then this value is used to determine the order in which the pass\n"); log("tries to map the modules to the design (ascending, default value is 0).\n"); log("\n"); log("See 'help techmap' for a pass that does the opposite thing.\n"); log("\n"); } virtual void execute(std::vector args, RTLIL::Design *design) { log_header("Executing EXTRACT pass (map subcircuits to cells).\n"); log_push(); SubCircuitSolver solver; std::vector map_filenames; std::string mine_outfile; bool constports = false; bool nodefaultswaps = false; bool mine_mode = false; int mine_cells_min = 3; int mine_cells_max = 5; int mine_min_freq = 10; int mine_limit_mod = -1; int mine_max_fanout = -1; std::set> mine_split; size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-map" && argidx+1 < args.size()) { if (mine_mode) log_cmd_error("You cannot mix -map and -mine.\n"); map_filenames.push_back(args[++argidx]); continue; } if (args[argidx] == "-mine" && argidx+1 < args.size()) { if (!map_filenames.empty()) log_cmd_error("You cannot mix -map and -mine.\n"); mine_outfile = args[++argidx]; mine_mode = true; continue; } if (args[argidx] == "-mine_cells_span" && argidx+2 < args.size()) { mine_cells_min = atoi(args[++argidx].c_str()); mine_cells_max = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-mine_min_freq" && argidx+1 < args.size()) { mine_min_freq = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-mine_limit_matches_per_module" && argidx+1 < args.size()) { mine_limit_mod = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-mine_split" && argidx+2 < args.size()) { mine_split.insert(std::pair(RTLIL::escape_id(args[argidx+1]), RTLIL::escape_id(args[argidx+2]))); argidx += 2; continue; } if (args[argidx] == "-mine_max_fanout" && argidx+1 < args.size()) { mine_max_fanout = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-verbose") { solver.setVerbose(); continue; } if (args[argidx] == "-constports") { constports = true; continue; } if (args[argidx] == "-nodefaultswaps") { nodefaultswaps = true; continue; } if (args[argidx] == "-compat" && argidx+2 < args.size()) { std::string needle_type = RTLIL::escape_id(args[++argidx]); std::string haystack_type = RTLIL::escape_id(args[++argidx]); solver.addCompatibleTypes(needle_type, haystack_type); continue; } if (args[argidx] == "-swap" && argidx+2 < args.size()) { std::string type = RTLIL::escape_id(args[++argidx]); std::set ports; char *ports_str = strdup(args[++argidx].c_str()); for (char *sptr, *p = strtok_r(ports_str, ",\t\r\n ", &sptr); p != NULL; p = strtok_r(NULL, ",\t\r\n ", &sptr)) ports.insert(RTLIL::escape_id(p)); free(ports_str); solver.addSwappablePorts(type, ports); continue; } if (args[argidx] == "-perm" && argidx+3 < args.size()) { std::string type = RTLIL::escape_id(args[++argidx]); std::vector map_left, map_right; char *left_str = strdup(args[++argidx].c_str()); char *right_str = strdup(args[++argidx].c_str()); for (char *sptr, *p = strtok_r(left_str, ",\t\r\n ", &sptr); p != NULL; p = strtok_r(NULL, ",\t\r\n ", &sptr)) map_left.push_back(RTLIL::escape_id(p)); for (char *sptr, *p = strtok_r(right_str, ",\t\r\n ", &sptr); p != NULL; p = strtok_r(NULL, ",\t\r\n ", &sptr)) map_right.push_back(RTLIL::escape_id(p)); free(left_str); free(right_str); if (map_left.size() != map_right.size()) log_cmd_error("Arguments to -perm are not a valid permutation!\n"); std::map map; for (size_t i = 0; i < map_left.size(); i++) map[map_left[i]] = map_right[i]; std::sort(map_left.begin(), map_left.end()); std::sort(map_right.begin(), map_right.end()); if (map_left != map_right) log_cmd_error("Arguments to -perm are not a valid permutation!\n"); solver.addSwappablePortsPermutation(type, map); continue; } if (args[argidx] == "-cell_attr" && argidx+1 < args.size()) { solver.cell_attr.insert(RTLIL::escape_id(args[++argidx])); continue; } if (args[argidx] == "-wire_attr" && argidx+1 < args.size()) { solver.wire_attr.insert(RTLIL::escape_id(args[++argidx])); continue; } if (args[argidx] == "-ignore_parameters") { solver.ignore_parameters = true; continue; } if (args[argidx] == "-ignore_param" && argidx+2 < args.size()) { solver.ignored_parameters.insert(std::pair(RTLIL::escape_id(args[argidx+1]), RTLIL::escape_id(args[argidx+2]))); argidx += 2; continue; } break; } extra_args(args, argidx, design); if (!nodefaultswaps) { solver.addSwappablePorts("$and", "\\A", "\\B"); solver.addSwappablePorts("$or", "\\A", "\\B"); solver.addSwappablePorts("$xor", "\\A", "\\B"); solver.addSwappablePorts("$xnor", "\\A", "\\B"); solver.addSwappablePorts("$eq", "\\A", "\\B"); solver.addSwappablePorts("$ne", "\\A", "\\B"); solver.addSwappablePorts("$eqx", "\\A", "\\B"); solver.addSwappablePorts("$nex", "\\A", "\\B"); solver.addSwappablePorts("$add", "\\A", "\\B"); solver.addSwappablePorts("$mul", "\\A", "\\B"); solver.addSwappablePorts("$logic_and", "\\A", "\\B"); solver.addSwappablePorts("$logic_or", "\\A", "\\B"); solver.addSwappablePorts("$_AND_", "\\A", "\\B"); solver.addSwappablePorts("$_OR_", "\\A", "\\B"); solver.addSwappablePorts("$_XOR_", "\\A", "\\B"); } if (map_filenames.empty() && mine_outfile.empty()) log_cmd_error("Missing option -map or -mine .\n"); RTLIL::Design *map = NULL; if (!mine_mode) { map = new RTLIL::Design; for (auto &filename : map_filenames) { if (filename.substr(0, 1) == "%") { if (!saved_designs.count(filename.substr(1))) { delete map; log_cmd_error("Can't saved design `%s'.\n", filename.c_str()+1); } for (auto &it : saved_designs.at(filename.substr(1))->modules) if (!map->modules.count(it.first)) map->modules[it.first] = it.second->clone(); } else { FILE *f = fopen(filename.c_str(), "rt"); if (f == NULL) { delete map; log_cmd_error("Can't open map file `%s'.\n", filename.c_str()); } Frontend::frontend_call(map, f, filename, (filename.size() > 3 && filename.substr(filename.size()-3) == ".il") ? "ilang" : "verilog"); fclose(f); if (filename.size() <= 3 || filename.substr(filename.size()-3) != ".il") { Pass::call(map, "proc"); Pass::call(map, "opt_clean"); } } } } std::map needle_map, haystack_map; std::vector needle_list; log_header("Creating graphs for SubCircuit library.\n"); if (!mine_mode) for (auto &mod_it : map->modules) { SubCircuit::Graph mod_graph; std::string graph_name = "needle_" + RTLIL::unescape_id(mod_it.first); log("Creating needle graph %s.\n", graph_name.c_str()); if (module2graph(mod_graph, mod_it.second, constports)) { solver.addGraph(graph_name, mod_graph); needle_map[graph_name] = mod_it.second; needle_list.push_back(mod_it.second); } } for (auto &mod_it : design->modules) { SubCircuit::Graph mod_graph; std::string graph_name = "haystack_" + RTLIL::unescape_id(mod_it.first); log("Creating haystack graph %s.\n", graph_name.c_str()); if (module2graph(mod_graph, mod_it.second, constports, design, mine_mode ? mine_max_fanout : -1, mine_mode ? &mine_split : NULL)) { solver.addGraph(graph_name, mod_graph); haystack_map[graph_name] = mod_it.second; } } if (!mine_mode) { std::vector results; log_header("Running solver from SubCircuit library.\n"); std::sort(needle_list.begin(), needle_list.end(), compareSortNeedleList); for (auto needle : needle_list) for (auto &haystack_it : haystack_map) { log("Solving for %s in %s.\n", ("needle_" + RTLIL::unescape_id(needle->name)).c_str(), haystack_it.first.c_str()); solver.solve(results, "needle_" + RTLIL::unescape_id(needle->name), haystack_it.first, false); } log("Found %zd matches.\n", results.size()); if (results.size() > 0) { log_header("Substitute SubCircuits with cells.\n"); for (int i = 0; i < int(results.size()); i++) { auto &result = results[i]; log("\nMatch #%d: (%s in %s)\n", i, result.needleGraphId.c_str(), result.haystackGraphId.c_str()); for (const auto &it : result.mappings) { log(" %s -> %s", it.first.c_str(), it.second.haystackNodeId.c_str()); for (const auto & it2 : it.second.portMapping) log(" %s:%s", it2.first.c_str(), it2.second.c_str()); log("\n"); } RTLIL::Cell *new_cell = replace(needle_map.at(result.needleGraphId), haystack_map.at(result.haystackGraphId), result); design->select(haystack_map.at(result.haystackGraphId), new_cell); log(" new cell: %s\n", id2cstr(new_cell->name)); } } } else { std::vector results; log_header("Running miner from SubCircuit library.\n"); solver.mine(results, mine_cells_min, mine_cells_max, mine_min_freq, mine_limit_mod); map = new RTLIL::Design; int needleCounter = 0; for (auto &result: results) { log("\nFrequent SubCircuit with %d nodes and %d matches:\n", int(result.nodes.size()), result.totalMatchesAfterLimits); log(" primary match in %s:", id2cstr(haystack_map.at(result.graphId)->name)); for (auto &node : result.nodes) log(" %s", id2cstr(node.nodeId)); log("\n"); for (auto &it : result.matchesPerGraph) log(" matches in %s: %d\n", id2cstr(haystack_map.at(it.first)->name), it.second); RTLIL::Module *mod = haystack_map.at(result.graphId); std::set cells; std::set wires; SigMap sigmap(mod); for (auto &node : result.nodes) cells.insert((RTLIL::Cell*)node.userData); for (auto cell : cells) for (auto &conn : cell->connections()) { RTLIL::SigSpec sig = sigmap(conn.second); for (auto &chunk : sig.chunks()) if (chunk.wire != NULL) wires.insert(chunk.wire); } RTLIL::Module *newMod = new RTLIL::Module; newMod->name = stringf("\\needle%05d_%s_%dx", needleCounter++, id2cstr(haystack_map.at(result.graphId)->name), result.totalMatchesAfterLimits); map->modules[newMod->name] = newMod; int portCounter = 1; for (auto wire : wires) { RTLIL::Wire *newWire = newMod->addWire(wire->name, wire->width); newWire->port_id = portCounter++; newWire->port_input = true; newWire->port_output = true; } for (auto cell : cells) { RTLIL::Cell *newCell = newMod->addCell(cell->name, cell->type); newCell->parameters = cell->parameters; for (auto &conn : cell->connections()) { std::vector chunks = sigmap(conn.second); for (auto &chunk : chunks) if (chunk.wire != NULL) chunk.wire = newMod->wires_.at(chunk.wire->name); newCell->set(conn.first, chunks); } } } FILE *f = fopen(mine_outfile.c_str(), "wt"); if (f == NULL) log_error("Can't open output file `%s'.\n", mine_outfile.c_str()); Backend::backend_call(map, f, mine_outfile, "ilang"); fclose(f); } delete map; log_pop(); } } ExtractPass;